• 沒有找到結果。

利用 Agrobacterium sp. 菌株生產 Curdlan 之研究 余靜宜、吳建一

N/A
N/A
Protected

Academic year: 2022

Share "利用 Agrobacterium sp. 菌株生產 Curdlan 之研究 余靜宜、吳建一"

Copied!
7
0
0

加載中.... (立即查看全文)

全文

(1)

利用 Agrobacterium sp. 菌株生產 Curdlan 之研究 余靜宜、吳建一

E-mail: 9511124@mail.dyu.edu.tw

摘 要

Curdlan為β-1,3鍵結的葡萄糖所構成之非水溶性多醣體,大多由Agrobacterium sp.及Alcaligenes faecalis於氮源限制條件下合 成。而本研究利用Agrobacterium sp.發酵來生產curdlan。探討五種不同碳源(葡萄糖、蔗糖、果糖、乳糖與麥芽糖)及四種不 同氮源(氯化銨、硝酸鈉、尿素與酵母萃取物)。實驗結果顯示蔗糖和尿素各自為最有效生產curdlan之碳源和氮源。另外,

也探討溶氧量對curdlan生產之影響。當曝氣量從0.5 L/min增加到2.0 L/min,其結果顯示菌體濃度及curdlan產量皆會增加

。同時,並研究調節pH值對curdlan生產之重要性。當pH值為6.6時有最高的比細胞生長率,pH值為5.5時有最高的

比curdlan生產率。由此可知,控制培養條件來增加curdlan生產率與降低curdlan生產成本是相當重要的。最後,將純化之產 物進行FT-IR(fourier transform infrared)與NMR(nuclear magnetic chromatography)分析來確定產物之結構,結果顯示已知此產 物確定為curdlan。 在單一因子實驗中,已知培養基組成中蔗糖濃度、尿素濃度及pH值為影響Agrobacterium sp.生產curdlan 最重要的因子。因此,本研究主要利用回應曲面實驗設計法進行Agrobacterium sp.生產curdlan之培養基最適化。使用中心 混層設計來探討蔗糖濃度( 56- 224 g/L )、尿素濃度( 0.05- 4.75 g/L )及pH(4-11 )之間複雜的關係。於最佳的培養基組成中,

蔗糖濃度為142.9 g/L,尿素濃度為0.52 g/L及pH為7.5磷酸緩衝溶液,其預測curdlan產量為5.22 g/L,比未最適化之培養基 高9.6﹪。

關鍵詞 : Agrobacterium sp.,curdlan,中心混層設計,回應曲面法 目錄

封面內頁 簽名頁 授權書 iii 中文摘要 iv 英文摘要 vi 誌謝 viii 目 錄 ix 圖目錄 xiv 表目錄 xix 第一章 緒論 1 第二章 文獻回顧 4 2.1多醣體(polysaccharide)之簡介 4 2.1.1微生物生產的胞外多醣體(Microbial exopolysaccharides) 5 2.1.2胞外多醣體的種類 5 2.1.3胞外多醣體之應用範圍 11 2.2 Curdlan 15 2.2.1 Curdlan之結構 15 2.2.2 Curdlan膠體之結構 18 2.2.3 Curdlan之物化特 性 19 2.2.4生產Curdlan之微生物種類 21 2.2.5影響Curdlan生產之環境因子與培養基組成 25 2.3 Curdlan之生合成機制 29 2.4 Curdlan之應用 32 2.4.1食品工業上之應用 32 2.4.2農業生物技術上之應用 35 2.4.3醫療上之應用 36 2.4.4抗腫瘤之應用 37 2.4.5環境上之應用 41 2.4.6固定化上之應用 41 2.5 回應曲面法(Response surface methodology) 50 2.5.1 回應曲面法之介紹 50 2.5.2 回應曲面法之原理 50 2.5.3 回應曲面法之應用 54 第三章 材料與方法 56 3.1實驗材料 56 3.1.1菌株 56 3.1.2藥品 56 3.1.3儀器設備 57 3.2菌株培養 59 3.2.1菌株保存與更新 59 3.2.2菌株活化 59 3.3菌體SEM觀察 59 3.4 Curdlan生產培養 60 3.5 不同培養基組成對Agrobacterium sp.生產curdlan之探討 61 3.5.1 不同碳源對菌體生長與curdlan生產之影響 61 3.5.2 蔗糖濃度 對菌體生長與curdlan生產之影響 61 3.5.3 不同氮源對菌體生長與curdlan生產之影響 61 3.5.4 尿素濃度對菌體生長與curdlan 生產之影響 62 3.5.5 不同pH值對菌體生長與curdlan生產之影響 62 3.5.6 不同溶氧量對菌體生長與curdlan生產之影響 62 3.6 不生產培養基中之分析 63 3.6.1 微生物之生長分析 63 3.6.2 pH測定 64 3.6.3 培養期間培養液之黏度分析 64 3.6.4 Curdlan之 分析 64 3.6.5 胞外多醣體分析(酚硫酸法) 65 3.7 Curdlan之純化 66 3.8 Curdlan之結構鑑定與分析 67 3.8.1 核磁共

振(Nuclear Magnetic Resonance,NMR)分析 67 3.8.2 傅立葉轉換紅外線(Fourier Transform Infrared spectrometry,FT-IR)光譜 分析 67 3.8.3 示差掃瞄熱分析(Differential Scanning Calorimetry,DSC)68 3.8.4 X光單晶繞射儀分析(X-ray diffractometer)

68 3.9 回應曲面法之實驗設計 68 3.9.1 統計分析 70 3.10 固定化顆粒製備 70 3.10.1 固定化顆粒基本性質 70 3.10.2 顆粒內菌 體濃度之測量 71 3.10.3 吸附實驗 73 3.10.4 掃瞄式電子顯微鏡(SEM)觀察顆粒菌相 73 第四章 結果與討論 75 4.1 菌株外觀型 態觀察 75 4.1.1 掃瞄式電子顯微鏡下(SEM)之型態 75 4.2 環境因子之探討 77 4.2.1 不同曝氣量對curdlan生產的影響 77 4.3 培養基成分之探討 81 4.3.1 最適碳源探討 81 4.3.2 Sucrose對curdlan生產的影響 86 4.3.3 最適氮源探討 89 4.3.4 Urea 對curdlan生產的影響 93 4.3.5 pH值對curdlan生產的影響 96 4.3.6 Urea濃度固定,不同Sucrose濃度對curdlan生產的影響 101 4.4 回應曲面法實驗設計 106 4.4.1 中心混成實驗之產curdlan情形 106 4.4.2 最適化之培養基組成 113 4.4.3 培養基產curdlan 之最適化 117 4.4.4 產curdlan之生產速率ν(g/L/h)最適化 125 4.4.5 產curdlan之td最適化 133 4.4.6 RSM設計預測結果之驗證 141 4.5 Curdlan產物分析 143 4.5.1 Curdlan產物之NMR分析 143 4.5.2 Curdlan產物之FT-IR分析 147 4.5.3 Curdlan產物 之DSC分析 149 4.5.4 Curdlan產物之X-ray分析 152 4.5.5 Curdlan產物之黏度分析 154 4.5.6 Curdlan產物之SEM分析 156 4.6 固定化實驗 158 4.6.1 吸附實驗 158 4.6.2 懸浮菌體與固定化菌體系統生產curdlan之比較 160 4.6.3 固定化顆粒的基本性質 162 第五章 結論 167 參考文獻 168 圖目錄 Figure 1-1 Schematic of this study procedure 3 Figure 2-1 Structure of curdlan. 16 Figure 2-2 The photograph of curdlan 16 Figure 2-3 Formating of curdlen high-setand low-set gel. 19 Figure 2-4 Lineage of representative strains for curdlan production23 Figure 2-5 Metabolic pathway for the synthesis of curdlan. 31 Figure 2-6 The

(2)

polysaccharides structure of antitumor activity. 39 Figure 2-7 The antitumor mechanish of polysaccharide 40 Figure 2-8 Process flowchart of response surface 53 Figure 3-1 The Standard curve of the cell concentration of the Agrobacterium sp63 Figure 3-2 Standard curve of concentration of curdlan 65 Figure 3-3 Standard curve of concentration of glucose. 66 Figure 3-4 Calibration curve of Protein and Absorbance 72 Figure 3-5 Calibration curve of Protein and Biomass. 73 Figure 4-1 Photograph of

Agrobacterium sp. by SEM. 76 Figure 4-2 Time course of biomass and curdlan by Agrobacterium sp. at various agition and aeration rate. 79 Figure 4-3 Effect of agitation and aeration on curdlan products and cell growth by Agrobacterium sp. 80 Figure 4-4 Time course of biomass and curdlan by Agrobacterium sp.84 Figure 4-5 Effect of carbon sources by Agrobacterium sp. 85 Figure 4-6 Time course of bimass and curdlan by Agrobacterium sp. at various carbon amount. 87 Figure 4-7 Effect of sucrose by

Agrobacterium sp. 88 Figure 4-8 Time course of biomass and curdlan by Agrobacterium sp. at various nitrogen source 91 Figure 4-9 Effect of nitrogen sources by Agrobacterium sp. 92 Figure 4-10 Time course of biomass and curdlan by Agrobacterium sp. at various urea concentration 94 Figure 4-11 Effect of urea concentration by Agrobacterium sp. 95 Figure 4-12 Time course of biomass and curdlan by Agrobacterium sp. at various pH 99 Figure 4-13 Effect of pH on curdlan and EPS products by Agrobacterium sp. after 50 h and 100 h. 100 Figure 4-14 Time course of biomass and curdlan by Agrobacterium sp. at various carbon concentration 103 Figure 4-15 Effect of sucrose concentration(urea:1.8 g/L) on curdlan and EPS products by Agrobacterium sp.104 Figure 4-16 Viscosity as function of speed for Agrobacterium sp.on curdlan products. 105 Figure 4-17 Experimental results of central composite design for running NO 1 to NO 20 111 Figure 4-18 Main effect analysis of curdlan production,ν(g/L h)and td 116 Figure 4-19 Contour plot and response surfaces of curdlan production (g/L):the effect of urea and pH on curdlan production 121 Figure 4-20 Contour plot and response surfaces of curdlan production (g/L):the effect of sucrose and pH on curdlan production 122 Figure 4-21 Contour plot and response surfaces of curdlan production (g/L):the effect of sucrose and urea on curdlan production 123 Figure 4-22 Contour plot and response surfaces of curdlan product rate (g/L/h):the effect of urea and pH on the product rate of curdlan. 129 Figure 4-23 Contour plot and response surfaces of curdlan Product rate (g/L/h):the effect of sucrose and pH on the product rate of curdlan.130 Figure 4-24 Contour plot and response surfaces of curdlan Product rate (g/L/h):the effect of sucrose and urea on the product rate of curdlan.131 Figure 4-25 Contour plot and response surfaces of the lag time of curdlan

production(day):the effect of urea and pH on the lag time of curdlan production 137 Figure 4-26 Contour plot and response surfaces of the lag time of curdlan production(day):the effect of sucrose and pH on the lag time of curdlan production 138 Figure 4-27 Contour plot and response surfaces of the lag time of curdlan production(day):the effect of sucrose and urea on the lag time of curdlan production 139 Figure 4-28 Comparsion of the calculate values from RSM of the work and experimental values of curdlan production 142 Figure 4-29 13C-NMR spectrum of curdlan standard and purified curdlan 144 Figure 4-30 1H-NMR spectrum of curdlan standard and purified curdlan 145 Figure 4-31 FTIR spectrum of purified curdlan 148 Figure 4-32 Differential scaning calorimetry thermogram of curdlan standard and purified curdlan 151 Figure 4-33 X-ray diffraction spectra for curdlan 153 Figure 4-34 Shear rate versus shear stress and viscosity for purified curdlan from Agrobacterium sp. 155 Figure 4-35 Photograph of purified curdlan by SEM 157 Figure 4-36 The time course of adsoption by immobilized-free cell bead 159 Figure 4-37 Comparison of curdlan products of suspended cell and immiobilized beads during repeated-batch fermentation 161 Figure 4-38 The photograph of immobilized beads 164 Figure 4-39 Microbial population development and distribution of the surface of the gel beads in the immobilized cell system during continuous operation 165 Figure 4-40 Microbial population development and distribution of the inside section of the gel beads in the immobilized cell system during continuous operation 166 表目錄 Table 2-1 A variety of glucans having β-(1,3) linkage in their backbones. 8 Table 2-2 Established application of microbial expolysaccharides.14 Table 2-3

Comparison various Alcaligenes sp. with Agrobacterium sp. of culture condition and curdlan production. 24 Table 2-4 Application of curdlan as food additives and essential ingredient 34 Table 2-5 The application of curdlan. 44 Table 2-6 Patent holders and publication year. 46 Table 2-7 A list of the patent of curdlan application.. 48 Table 3-1 Seed culture medium 60 Table 3-2 Variables and their levels for CCRD. 69 Table 3-3 Treatment schedule for a three-factor CCRD.. 69 Table 4-1 Experimental results of central composite design. 112 Table 4-2 Definition and trial level of factor inexperiment. 114 Table 4-3 Design and experimental results of experiment. 115 Table 4-4 The least-squares fit and parameter estimaters(significance of regression coefficients) of curdlan

production. 120 Table 4-5 ANOVA for the quadratic model 124 Table 4-6 The least-squares fit and parameter

estimaters(significance of regression coefficients) of curdlan product rat 128 Table 4-7 ANOVA for the quadratic model 132 Table 4-8 The least-squares fit and parameter estimaters(significance of regression coefficients) of the lag time of curdlan production 136 Table 4-9 ANOVA for the quadratic model 140 Table 4-10 13C-NMR chemical shifts of water-insolubleβ-1.3-D-glucan extracted from Saccharomyces cerevisiae and Agrobacterium sp. with various protic acid、water-soluble β-1.3-D-glucan phosphates derived from the corresponding microparticulate β-1.3-D-glucana 146 Table 4-11 The physical characteristics of PVA immobilized-cell 163

參考文獻

(3)

中文部份 1.丁懷謙。2000。食藥用菇多糖體之免疫生理活性。 食品工業。32:28-42。 2.中尾行宏。1999。?????食品??利用。 New Food Industry 32:1-8。 3.尤新 編著。2001。機能性發酵製品。第119-1670頁。藝軒圖書出版社。 台北,臺灣。 4.水野卓、川何正允 編著

。1992。菇類的化學生化學。第260-263頁。國立編譯館版。台北,臺灣。 5.李晉嘉。2003。以反應曲面法研究生化柴油之最適化酵素 合成。大葉大學食品工程系碩士論文。彰化,臺灣。 6.洪哲穎、陳國誠。1992。回應曲面實驗設計法在微生物酵素生產之應用。化工期 刊39:3-18。 英文部份 1. Akihiro、S.and Takaaki、I. 1998. Quality improving agent for fishery paste product and production of fishery paste product. Japanese patent 10014541. 2. Akira、K. and Atsushi、I. 1989. Edible film. Japanese patent 01289457. 3. Amemura、A. 1984. Synthesis of (1→2)-β-D-glucan by cell-free extracts of Agrobacterium radiobacter IFO 12665b1 and Rhizobium phaseoli AHU 1133. Agricultural and Biological Chemistry 48:1809-1817. 4. Anonymous . 1988. Xanthan gum: Natural biogum for scientific water control. San Diego、CA: Kelco Division of Merck and Co. 5. Ashida、T.、Kajikawa、M.、Okimasu、E.、Asai、T. and Amemura、A. 1997.Augmentative effect of curdlen ( β-(1,3)-glucan) on host defence and superoxide anion production in leukocytes of Japanese flounder Paralichthys olivaceus.(Abstr) Japanese Society of Scientific Fisheries 9:59. 6. Augustin、J. 1998. Glucans as modulating polysaccharide、their characteristics and isolateion from microbiological sources. Biologicals 53:277-282. 7. Banik、R. M.、Kanari、B.and Upadhyay、S. N. 2000. Exopolysaccharide of the gellan family: prospects and potential. World Journal of Microbiology and Biotechnology 16:407-414. 8. Bethall、K. M.、Scholfield、D. J.、and Hallfrisch、J. 1997. Effect of β-glucan leveling oat fiber extracts on blood lipids in men and women. Journal of American college health 16:1-8. 9. Bluhm、T. L.and Sarko、A.

1977. The triple helical structure of lentinan、a linear (1→3)- β-D-Glucan. Canadian Journal of Chemistry 55: 293-303. 10. Bowman、L. and Geiger、E. 1984. Optimization of fermentation conditions of alcohol production. Biotechnology and Bioengineering 26:1492-1497. 11. Box、G.

E. P. and Wilson、K. B. 1951. On the experimental attainment optimum conditions. Journal of the Royal Statistics Society B13:1-45. 12. Box、G.

E. P.、Hunter、W. and Hunter、J. S. 1978. Statistics for experimenters. John Wiley and Sons、Inc.、New York. 13. Chang、M. Y.、Tsai、G.

J. and Hong、J. Y. 2006. Optimization of medium composition for the medium composition for the submerged culture of Ganoderma lucidum by Taguchi array design and steepest ascent method. Enzyme and Microbial Technology 38:407-414. 14. Cheeseman、I. M. and Brown、R. M.

1995. Microscopy of curdlen structure. Howard Hughes Molecular Biology Summer Research Program Poster、Austin、TX、August. 15. Chen

、K. C. and Lin、Y. F. 1994. Immobilization of microorganisms or enzymes in polyvinyl alcohol beads. United States Patent、No.5290693. 16.

Chen、S. L. 1981. Optimization of batch alcohol fermentation of glucose syrup substrate. Biotechnology and Bioengineering 23:1827-1836. 17.

Cheynier、V.、Feinberg、M.、Chararas、C. and Ducauze、C. 1983. Application of response surface methodology to evaluation of bioconversion experimental conditions. Applied and Environmental Microbiology 45:634-639. 18. Dong、Z. and Ohta、T. 1995. Chiral separation by curdlan gel electrophoresis. Adolescent Brain Development 11:663-665. 19. Dubios、M.、Gilles、K. A.、Hamilton、J. K.

、Rebers、P. A.、and Smith、F. 1956. Colormetric method of determination of sugars and releted substances. Analytical Chemistry 28: 350-356.

20. Dubios、M.、Gilles、K. A.、Hamilton、J. K.、Rebers、P. A.、and Smith、F. 1956. Colormetric method of determination of sugars and releted substances. Analytical Chemistry 28:350-356. 21. Elibol、M. 2004. Optimization of medium composition for actinorhodin production by Streptomyces coelicolor A3(2)with respone surface methodology. Process Biochemistry 39:1057-1062. 22. Evans、S. G.、Morrison、D.

、Kaneko、 Y. and Havlik、I. 1998. The effect of curdlan sulfate on development in vitro of Plasmodium falciparum. Transactions of the Society of Instrument Technology 92:87-89. 23. Farina、J. I.、Sineriz、F.、Molina、O. E. and Perotti、N. I. 2001. Isolation and physico-chemical characterizeation of soluble scleraoglucan from scleraotiumrolfsii Rheological propertyes、molecular wight and conformational characteristics.

Carbohydrate research 44:41-50. 24. Flieger、M.、Kantorova、M.、Prezanka、A.、Rezanka、T. and Votruba、J. 2003. Biodegradable Plastics from Renewable Sources. Folia microbiologica. 48:27–44 . 25. Franz、G. and Alban、S. 1995. International Journal of Biological macromlecules 17:311-314. 26. Fujiki、K.、Nakao、M.、Kajikawa、M.、Asai、T. and Yano、T.1997.Enhancement of resistance to bacterial infection in carp Cyprinus carpio L.,by oral adininistration of curdlen (β-(1,3)-glucan). (Abstr) Japanese Society of Scientific Fisheries 9:59. 27.

Fumio、I.、Kimikazu、I. and Satoshi、S. 1989. Polysaccharide having activity for multiplying Bifidobcaterium. Japanese patent 01137990A. 28.

Giavasis、I. and Harvey、L. M. 2000. Gellan gum. Critical Reviews in Biotechnology 20:177-211. 29. Gilbbs、P. A. and Sevior、R. J. 1996.

Does the agitation rate and/or oxygen saturation influence exopolysaccharide production by Aureobasidium pullulans in batch culture?. Applied Microbiology and Biotechnology 46:503-510 30. Hamase、K.、Nakamura、H. and Nakajirna、T. 1992. Sodium dodecyl sulfate curdlan gel electrophoresis system for proteins. Analytical Sciences 8:669-700. 31. Hamase、K.、Nakamura、H. and Nakajirna、T. 1993a. Curdlan gel

、evaluated as a polysaccharide support by electrophoresis of substituted benzenes. Analytical Sciences 9:799-802. 32. Hamase、K.、Nakamura

、H. and Nakajirna、T.1991. Curdlan gel as a promising support for electrophoresis . Anlytical sciences 7:811-812. 33. Hamase、K.、Nakamura

、H. and Nakajirna、T.1993. Group separation of linear DNAs and circular DNAs by curdlan gel electrophoresis. Analytical sciences 9:125-127.

34. Harada、T. 1965. Succinoglucan 10C3: a new acidic polysaccharide of Alcaligenes faecalis var. myxogenes. Archives of Biochemistry and Biophysics 112: 65-69. 35. Harada、T. 1977. Production properies and application of curdlan. Extracellular Microbial Polysaccarides. p. 265-283.

American Chemical Society. Washington. DC. 36. Harada、T.、Fujimori、K.、Hirose、S. and Masada、M. 1966. Growth and β-glucan 10C3 K production by a mutant of Alcaligenes faecalis var myxogenes in defined medium. Agricultural and biological chemistry 30:764-769. 37.

Harada、T.、Koreeda、A.、Sato、S. and Kasai、N. 1979. Electron Microscopic Study on the Ultrastructure of Curdlan Gel:Assembly and Dissociation of Fibrils by Heating. Journal of Electron Microscopy 28:147-153. 38. Harada、T.、Okuyama、K.、Konno、A.、Koreeda、A.

and Harada、A. 1994. Effect of heating on formation of curdlan gels. Carbohydrate Polymers 24: 101-106. 39. Harada. T.、Sato、S. and Harada

、A. 1987. Curdlan. Bulletin of Kobe Women,s University 142:20-2. 40. Harada. T.、Yoshimura. T.、Hidaka. H and Koreeda. A. 1965.

(4)

Production of a new acidic polysaccharide、succinoglucan by Alcaligenes faecalis var. myxogenes. Agricultural and biological chemistry 29:757-762. 41. Harada. T. and Yoshimura. T. 1965. Rheological properties of succinoglucan 10C3 form Alcaligenes faecalis var. myxogenes.

Agricultural and biological chemistry 29:1027-1032. 42. Harada. T.、Amemura. A.、Saito. H.、Kanamaru. S. and Misaki. A. 1968. Formations of Succinoglucan and Curdlan by Parent and Mutant Strains of Alcaligenes faecalis var. myxogenes 10c3. Journal of fermentation technology 46:679-684. 43. Harper、D. L.、Morgan、J. H.、Nochumson、S.、Ostrovsky、M.、Renn、D. W. and Snow、W.C. 1995a. Nucleic acid sequencing gels. PCT International Publication Nochumson:WO 95/06668. 44. Harper、D. L.、Morgan、J. H.、Nochumson、S.、Ostrovsky

、M.、Renn、D. W. and Snow、W.C. 1995b. Agarose compositions for nucleic acid sequencing. US Patent 5,455,344. 45. Haze、A.

、Yamamoto、Y.、Miyanagi、K. and Uchida、S. 1994. Preparation of a segregation-reducing agent for hydraulic compositions. European Patent 588-665 46. Hideaki、Y.、Chieko、M. and Takeshi、A. 1993. Ganmodoki and its production. Japanese 05207859. 47. Himmelblau、D.

M. 1970. Process analysis by statistical methods. John Wiley and Sons、New York. 203-292. 48. Hiroki、O. and Etsuko、M. 1993. Noodle-like soybean protein-containing food. Japanese patent 05076290. 49. Hiroshi、S.、Nobuyoshi、N.、Yutaro、K. and Toru、M. 1997. Medicine for treating dementia. Japanese patent 09255579. 50. Hiroshi、Y.、Yuichi、S.、Norio、I. and Nana、I. 1999. Frozen dessert food and its production. Japanese patent 11187819. 51. Hisamatsu、M.、Amemura、A.、Harada、T.、Matsuo、T.、Matsuda、H.、and Harada、T.

1982. Cyclic (1β2)- β-D-glucan and the octasaccharide repeating-unit of succinoglycan produced by Agrobacterium. Journal of General Microbiology 128:1873-1879. 52. Hisamatsu、M.、Amemura、A.、Harada、T.、Nakanishi、I. and Kimura、K. 1977. Change in ability of Agrobacterium to produce water-soluble and water-insoluble beta-glucans. Journal of General Microbiology 103:375-379. 53. Hisamatsu、M.

、Sano、K.、Amemura、A. and Harada、T. 1978. Acid polysaccharides containing succinic acid in various strains of Agrobacterium.

Carbohydrate Research 61:89-96. 54. Ielpi、L.、Couso、R. O.and Dankert、M. A. 1993. Sequential assembly and polymerization of the polyphenol-linked pentasaccharide repeating unit of the xanthan polysaccharide in Xanthomonas campestris. Journal of Bacteriology

175:2490-2500. 55. Jagodzinski、P. P.、Wiaderkiewicz、R.、Kurzawski、G.、Kloczewiak、M.、Nakashima、H.、Hyiek、E.、Yamamoto

、N.、Uryu、T.、Kaneko、Y.、Posner、M. R. and Kozbor、D. 1994. Mechanism of the innibitory effect of curdlan sulfate on HIV-Ι infection in vitro. Virology 202:735-745. 56. Jeney、G and Anderson、D. P. 1993. Glucan injection or bath exposure given alone mechanism in rainbow trout (Oncorhychus mykiss). Aquaculture 116:315-329. 57. Jezequel、V. 1998. Curdlan : A new Functional β- glucan. Cercal Foods World 43: 361-364. 58. Jong、S. C. and Birmingham、J. M. 1993. Medicinal and rherapeutic value of the shiitake mushroom. Advances in applied microbiplogy 39:153-184. 59. Joris、K.and Vandamme、E. J.1993. Improved production bacterial cellulose and its application potential.

Microbiology 27-29. 60. Kai、A.、Ishino、T.、Arashida、T.、Hatanaka、K.、Akalike、Y.、Matsuzaki、K.、Kaneko、Y. and Mimura、T.

1993. Biosynthesis of culture media containing 13C-labeled glucose as the carbon source. Carbohydrate Research 240:153-159. 61. Kamistato、J.

k.、Nowakowski、M. 1988. Morphological and biochemical alterations of macrophages produced by a glucan、PSK. Immunopharmacology 16:88-96. 62. Kanke、M.、Koda、K.、Koda、Y. and Katayama、H. 1992. Application of curdlan to controlled drug delivery-Ι. The preparation and evalution of theophline-containing curdlan tables. Pharmazeutische Research 9:414-418. 63. Kanke、M.、Tanabe、E.

、Katayama、H.、Koda、Y.and Yoshitomi、H. 1995. Application of curdlan to controlled drug delivery III Drug release from sustained release suppositories in vitro. Biological & pharmaceutical bulletin 18:1154-1158. 64. Kanzawa、Y.、Harada、T.、Koreeda、A. and Harada、A. 1987.

Curdlan gel formed by neutralizing its alkaline solution. Agricultural and Biological Chemistry 51:1839-1843 65. Kasai、N. and Harada、T.

1980. Ultrastructure of curdlan. In:Fiber Diffraction Methods,(French、A. D.、Gardner、K. H. Eds.) .Washington、DC:American Chemical Socirty Symposium Series 363-383. 66. Kazushi、M. 1999. Production of bean curd including ingredient. Japanese patent 11178533. 67. Ken

、O. and Akirou、M. 1992. Soybean proteincontaining solid food. Japanese patent 04197148. 68. Kim、B. S.、Jung、I. D.,Kim、J. S.、Lee、J.

H.、Lee、I. Y. and Lee、K. B. 2000. Curdlan gels as protein drug delivery vehicles. Biotechnology Letters. 22:1127-1130. 69. Kim、M. K.、Lee

、I. Y.、Ko、J. H.、Rhee、Y. H. and Park、Y. H. 1999. Higher intracellular levels of uridinemonophospospate under nitrogen-limited conditions enhance metabolic flux of curdlan synthesis in Agrobacterium species. Biotechnology and Bioengineering. 62:318-323. 70. Kim、M. K.

、Lee、I. Y.、Ko、J. H.、Rhee、Y. H. and Park、Y. H. 1998. Biotechnology and Bioengineering. 63:317-323. 71. Kim、M. K.、Lee、I. Y.

、Lee、J. H、Kim、K.T.、Rhee、Y. H. and Park、Y. H. 2000. Residual phosphate concentrateion under nitrogen limiting conditions regulates curdlen production in Agrobacterium species. Journal of industrial microbiology & Biotechnology 25:180-183. 72. Kim、M. K.、Ryn、K. E.

、Choi、W、A.、Rhee、Y. H. and Lee、I. Y. 2003 .Enhanced production of (1→3)- β-D-glucan by a mutant strain of Agrobacterium species.

Biochemical Engineering Journal 16:163-168. 73. Kimura、H.、Moritaka、S. and Misaki、M. 1973. Polysaccaride 13140:a new thermo-gelable polysaccharide. Journal of Food Science 38:668-670. 74. Konno、A. and Harada、T. 1991. Thermal propertyes of curdlen in aqueous

suspendsion and curdlen gel. Food Hydrocolloids 5:427-434. 75. Koreeda、A.、Harada、T.、Ogawa、K.、Sato、S. and Kasai、N. 1974.

Study of the ultrastructure of gel-forming(1→3)- β-D-glucan (curdlan-type polysaccharide) by electron microscopy. Carbohydrate Research 33:396-399. 76. Lapasin、R. and Pricl、S. 1995. Rheology of industrial polysaccharides: Theory and Applications. Blackie Academic and professional. 77. Lawford、H. G. and Phillips、K. R. 1982. A two stage continuous process for the production of thermogelable curdlan-type exopolysaccharide. Biotechnology Letters 4:689–694. 78. Lawford、H. G. and Rousseau、J. D.、1992. Production of β-1,3-glucan exopolysaccharide in low shear systems. Applied Biochemistry and Biotechnology 34/35: 587-612. 79. Lawford、H. G. and Rousseau、J. D.

1991.Bioreactor design considerations in the production of high-quility microbial exopolysaccharide. Appled biochemistry and biotechnology .28/29:667-684. 80. Lawford、H. G.. and Rousseau、J. D. 1989. Effect of oxygen on the rate of β-1,3-glucan microbial exopolysaccharide

(5)

production. Biotechnology Letters 11:125-130. 81. Lawford、H.、Keenan、J.、Phillips、K. and Orts、W. 1986.Influence of bioreactor design on the rate and amount of curdlan-type exopolysaccharide production by Alcaligenes faecalis、Biotechnology letters.8:145-150. 82. Lawford、H.

G. and Rousseau、J. D. 1989. Effect of oxygen on the rate of β-1,3-glucan microbial exopolysaccharide production. Biotechnology Letters 11:125-130. 83. Lee、J. H. and Lee、I. 2001. Optimization of uracil addition for curdlan (β-1→3-glucan) production by Agrobacterium sp.

Biotechnology Letters 23: 1131-1134 84. Lee、C. S.、Houng、J. Y. and Hsiung、K. P. 1992. Medium optimization for production of tyrosine decarboxylase by Streptococcus faecalis with response surface methodology. Journal of the Chinese Agricultural Chemical Society 30:264-272. 85.

Lee、H. J. and Park、H. Y.2001. Optimal production of curdlan by Agrobacterium sp. with feedback inferential control of optimal pH profile.

Biotechnology Letters 23: 525–530. 86. Lee、I. Y.、2002. Biology .Chemistry. Biotechnology. Application、Biopolymers.p.136-154.

WILEY-VCH Verlag GmbH、Weinheim、Germany. 87. Lee、I. Y.、Kim、S. W.、Lee、I. H. Kim、M. K.、Cho、I. S.and Park、Y. H.

1999b. A high viscosity of curdlan at alkaline pH increases segregational resistance of concrete. Korean journal of Biotechnology Bioengineering 14:1-5. 88. Lee、I. Y.、Seo、W. T.、Kim、G. J.、Kim、M. K.、Park、C. S.and Park、Y. H. 1997. Production of curdlan using sucrose and sugar cane molasses by two-step fed-batch cultivation of Agrobacterium species. Journal of Industrial Microbiology Biotechnology 18:255-259. 89.

Lee、J. W.、Yeomans、W. G.、Allen、A. L.、Kaplan、D. L.、Deng、F. and Gross. R. A. 1997c. Exopolymers from curdlen

production:incorporation of glucose-related sugars by Agrobacterium sp. strain ATCC 31749. Candian journal of microbiology. 43:149-156. 90.

Lee、J. Y.、Seo、W. T.、Kim、G. J.、Kim、M. K.、Park、C. S. and Park、Y. H. 1997a. Production of curdlan using sucrose or sugar cane molasses by two-step fed-batch cultivation of Agrobacterium species. Journal of Industrial Microbiology and Biotechnology 18: 255–259. 91. Lee

、J.H.、Lee、I.Y.、Kim、M. K.and Park、Y. H. 1999a. Optimal pH control of batch processes for production of curdlan by Agrobacterium sp.

Journal of industrial microbiology & biotechnology 23: 143-148. 92. Lee、Y. I.、Kim、K. M.、Lee、H. J.、Seo、T. W.、Jung、K. J.、Lee

、W. H.and Y、H. Pa. 1999 .Influence of agitation speed on production of curdlan by Agrobacterium species. Bioprocess Engineering 20 :283-287. 93. Linton、J. D.、Ash、S. G. and Huybrechts、L. 1991. Microbial polysaccharides. In: Byron、D. (ed.). Biomaterials: novel materials from biological sources. Stockton Press. New York. 94. Livesey、G. 1990. Energy values of unavailable carbohydrates and diets: An inquiry and analysis. American Journal of Clinical Nutrition. 51:617-621. 95. Madar、Z. and Odes、H. S.、1990. Dietary fiber in metabolic diseases. In:

Dietary fiber Research (Paoletri P. Ed.) Krager、Basel Interface Science 8:396-400. 96. Maeda、I.、Saito、H.、Masada、M.、Misaki、A. and Harada、T. 1967. Properties of gels formed by heat treatment of curdlan、a bacterial β(1,3) –glucan. Agricultural biochemical chemistry 31:1184-1191. 97. Marchessault、R. H. and Deslandes、Y. 1979. Fine structure of (1→3)-β-D-glucans:curdlan and paramylon. Carbohydrate Research 75:231-242. 98. Marshall、V. M.、Laws、A. P.、Gu、Y.、Levander、F.、Radstrom、P.、De Vuyst、L.、Degeest、B.

、Vaningelgem、F.、Dunn、H. and Elvin、M. 2001.Exopolysaccharide-producing strains of thermophilic lactic acid bacteria cluster into groups according to their EPS structure. Letters in Applied Microbiology 32:433–437. 99. Masaaki、A. and Takaaki、I. 1995. Quality improver for wheat flour product and wheat flour product having improved texture. Japanese patent 07274876. 100. Masahiro、K.、Masaaki、K.、Shinji

、M. and Hiroaki、K. 1998a. Immunoactivator. Japanese patent 05288909. 101. Masahiro、K.、Masaaki、N. 1993. Preparation of processed edible meat. Japanese patent 10194977. 102. Masahiro、K.、Mikitomo、A.、Akitomo、A.、Tomonori、Y. 1998b. Feed composition for fish kind cultivation. Japanese patent 10313794. 103. Masao、K. and Toshimi、T. 1999. Jelly-like food. Japanese patent 11075726. 104. Masataka

、M.、Hideo、Y. and Yukihiro、N. 1997. Devil,s tongue jelly and its production. Japanese patent 09075017. 105. Masatoshi、H.、Masami

、F.、Kenichi、H. and Hiromi、K. 1993. Devil,s tongue for frozen food and its production. Japanese patent 05184310. 106. Masayuki、T.

and Yukihiro、N. 1990. Noodle made of rice powder and producing method thereof. Japanese patent 02249466. 107. Michaud、P.、Courtois、J.

、Courtois、B.、Heyraud、A.、Colin-Morel、P.、Seguin、J. P. and Barbotin、J. N. 1995.Cyclic (1→2)-β-D-glucans excreted by the glucuronan-producing strain Rhizobium meliloti M5N1CS (NCIMB 40472) and by the succinoglycan-producing strain Rhizobium meliloti M5N1.

Journal of biochemical and microbiological technology and engineering. 17:369-372. 108. Mikio、K.、Yoshiro、O.、Hirotomo、O.、Yoshikazu

、K.、Hiroshi、I.、Hisashi、M. and Takeshi、K. 1995. Water souble β-1,3-glucan derivative and antiviral agent containing the derivative.

Japanese patent 07228601. 109. Mill、G. L. 1959. Use of ditrosalyscioylic acid reagent for determination of reducing sugar.Liver. Analytical chemistry 31:426-431. 110. Misaki、A.、Kishida、E.、Kakuta、M. and Tabata、K. 1993. Carbohydratesand Carbohydrate

Polymers:Antitumor fungal(1→3)- β-D-glucans:structural diversity and effects of chemical modification.p. 116-129. Mount Prospect.IL. ATL press. 111. Moon、C. J. and Lee、J. H .2005. Use of curdlan and activated carbon composed adsorbents for heavy metal removal. Process Biochemistry 40:1279–1283. 112. Moresi、M.、Colicchio、A. and Sansovini、F. 1980. Optimization of whey fermentation in a jar fermenter.

European Journal of Applied Microbiology Bacteriology 9:173-183. 113. Moscovici、M.、Ionescu、C.、Oniscu、C.、Fotea,O.、Protopopescu

、P.and Hanganu、D. 1996.Improved exopolysaccharide of Aureobasidium pullulans、with increased impeller speed、Biotechnol.lett 18:787-790. 114. Muller、A.、Ensley、H.、Pretus、H.、Namee、R. M.、Jones、E.、Laughlin、E. M.、Chandley、W.、Browder、W.

、Lowman、D. and Williams、D.1997.The application of various protic acid in the extraction of (1→3)β-D-glucan from Saccharomyces cerevisiae. Carbohydrate Research、299: 203-208. 115. Murooka、Y.、Yamada、T. and Harada、T. 1977.Affinity chromatography of Klebsiella arylsulfatase on tyrosyl -hexamethylenediamine -β- (1,3)-glucan and immunoadsorbent. Biochimica et biophysica acta 485:134-140.

116. Naganishi、I.、Kimura、K.、Suzuki、T.、Ishikawa、M.、Banno、I.、Sakene、I. and Harada、T. 1976. Dwmonstration of

curdlan-type polysaccharide and some other β-1,3-glucan in microorganisms with anline blue. Journal of General and Applied Microbiology 22:

1-11. 117. Nakanishi、I.、Kusui、K. K. A. and Yamazki、E. 1974. Complex formation of gel-forming bacterial (1-3)- β-D-glucans (curdlan-

(6)

type polysaccharides) with dyes in aqueous solution.Carbohydrate Research 32:47-52. 118. Nakao、Y. and Suzuki、K. 1994. Curdlan :Properties and applications to foods. International Food Ingredients 5 119. Nakao、Y.、Konno、A. and Taguchi、T. 1991. Curdlan:Properties and Application to Foods. Journal of Food Science 56:769-776. 120. Nakata. M.、Kawaguchi. T.、Kodaky.Y. and Kono.A. 1998. Characterization of curdlan in aqueous sodium hydroxide. Polymar science 39: 1475–1481. 121. Nfiura、N. N.、Ohno、N.、Adachi、Y. and Yadomae、T.1996.

Characterization of sodium hypochlirite degradation of β-glucan in relation to its metabolish in vivo. Chemical & Pharmaceutical bulletin 44:2137-2141. 122. Nishinari、K. and Takahashi、R. 2003. Interaction in polysaccharide solutions and gels. Current Opinion in Colloid and Interface Science 8:396-400. 123. Nishinari、K.、Zhang、H. and Ikeda、S. 2000. Hydrocolloid gels of polysaccharides and proteins. Current Opinion in Colloid and Interface Science 5:195-201. 124. Numasaki、Y.、Kikuchi、M.、Sugiyama、Y.and Ohba、Y. 1990. A glucan Sizofiraz:

Tcell adjuvant property and antitumor and cytotoxic macrophage inducing activities. Oyo Yakuri Pharmacometerics 39:39-48. 125. Ogawa、K.

、Miyagi、M.、Fukumoto、T. and Watanabe、T. 1973b. Effect of 2-chloroethanol、dioxane、or water on the conformation of a gel-forming β-1,3 –glucan in Dmso. Chemistry Letters 2:943-946. 126. Ogawa、K.、Tsurugi、J. and Watanabe、T. 1973a. Effect of salt on the

conformation of gel- forming β-1,3-D-glucan in alkaline solution. Chemistry Letters 3:95-98. 127. Ogawa、K.、Tsurugi、J. and Watanabe、T.

1973. The Dependence of the conformation of a(1→3)- β-D-glucan on chain length in alkaline solution. Carbohydrate Research 29:397-403. 128.

Ogawa、K.、Watanabe、T.、Tsurugi、J. and Ono、S. 1972. Conformational behavior of a gel-forming (1→3)- β-D-glucan in alkaline solution. Carbohydrate Research 23:399-405. 129. Osumi、M. S. 1998. The ultrastructure of yeast:cell wall structure and formation. Micron 29:207-233. 130. Phillips、K. R. and Lawford、H. G. 1983a. Curdlan:Its properties and production in batch and continuous fermentations

、Progress Industrial Microbiology 5: 201-229. 131. Phillips、K. R. and Lawford、H. G. 1983b. Theoretical maximum and observed product yields associated with curdlan production by Alcaligenes faecalis. Canadian Journal of Microbiology 29:1270-1276. 132. Phillips、R. K.、Lawford

、H. G.、Lavers、B.、Kligerman、A. and Lawford、G. R. 1983. Production of a curdlan-type polysaccharide by Alcaligenes faecalis in batch and continuous culture. Canadian Journal of Microbiology 29:1331-1338. 133. Pollock、T. J. 1993. Gellan-related polysaccharide and the genus Sphingomonas. Journal of General Microbiology 139:1939-1945. 134. Provonchee、R. B. and Renn、D. W. 1988. Polysaccharide compositions

、preparation and uses. US Patent 4,774,093. 135. Pszczola、D. 1997. Curdlan differs from other gelling agents. Food Technology 51:30. 136.

Railton、K.、Farago、D.、Mackenzie C. R.、Lawford、G. R.、Pikk、J. and Lawford、H. G. 1980 Advances in Biotechnology. p. 243-248.

Moo-Young、Pergamon、London. 137. Renn、D. W.、Dumont、L、E.、Snow、W. C. and Curtis、F.P. 1993. β-1,3 –glucan polysaccharides、compositions、and their preparation and uses. PCT International Publication Number. WO 93/08200. 138. Ronen、M.

、Guterman、H. and Shabtai、Y. 2002. Monitoring and control of pullan peoduction using vision sensor. Journal of biochemical and biophysical methods 51:243-249. 139. Saito、H.、Ohki、T. and Sasaki、T. 1977. A 13C Nuclear Magnetic Resonance study of gel-forming (1,3)-

β-D-glucans. Evidence of the presence of single-helical conformation in a Resilient gel of a curdlen-type polysaccharide 13140 from Alcaligenes faealis var. myxogenes IFO 13140. Biochemistry 16:908-914. 140. Saito、H.、Yoshiokao、Y.、Yokoi、M. and Yamada、J. 1990. Distinct Gelation High-Resolution Solid-State 13C-NMR. Biopolymaers 29:1689-1698. 141. Saito、H.、Misaki、A. and Haeada、T. 1968. A

comparison of the structure of curdlan and pachyman. Agricultural and biological chemistry 32:1261-1269. 142. Sasaki、T.、Abiko、N.、Sugino

、Y. and Nitta、K. 1978. Dependence on chain length of antitumor activity of (1→3)-β-D-glucan from Alcaligenes faecalis var. myxogenes、IFO 13140、and its acid-degraded products. Cancer Research 38:379-383. 143. Sasaki、T.、Tanaka、M. and Uchida、H. 1982. Effect of Serum from Mice Treated with Antitumor Polysaccharide on Expression of Cytotoxicity by Mouse Peritoneal Macrophages. Journal of Pharmacobio Dynamics 5:1012. 144. Saudagar、P. S. and Singhal、R. S. 2004a. Curdlan as a support matrix for immobilization of enzyme. Carbohydrate Polymers 56:483-488. 145. Sausages、P. S. and Singal、R. S. 2004. Fermentative Production of curdlan. Applied Biochemistry and Biotechnology 118:21-32. 146. Shimizu、J.、Kudoh、K.、Wada、M. and Takita、T. 2002. Dietary curdlen suppresses dimethlhydrazine-induced aberrant crypt foci formation in Sprague-Dawley rat. Nutrition Research 22:867-877. 147. Shunsuke、O. and Masatoshi、S. 1992. Production of uncooked Chinese noodle and boiled Chinese noodle. Japanese patent 04330256. 148. Sone、Y.、Okuda、R.、Wada、N.、Kishida、E. and Misaki、A.

1985. Structyre and antitumor activies of polysaccharides isolated from fruiting body and growing culture of mycelium of Ganoderma alucidium.

Agricultural and biological chemistry 49:2641-2653. 149. Spicer、E. J. F.、Goldenthal、E. I. and Ikeda、T. 1999. A toxicological assessment of curdlan. Food and Chemical Toxicology 37:455-479. 150. Stevens、M. P. 1999. Polymer chemistry. Oxford. New York. P149-151. 151.

Stredansky、M.、Conti、E.、Bertocchi、C.、Matulove、Maria. and Zanett、F. 1998. Succinoglycan production by Agrobacterium tumefaciens. Journal of fermentation and bioengineering 85:398-403. 152. Sutherland、I. W. 1977. Microbial exopolysaccharide synthesis

、in:Extracellular Microbial Polysaccharide(Sanford,P.A.、Laskin、A.、Eds),Washington、DC:American Chemical Society 41-57. 153.

Sutherland、I. W. 1993. Biosynthesis of extracellular poly- saccharides、in:Industrial Gums(Whistler,R.L.、BeMiller、J. N.、Eds)、San Diego

、CA:Academic Press、Inc 69-85. 154. Sutherland、I. W. 1998. Novel and established application of microbial polysaccharides. Tibtech January 16:41-46. 155. Sutherland、I. W. 2001. Microbial polysaccharides from Gram -negative bacteria. International Dairy Journal 11:663-674. 156.

Tada、T.、Matsumoto、T. and Masuda、T. 1997. Influence of alkaline concentration on molecular association structure and viscoelastic properties of curdlan aqueous systems. Biopolymers 42:479-487. 157. Taguchi、T.、Hiroshi、K. and Yukihiro、N. 1991. Production of linear gel. Japanese patent 03157401. 158. Takaaki、I. 1999. Quality improver for bean jam product and production of bean jam product. Japanese patent 11056246. 159. Takahashi、F. and Harada、T. 1986. Resistance of curdlan gel against freezethawing. Journal Home Economics of Japan 37: 251-259. 160. Takashi、T. and Junji、K. 1991. Anti-retrovirus agent. Japanese patent 03218317. 161. Takeda、H.、Yasuoka、N.and

(7)

Harada、T. 1978. X-ray structural studies of (1-3)- β-D-glucan (curdlan). Polymaer Journal 10:365-368. 162. Takeda-Hirokawa、N.、Neoh、L.

P.、Akimoto、H.、Kaneko、H.、Hishikawa、T.、Sekigawa、I.、Hashimoto、H.、Hirose、S. I.、Murakami、T.、Yamamoto、N.

、Mimura、T. and Kaneko、Y. 1997. Role of curdlan sulfate in the binding of HIV-Ι gp120 to CD4 molecules and the production of gp120-mediated THF-α. Microbiology and immunolgy 41:741-745. 163. Toshiko、S. 1992. Sustained release suppstory. Japanese patent 04074115. 164. Toshio、O. 1986. Immobilized enzyme、or the like and preparation thereof. Japanese patent 61015688. 165. Toshiyuki、U.

、Yoshio、T. and Minoru、Y. 1995. Additive for concrete. Japanese patent 07010624. 166. Triveni、R.、Shamala、T. R. and Rastogi、N. K.

2001. Optimised production and utilization of exopolysaccharide from Agrobacterium radiobacter. Process Biochemistry 36:787-795. 167. Tsuneo

、A.、Koichi、K. and Junji、K. 1990. Blood coagulation inhibitor. Japanese patent 02124902. 168. Wang、W. S. and Wang、D. H.1997.

Enhancement of the resistance of tilapia and grass carp to experimental Aeromonas hydrophila and Edwardsila tarda infections by several polysaccharides. Comparative Immunology、Microbiology and Infectious Diseases 20:261-270. 169. Whitfield、C. 1998. Bacterial extracellular polysaccharides. Canadian Journal of Microbiology 34:415-420. 170. Wood、P. J.、Braaten、J. T.、Scott、F. W.、Riedel、K. D.、Wloynetz

、M. S.、and Collings、M. W. 1994. Effect of viscous properties of oat gum on blood glucose and insulin following an oral glucose load. British Journal of Nutrition 72:731-738. 171. Yauhiro、S. 1994. Formed jelly-containing liquid food and its production. Japanese patent 06335370. 172.

Young、S. H.、Dong、W. J. and Jacobs、R. R. 2000. Observation of a partially opened triple-helix conformation in (1→3)- β-D-glucan by Fluorescence resonance energy transfer spectroscopy. Journal of biological chemistry 275:11874-11879. 173. Yukihiro、N. and Takahiro、F.

1993. Ground fish meat or fish or cattle paste product and composition therefore. Japanese patent 05023143. 174. Zertuche、L. and Zall、R. R.

1985. Optimizing alcohol production from whey using computer technology. Biotechnology and Bioengineering 27:547-554. 175. Zevenhuizen

、L. P. T. M. 1997. Succinoglycan and galactoglucan. Carbohydrate polymers 33:139-144. 176. Zulli、F.、Suter、F.、Biltz、H.、Nissen. H. P.

and Birman、M.1996. Carboxymethylated β-(1,3)-glucan、a beta glucan from baker,s yeast helps protect skin. Cosmetic and Toiletries III 12:91-98.

參考文獻

相關文件

You are given the wavelength and total energy of a light pulse and asked to find the number of photons it

好了既然 Z[x] 中的 ideal 不一定是 principle ideal 那麼我們就不能學 Proposition 7.2.11 的方法得到 Z[x] 中的 irreducible element 就是 prime element 了..

Wang, Solving pseudomonotone variational inequalities and pseudocon- vex optimization problems using the projection neural network, IEEE Transactions on Neural Networks 17

volume suppressed mass: (TeV) 2 /M P ∼ 10 −4 eV → mm range can be experimentally tested for any number of extra dimensions - Light U(1) gauge bosons: no derivative couplings. =>

For pedagogical purposes, let us start consideration from a simple one-dimensional (1D) system, where electrons are confined to a chain parallel to the x axis. As it is well known

Define instead the imaginary.. potential, magnetic field, lattice…) Dirac-BdG Hamiltonian:. with small, and matrix

incapable to extract any quantities from QCD, nor to tackle the most interesting physics, namely, the spontaneously chiral symmetry breaking and the color confinement.. 

• Formation of massive primordial stars as origin of objects in the early universe. • Supernova explosions might be visible to the most