• 沒有找到結果。

Wireless Multimedia Systems Spring, 2006 (March 10, 2006)

N/A
N/A
Protected

Academic year: 2022

Share "Wireless Multimedia Systems Spring, 2006 (March 10, 2006)"

Copied!
5
0
0

加載中.... (立即查看全文)

全文

(1)

Wireless Multimedia Systems Spring, 2006 (March 10, 2006)

1. Today's topic:

I. Finish Introduction( Modern Wireless Communication Systems)

II. Propagation and Radio System Design Issues in Mobile Radio Systems s Reading

(A) Andersen, J.B, Rappaport, T.S, Yoshida, S. “ Propagation measurements and models for wireless communication channels”, IEEE Communications Magazine, Jan 1995

(B) Theodore S. Rappaport, Keith Blankenship, Hao Xu, “Propagation and Radio System Design Issues in Mobile Radio Systems for the GloMo Project”, 1997

(C) The Cellular Concept

I. From a T-R transceiver point of view: (SNR)

) ( log

10 ) ( 174

/ /

), ( ) ( ) (

) log(

10 2 001 ] . 0

) log[ (

10 )

(

) 4 ( ) (

4 ) ( log 20 ) 1 (

) 900 . . 10 ( 9

10 3

10

0 0

0 2

0 2

2 0

0 10 0

8 8

dB F B dBm

N

BF PL KT

G G N P P SNR dBm N dBm P dB SNR

d d W

d dBm P

d P

L d G G d P

P

km d d

PL

MHz g

f e c

r t t r

r

r r

r t t r

+ +

=

=

=

=

× +

=

=

=

=

×

= ×

=

π λ

λ π λ

a) Large Scale Path Loss Model (Link Budget Design) Signal:

Frequency: Lower frequency has less Path loss than higher frequency

Exercise 1: (Free Space Propagation Model,

) log(

10 2 001 ] . 0

) log[ (

10 )

(

) 4 ) ( (

0 0

2 2

2

d d W

d dBm P

d P

L d G G d P

P

r r

r t t r

× +

=

= π

λ

If a transmitter produces 50 W of power, express the transmit power in units of (a) dBm, and (b) dBW. If 50 W is applied to a unity gain antenna with a 900 MHz carrier frequency, find the received power in dBm at a free space distance of 100 m from the antenna. What is Pr (10 km)? Assume unity gain for the receiver antenna.

(2)

dBm dB

d dBm d W

d dBm P

d P

d d d P d P

dBm dBm

P

mW L W

d G G d P P

dBW W

mW P dBW

P

dBm mW

mW P dBm

dP P

r r

r r

r

r t t r

t t

t t

t

5 . 64 40

5 . 24 ) log(

10 2 001 ] . 0

) log[ ( 10 )

(

) )(

( ) (

. 5 . 24 ) (

10 5 . 3 10

5 . ) 3 1 ( ) 100 ( ) 4 (

10 ) 900

10 )( 3 1 )(

1 ( 50 )

4 ) ( (

0 . 17 ] 50 log[

10 )]

1 / ) ( log[

10 ) (

0 . 47 ] 10 50 log[

10 )]

1 / ) ( log[

10 ) ( (

0 0

2 0 0

3 6

2 2

6 8

2 2

2

3

=

=

× +

=

=

=

×

=

×

× =

×

=

=

=

=

=

=

×

=

=

π π

λ

Exercise 2: (Power Issue & Link Budget)

Maximum separation distance vs. transmitted power (with fixed BW)

•Given

Cellular phone with 0.6W transmitted power

Unity gain antenna, 900 MHz carrier frequency

SNR must be at least 25 dB for proper reception

Receiver BW is B=30KHz, noise figure F=10 dB

•What will be the maximum distance?

•Solution:

N= -174 dBm + 10 log 30000 + 10 dBM

For SNR > 25 dB, we must have Pr > (-119+25) = -94 dBm

Pt=0.6W = 27.78 dBm

This allows path loss PL(d) = Pt – Pr < 122 dB λ = c/ f = 1/3 m

Assuming d0 = 1 km, PL (d0) = 91.5 dB for free space,

n=2, so that : 122 > 91.5 + 10 * 2 log (d / 1 km) ) so d < 33.5 km,

for shadowed urban with

n=4, so that 122 > 91.5 + 10*2*log (d/1km)) so d < 5.8 km

(A) The noise Level (N=-174(dBm)+10log10B+F(dB)) vs BW Usually, More bandwidth brings more noise.

(3)

(B) Battery, Transmitted Power, Distance

More power will go for more distance. Battery life will get less.

Free space (n=2) will have more distance than shadow (N=4)

(c) Bandwidth, Transmitted Power, Battery

More bandwidth will bring more noise and require more transmitted power.

(4)

b) From a system point of view

c) SIR (Signal to Interference Ratio, co-channel interference), The cellular Concept/Frequency Reuse:

The same frequency will be reuse at the reuse distance D. (Co-Channel Interference)

N= 1, 3, 4, 7, 9, 12……

e.g.

• n=4

• 2. worst case is at D0 = R (when MH is at the fringe of its cell)

• 3. only the six ““““first-tier”” co-channel cells are considered

• 4. D1 = D2 = D3 = D4= D5 = D6 = D

system (C/I)min D/R N

AMPS 18 dB 4.6 7

GSM 11 dB 3.0 4

d) Small Scale Fading Effects

Exercise 3: Time Dispersion & Multi-path Effect

(5)

Calculate the mean excess delay, rms delay spread, and the maximum excess delay (10 dB) for the multipath profile given in the figure below. Estimate the 50%

coherence bandwidth of the channel. Would this channel be suitable for AMPS or GSM service without the use of an equalizer?

(AMPs 20kHz, GSM 200 kHz)

kHz B

P P P s P

c k

k k

k k k

k k

k k

146 )

38 . 4 ( 07 . 21 ( 5

1 5

1

07 . 21 21

. 1

) 0 )(

01 . 0 ( ) 2 )(

1 . 0 ( ) 1 )(

1 . 0 ( ) 5 )(

1 ( ) (

) (

38 . ] 4

1 1 . 0 1 . 0 01 . 0 [

) 0 )(

01 . 0 ( ) 2 )(

1 . 0 ( ) 1 )(

1 . 0 ( ) 5 )(

1 ( ) (

) (

2

2 2

2 2

2 2

=

=

=

+ = +

= +

=

+ = + +

+ +

= +

=

σ

τ

τ τ τ τ

τ µ τ τ τ

Exercise 4: Mobility & Doppler spread

A BS has a 900-MHz transmitter, and a vehicle is moving at the speed of 50 mph. Compute the received carrier frequency if the vehicle is moving

(a) Directly toward the BS (b) Directly away from the BS

(c) In a direction that is 60 degrees to the direction of arrival of the transmitted signal e) Radio System Design Issues

Spread Spectrum: Direct Sequence and Frequency Hopping Smart Antenna

f) Location Services

GPS / Locating technology 911 Services

2. Next Topic: Wireless Link I: Modulation and Multiple Access

0 1 2 5

-30 dB -20 dB

-10 dB 0

Ι (μ

參考文獻

相關文件

If the person is moving away from the lamppost at a rate of 2 ft/s, at what rate is the length of the shadow changing?. Sec 3.8:

For a vehicle moving 60 mph, compute the received carrier frequency if the mobile is moving.. directly toward

If A is a nonzero ring, A has a maximal ideal (by Zorn’s lemma) (or every ideal is contained in a maximal ideal we can choose the zero ideal).. Then Spec A

If the water level is rising at a rate of 20 cm ymin when the height of the water is 2 m, find the rate at which water is being pumped into the

So we check derivative of f and g, the small one would correspond to graph (b) and the other to (c)(i.e.. Moreover, f is

Then you get zero point if the answer is not

(18%) Determine whether the given series converges or diverges... For what values of x does the series

First Note that f (x) is an even function, hence symmetric with respect to the y-axis.. Therefore the two vertices of the rect- angle we are considering are f (x) and f (−x) for