• 沒有找到結果。

In this section we shall determine the Hilbert-Kunz function of the hypersurface of the following form : f

N/A
N/A
Protected

Academic year: 2021

Share "In this section we shall determine the Hilbert-Kunz function of the hypersurface of the following form : f"

Copied!
16
0
0

加載中.... (立即查看全文)

全文

(1)

3 The Second Form : Y b + Y cZd

Again, let K be a field of characteristic p > 0 and

S = K [Y1, . . . , Ys, Z1, . . . , Zt] .

In this section we shall determine the Hilbert-Kunz function of the hypersurface of the following form :

f := Yb+ YcZd

where Yb = Y1b1. . . Ysbs, Yc = Y1c1. . . Yscs, Zd = Z1d1. . . Ztdt. Let q = pn, J = {j | bj > cj}, and set R = S/ < f >. Then 0 ≤ |J | := m ≤ s, and w.l.o.g., we assume that b1 > c1, . . . , bm >

cm, bm+1 ≤ cm+1, . . . , bs≤ cs. We shall determine the assignment HKR(q) := dimK



S  < Y1q, . . . , Ysq, Z1q, . . . , Ztq, f >

 .

Throughout this section, it is not restrictive to assume that b1 − c1 ≥ b2 − c2 ≥ · · · ≥ bm− cm > 0 , cm+1− bm+1 ≥ cm+2 − bm+2 ≥ · · · ≥ cs− bs ≥ 0, and d1 ≥ d2 ≥ · · · ≥ dt > 0.

Let u be the maximum of the integers b1− c1, cm+1− bm+1, and d1; that is, u is the greatest integer among all (bj− cj)’s , (ch− bh)’s, and dk’s. We also denote by [y] the greatest integer less than or equal to y, and Sin(x) the elementary symmetric polynomial of degree i in n indeterminates x = (x1, . . . , xn). Let Iq be the ideal of S generated by all Yjq’s, Zkq’s, and f , and define (v)+ = max {0, v}.

(2)

Firstly, we prove the following lemma.

Lemma 3.1. Let S = K [Y1, . . . , Ys], s ≥ 1, and G the ideal generated by

Y1q, . . . , Ysq, Y1[q−α(b1−c1)−c1]+Ye+α(c−b)+, . . . , Ym[q−α(bm−cm)−cm]+Ye+α(c−b)+, and Yb,

where α is a positive integer, e = (e1, . . . , es), e1 = c1, . . . , em = cm, em+1 = bm+1, . . . , es = bs, and (c − b)+ = (0, . . . , 0, cm+1 − bm+1, . . . , cs− bs). Then the dimension of S/G is equal to

qs

s

Y

j=1

(q − bj) −

m

Y

j=1

(q − cj)

s

Y

h=m+1

[q − α(ch − bh) − bh]+

+

m

Y

j=1

(q − bj)

s

Y

h=m+1

[q − α(ch − bh) − bh]+

+

m

Y

j=1

[q − α(bj − cj) − cj]+

s

Y

h=m+1

[q − α(ch − bh) − bh]+

m

Y

j=1

[q − (α + 1)(bj − cj) − cj]+

s

Y

h=m+1

[q − α(ch− bh) − bh]+.

Proof : If [q − α(bj − cj) − cj ]+ = 0 for some j with 1 ≤ j ≤ m, then G is generated by Y1q, . . . , Ysq, Ye+α(c−b)+, and Yb.

Thus,

dimK S/G = qs

s

Y

j=1

(q − bj) −

m

Y

j=1

(q − cj)

s

Y

h=m+1

[q − α(ch− bh) − bh]+

+

m

Y

j=1

(q − bj)

s

Y

h=m+1

[q − α(ch− bh) − bh]+.

From now on, we assume q − α(bj − cj) − cj > 0 for each j = 1, 2, . . . , m. Let lα be the minimum of

  q − α(bj− cj) − 1 cj

 ,

 q − 1

bh+ α(ch− bh)



j = 1, . . . , m, h = m + 1, . . . , s

 . Then we have q − α(bj0 − cj0) ≤ (lα+ 1)cj0 for some j0 with 1 ≤ j0 ≤ m or

q ≤ (lα+ 1) bh0+ α(ch0− bh0)

for some h0 with m + 1 ≤ h0 ≤ s, and q − α(bj− cj) − lαcj ≥ 1 for each j and q − lα(bh+ α(ch− bh)) ≥ 1 for each h.

(3)

We consider the ideals Gβ = G : Yβ[e+α(c−b)+], for β = 0, 1, 2, . . . , lα + 1. Since G0 = G, Glα+1 = S, and Gβ+1 = Gβ : Ye+α(c−b)+, we have the exact sequence of K-modules :

0 −→ S/Gβ+1 Ye+α(c−b)+−→ S/Gβ −→ S / < Gβ, Ye+α(c−b)+ > −→ 0.

It follows that

dimK S/G = dimK S/G0 =

lα

X

β=0

dimK

S / < Gβ, Ye+α(c−b)+ >  .

We compute dimK

S / < Gβ, Ye+α(c−b)+ >

as follows :

For β = 0, the ideal < G0, Ye+α(c−b)+ > is generated by Y1q, . . . , Ysq, Ye+α(c−b)+, and Yb. Thus,

dimK

S / < G0, Ye+α(c−b)+ >

= qs

s

Y

j=1

(q − bj) −

m

Y

j=1

(q − cj)

s

Y

h=m+1

[q − α(ch− bh) − bh]+

+

m

Y

j=1

(q − bj)

s

Y

h=m+1

[q − α(ch− bh) − bh]+.

For 1 ≤ β ≤ lα, the ideal Gβ = G : Yβ[e+α(c−b)+] is generated by

Y1q−α(b1−c1)−βc1, . . . , Ymq−α(bm−cm)−βcm, Ym+1q−β[bm+1+α(cm+1−bm+1)], . . . , Ysq−β[bs+α(cs−bs)], and Y1(b1−βc1)+· · · Ym(bm−βcm)+Ym+1[bm+1−β(bm+1+α(cm+1−bm+1))]+· · · Ys[bs−β(bs+α(cs−bs))]+ .

Thus, the ideal < Gβ, Ye+α(c−b)+ > is generated by

Y1q−α(b1−c1)−βc1, . . . , Ymq−α(bm−cm)−βcm, Ym+1q−β[bm+1+α(cm+1−bm+1)], . . . , Ysq−β[bs+α(cs−bs)],

Y1(b1−βc1)+· · · Ym(bm−βcm)+Ym+1[bm+1−β(bm+1+α(cm+1−bm+1))]+· · · Ys[bs−β(bs+α(cs−bs))]+, and Ye+α(c−b)+. Hence,

dimK

S / < Gβ, Ye+α(c−b)+ >

=

m

Y

j=1

[q − α(bj− cj) − βcj]+

s

Y

h=m+1

[q − β(bh+ α(ch− bh))]+

m

Y

j=1

[q − α(bj − cj) − (β + 1)cj]+

s

Y

h=m+1

[q − (β + 1)(bh + α(ch− bh))]+

m

Y

j=1

q − α(bj − cj) − βcj− (bj− βcj)+

+ s

Y

h=m+1

[q − β(bh+ α(ch− bh)) − [bh− β(bh

+α(ch− bh))]+

++

m

Y

j=1

[q − α(bj− cj) − βcj− u]+

s

Y

h=m+1

[q − (β + 1)(bh+ α(ch− bh))]+,

(4)

where u = max cj , [ bj− βcj ]+ . Now,we have

dimK S/G = qs

s

Y

j=1

(q − bj) −

m

Y

j=1

(q − cj)

s

Y

h=m+1

[q − α(ch− bh) − bh]+

+

m

Y

j=1

(q − bj)

s

Y

h=m+1

[q − α(ch− bh) − bh]+

+

lα

X

β=1

( m Y

j=1

[q − α(bj − cj) − βcj ]+

s

Y

h=m+1

[q − β(bh+ α(ch− bh))]+

m

Y

j=1

[q − α(bj − cj) − (β + 1)cj ]+

s

Y

h=m+1

[q − (β + 1)(bh+ α(ch− bh))]+ )

lα

X

β=1

( m Y

j=1

q − α(bj − cj) − βcj− (bj− βcj)+

+ s

Y

h=m+1

[q − β(bh+ α(ch− bh))]+

m

Y

j=1

[q − α(bj − cj) − βcj − u]+

s

Y

h=m+1

[q − (β + 1)(bh+ α(ch− bh))]+ )

.

Let (4) be the term

lα

X

β=1

( m Y

j=1

[q − α(bj − cj) − βcj ]+

s

Y

h=m+1

[q − β(bh+ α(ch− bh))]+

m

Y

j=1

[q − α(bj − cj) − (β + 1)cj ]+

s

Y

h=m+1

[q − (β + 1)(bh+ α(ch − bh))]+ )

.

Since q − α(bj0 − cj0) ≤ (lα+ 1)cj0 for some j0 with 1 ≤ j0 ≤ m or q ≤ (lα+ 1) bh0+ α(ch0 − bh0)

for some h0 with m + 1 ≤ h0 ≤ s,

the term (4) is equal to

m

Y

j=1

[q − α(bj− cj) − cj ]+

s

Y

h=m+1

[q − α(ch− bh) − bh]+.

Let (44) be the term

lα

X

β=1

( m Y

j=1

q − α(bj − cj) − βcj − (bj− βcj)+

+ s

Y

h=m+1

[q − β(bh+ α(ch− bh))]+

m

Y

j=1

[q − α(bj− cj) − βcj− u ]+

s

Y

h=m+1

[q − (β + 1)(bh+ α(ch− bh))]+ )

.

(5)

Since

m

Y

j=1

[q − α(bj− cj) − βcj− u ]+

s

Y

h=m+1

[q − (β + 1)(bh+ α(ch− bh))]+

=

m

Y

j=1

q − α(bj − cj) − (β + 1)cj − (bj− (β + 1)cj)+

+ s

Y

h=m+1

[q − (β + 1)(bh+ α(ch− bh))]+,

where β = 1, 2, . . . , lα− 1, the term (44) is equal to

m

Y

j=1

[q − (α + 1)(bj− cj) − cj ]+

s

Y

h=m+1

[q − α(ch− bh) − bh]+

m

Y

j=1

[q − α(bj− cj) − lαcj− ujlα ]+

s

Y

h=m+1

[q − (lα+ 1)(bh+ α(ch− bh))]+.

Since q − α(bj0 − cj0) ≤ (lα+ 1)cj0 or q ≤ (lα+ 1) bh0 + α(ch0 − bh0), we have

m

Y

j=1

[q − α(bj − cj) − lαcj− ujlα ]+ = 0 or

s

Y

h=m+1

[q − (lα+ 1)(bh+ α(ch − bh))]+ = 0.

Thus, (44) is equal to

m

Y

j=1

[q − (α + 1)(bj− cj) − cj ]+

s

Y

h=m+1

[q − α(ch− bh) − bh]+.

Therefore,

dimK S/G = qs

s

Y

j=1

(q − bj) −

m

Y

j=1

(q − cj)

s

Y

h=m+1

[q − α(ch− bh) − bh]+

+

m

Y

j=1

(q − bj)

s

Y

h=m+1

[q − α(ch− bh) − bh]+

+

m

Y

j=1

[q − α(bj− cj) − cj ]+

s

Y

h=m+1

[q − α(ch− bh) − bh]+

m

Y

j=1

[q − (α + 1)(bj − cj) − cj ]+

s

Y

h=m+1

[q − α(ch− bh) − bh]+.



(6)

Since u is the maximum of the integers among all (bj − cj)’s, (ch− bh)’s, and dk’s, we have

 q−v

u  := min (

h q−c

j−1 bj−cj

i ,h

q−bh−1 ch−bh

i ,h

q−1 dk

i

bj − cj > 0, ch− bh > 0, 1 ≤ j ≤ m m + 1 ≤ h ≤ s, 1 ≤ k ≤ t

)

for q  0, where v = 1 or 1 + cj for some j or 1 + bh for some h. Let lu be the integer

q−v

u , and  be the remainder of q − v divided by u. Then lu = q−v−u and one has q − lu(bj − cj) − cj > 0, q − lu(ch − bh) − bh > 0, and q − ludk > 0 for all j, h, and k. On the other hand, by the definition of lu, at least one of [q − (lu + 1)(bj − cj) − cj ]+’s , [q − (lu+ 1)(ch− bh) − bh]+’s , and [q − (lu+ 1)dk]+’s must be zero .

Proposition 3.2. Let f := Yb+ YcZd. Then HKR(q) is equal to

qs+t− qt

s

Y

j=1

(q − bj)

m

Y

j=1

(q − cj) × ( lu

X

α=1

" s Y

h=m+1

[q − α(ch− bh) − bh]

#

×

" t Y

k=1

(q − αdk) −

t

Y

k=1

[q − (α + 1)dk]+

#)

+

m

Y

j=1

(q − bj) × ( l

u

X

α=1

" s Y

h=m+1

[q − α(ch− bh) − bh]

#

×

" t Y

k=1

(q − αdk) −

t

Y

k=1

[q − (α + 1)dk]+

#)

+

lu

X

α=1

( m Y

j=1

[q − α(bj − cj) − cj ]

s

Y

h=m+1

[q − α(ch− bh) − bh] −

m

Y

j=1

[q − (α + 1)(bj− cj) − cj ]+

s

Y

h=m+1

[q − α(ch− bh) − bh] )

× ( t

Y

k=1

(q − αdk) −

t

Y

k=1

[q − (α + 1)dk]+ )

,

where lu is the integer  q−v

u , and 0 ≤ m ≤ s .

Proof : We prove this proposition by discussing on m, and let < be the lexicographic order on S.

Case 1 : Assume that m = 0, i.e., bj ≤ cj for each j = 1, 2, . . . , s. Then YcZd is the leading term of f . The elements

Y1q, . . . , Ysq, Z1q, . . . , Ztq, and Yb

form a Gr¨obner basis of the ideal Iq . Thus, the ideal in(Iq) is generated by the elements as above. It follows that

dimK S/in (Iq) = dimK

S / < Y1q, . . . , Ysq, Z1q, . . . , Ztq, Yb > .

(7)

Hence, HKR(q) = qs+t− qtQs

j=1(q − bj) . Case 2 : Suppose that 1 ≤ m ≤ s, and define

ej = cj for 1 ≤ j ≤ m, and eh = bh for m + 1 ≤ h ≤ s.

Then Yb is the leading term of f and Ye = Y1e1· · · Yses = Y1c1· · · YmcmYm+1bm+1· · · Ysbs . By means of Buchberger’s algorithm (Algorithm 1.9), the elements

Y1q, . . . , Ysq, Z1q, . . . , Ztq, Yb+ YcZd, and

Yj[q−δ(bj−cj)−cj]+Ye+δ(c−b)+Zδd, j = 1, . . . , m, δ = 1, . . . , l, form a Gr¨obner basis of the ideal Iq, where l =h

q−1 d1

i . Hence, the ideal in(Iq) is generated by

Y1q, . . . , Ysq, Z1q, . . . , Ztq, Yb, and Yj[q−δ(bj−cj)−cj]+Ye+δ(c−b)+Zδd, j = 1, . . . , m, δ = 1, . . . , l.

Now we have to compute the dimension of S/in(Iq). In order to do this, we consider the ideals Kα = in(Iq) : Zαd for α = 0, 1, . . . , l + 1. Since K0 = in(Iq), Kl+1 = S, and Kα+1 = Kα : Zd, we have the exact sequence of K-modules :

0 −→ S/Kα+1 Zd

−→ S/Kα −→ S / < Kα, Zd> −→ 0.

It follows that

dimK S/in(Iq) = dimK S/K0 =

l

X

α=0

dimK

S / < Kα, Zd> .

We compute dimK

S / < Kα, Zd>

as follows :

For α = 0, the ideal < K0, Zd> is generated by Y1q, . . . , Ysq, Z1q, . . . , Ztq, Yb, and Zd. Therefore,

dimK

S / < K0, Zd>

= dimK

S / < Y1q, . . . , Ysq, Z1q, . . . , Ztq, Yb, Zd >

= qs+t− qt

s

Y

j=1

(q − bj) − qs

t

Y

k=1

(q − dk) +

s

Y

j=1

(q − bj)

t

Y

k=1

(q − dk).

For 1 ≤ α ≤ l, the ideal < Kα, Zd> is generated by

Y1q, . . . , Ysq, Z1q−αd1, . . . , Ztq−αdt, Yb, Zd, and Yj[q−α(bj−cj)−cj]+Ye+δ(c−b)+, j = 1, . . . , m.

(8)

Let S1 = K [Y1, . . . , Ys], and S2 = K [Z1, . . . , Zt]. Then by Lemma 3.1, we have dimK

S / < Kα, Zd>

= dimK

S1 / < Y1q, . . . , Ysq, Yb, Y1[q−α(b1−c1)−c1]+Ye+α(c−b)+, . . . , Ym[q−α(bm−cm)−cm]+Ye+α(c−b)+ >

× dimK

S2 / < Z1q−αd1, . . . , Ztq−αdt, Zd>

= (

qs

s

Y

j=1

(q − bj) −

m

Y

j=1

(q − cj)

s

Y

h=m+1

[q − α(ch− bh) − bh]+

+

m

Y

j=1

(q − bj)

s

Y

h=m+1

[q − α(ch− bh) − bh]+

+

m

Y

j=1

[q − α(bj − cj) − cj ]+

s

Y

h=m+1

[q − α(ch− bh) − bh]+

m

Y

j=1

[q − (α + 1)(bj − cj) − cj ]+

s

Y

h=m+1

[q − α(ch− bh) − bh]+ )

× ( t

Y

k=1

(q − αdk) −

t

Y

k=1

[q − (α + 1)dk]+ )

.

Since dimK S/in(Iq)

can be written as

dimK

S / < K0, Zd> +

l

X

α=1

dimK

S / < Kα, Zd > ,

it follows that dimK S/in(Iq)

is equal to qs+t− qt

s

Y

j=1

(q − bj) − qs

t

Y

k=1

(q − dk) +

s

Y

j=1

(q − bj)

t

Y

k=1

(q − dk)

+

"

qs

s

Y

j=1

(q − bj)

#

× ( l

X

α=1

" t Y

k=1

(q − αdk) −

t

Y

k=1

[q − (α + 1)dk]+

# )

l

X

α=1

( m Y

j=1

(q − cj)

s

Y

h=m+1

[q − α(ch− bh) − bh]+ )

× ( t

Y

k=1

(q − αdk) −

t

Y

k=1

[q − (α + 1)dk]+ )

+

l

X

α=1

( m Y

j=1

(q − bj)

s

Y

h=m+1

[q − α(ch− bh) − bh]+ )

× ( t

Y

k=1

(q − αdk) −

t

Y

k=1

[q − (α + 1)dk]+ )

+

l

X

α=1

( m Y

j=1

[q − α(bj− cj) − cj]+

s

Y

h=m+1

[q − α(ch− bh) − bh]+

m

Y

j=1

[q − (α + 1)(bj − cj) − cj]+

s

Y

h=m+1

[q − α(ch− bh) − bh]+ )

× ( t

Y

k=1

(q − αdk) −

t

Y

k=1

[q − (α + 1)dk]+ )

.

(9)

Let (444) be the term

"

qs

s

Y

j=1

(q − bj)

#

× ( l

X

α=1

" t Y

k=1

(q − αdk) −

t

Y

k=1

[q − (α + 1)dk]+

# ) .

Since l =h

q−1 d1

i

, we have q ≤ (l + 1)d1, and so Qt

k=1[q − (α + 1)dk]+ = 0.

Thus, the term (444) is equal to

qs

t

Y

k=1

(q − dk) −

s

Y

j=1

(q − bj)

t

Y

k=1

(q − dk).

It follows that dimK S/in(Iq)

is equal to

qs+t− qt

s

Y

j=1

(q − bj)

m

Y

j=1

(q − cj) × ( l

X

α=1

" s Y

h=m+1

[q − α(ch− bh) − bh]+

#

×

" t Y

k=1

(q − αdk) −

t

Y

k=1

[q − (α + 1)dk]+

#)

+

m

Y

j=1

(q − bj) × ( l

X

α=1

" s Y

h=m+1

[q − α(ch− bh) − bh]+

#

×

" t Y

k=1

(q − αdk) −

t

Y

k=1

[q − (α + 1)dk]+

#)

+

l

X

α=1

( m Y

j=1

[q − α(bj − cj) − cj]+

s

Y

h=m+1

[q − α(ch− bh) − bh]+

m

Y

j=1

[q − (α + 1)(bj− cj) − cj]+

s

Y

h=m+1

[q − α(ch− bh) − bh]+ )

× ( t

Y

k=1

(q − αdk) −

t

Y

k=1

[q − (α + 1)dk]+ )

.

By the definition of lu, we have HKR(q) = qs+t− qt

s

Y

j=1

(q − bj)

m

Y

j=1

(q − cj) × ( lu

X

α=1

" s Y

h=m+1

[q − α(ch− bh) − bh]

#

×

" t Y

k=1

(q − αdk) −

t

Y

k=1

[q − (α + 1)dk]+

#)

+

m

Y

j=1

(q − bj) × ( lu

X

α=1

" s Y

h=m+1

[q − α(ch− bh) − bh]

#

×

" t Y

k=1

(q − αdk) −

t

Y

k=1

[q − (α + 1)dk]+

#)

+

lu

X

α=1

( m Y

j=1

[q − α(bj − cj) − cj ]

s

Y

h=m+1

[q − α(ch− bh) − bh] −

m

Y

j=1

[q − (α + 1)(bj − cj) − cj ]+

s

Y

h=m+1

[q − α(ch− bh) − bh] )

× ( t

Y

k=1

(q − αdk) −

t

Y

k=1

[q − (α + 1)dk]+ )

.

參考文獻

相關文件

We conclude this section with the following theorem concerning the relation between Galois extension, normal extension and splitting fields..

Teachers may consider the school’s aims and conditions or even the language environment to select the most appropriate approach according to students’ need and ability; or develop

利用 determinant 我 們可以判斷一個 square matrix 是否為 invertible, 也可幫助我們找到一個 invertible matrix 的 inverse, 甚至將聯立方成組的解寫下.

Then, we tested the influence of θ for the rate of convergence of Algorithm 4.1, by using this algorithm with α = 15 and four different θ to solve a test ex- ample generated as

Numerical results are reported for some convex second-order cone programs (SOCPs) by solving the unconstrained minimization reformulation of the KKT optimality conditions,

Particularly, combining the numerical results of the two papers, we may obtain such a conclusion that the merit function method based on ϕ p has a better a global convergence and

Then, it is easy to see that there are 9 problems for which the iterative numbers of the algorithm using ψ α,θ,p in the case of θ = 1 and p = 3 are less than the one of the

By exploiting the Cartesian P -properties for a nonlinear transformation, we show that the class of regularized merit functions provides a global error bound for the solution of