• 沒有找到結果。

Section 2.3 Calculating Limits Using the Limit Laws

N/A
N/A
Protected

Academic year: 2022

Share "Section 2.3 Calculating Limits Using the Limit Laws"

Copied!
2
0
0

加載中.... (立即查看全文)

全文

(1)

Section 2.3 Calculating Limits Using the Limit Laws

SECTION 2.3 CALCULATING LIMITS USING THE LIMIT LAWS ¤ 83

20.We use the difference of squares in the numerator and the difference of cubes in the denominator.

lim→1

4− 1

3− 1= lim

→1

(2− 1)(2+ 1) ( − 1)(2+  + 1) = lim

→1

( − 1)( + 1)(2+ 1) ( − 1)(2+  + 1) = lim

→1

( + 1)(2+ 1)

2+  + 1 =2(2) 3 =4

3

21. lim

→0

√9 +  − 3

 = lim

→0

√9 +  − 3

 ·

√9 +  + 3

√9 +  + 3= lim

→0

√9 + 2

− 32

√

9 +  + 3 = lim

→0

(9 + ) − 9

√

9 +  + 3

= lim

→0

√

9 +  + 3 = lim

→0

√ 1

9 +  + 3 = 1 3 + 3= 1

6

22. lim

→2

√4 + 1 − 3

 − 2 = lim

→2

√4 + 1 − 3

 − 2 ·

√4 + 1 + 3

√4 + 1 + 3= lim

→2

√4 + 12

− 32 ( − 2)√

4 + 1 + 3

= lim

→2

4 + 1 − 9 ( − 2)√

4 + 1 + 3 = lim

→2

4( − 2) ( − 2)√

4 + 1 + 3

= lim

→2

√ 4

4 + 1 + 3= 4

√9 + 3=2 3

23. lim

→3

1

−1 3

 − 3 = lim

→3

1

−1 3

 − 3 ·3

3= lim

→3

3 − 

3( − 3) = lim

→3

−1 3 = −1

9

24. lim

→0

(3 + )−1− 3−1

 = lim

→0

1 3 + −1

3

 = lim

→0

3 − (3 + )

(3 + )3 = lim

→0

−

(3 + )3

= lim

→0

− 1

3(3 + )

= − 1

lim→0[3(3 + )] = − 1

3(3 + 0) = −1 9

25. lim

→0

√1 +  −√ 1 − 

 = lim

→0

√1 +  −√ 1 − 

 ·

√1 +  +√ 1 − 

√1 +  +√

1 − = lim

→0

√1 + 2

−√

1 − 2

√

1 +  +√ 1 − 

= lim

→0

(1 + ) − (1 − )

√

1 +  +√

1 −  = lim

→0

2

√

1 +  +√

1 −  = lim

→0

√ 2

1 +  +√ 1 − 

= 2

√1 +√ 1= 2

2= 1

26. lim

→−1

2+ 2 + 1

4− 1 = lim

→−1

( + 1)2

(2+ 1)(2− 1) = lim

→−1

( + 1)2 (2+ 1)( + 1)( − 1)

= lim

→−1

 + 1

(2+ 1)( − 1)= 0 2(−2) = 0

27. lim

→16

4 −√

 16 − 2 = lim

→16

(4 −√

 )(4 +√

 ) (16 − 2)(4 +√

 )= lim

→16

16 − 

(16 − )(4 +√

 )

= lim

→16

1

(4 +√ )= 1 16

4 +√

16 = 1 16(8) = 1

128

28. lim

→2

2− 4 + 4

4− 32− 4= lim

→2

( − 2)2

(2− 4)(2+ 1) = lim

→2

( − 2)2 ( + 2)( − 2)(2+ 1)

= lim

→2

 − 2

( + 2)(2+ 1) = 0 4 · 5 = 0

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

SECTION 2.3 CALCULATING LIMITS USING THE LIMIT LAWS ¤ 83

20.We use the difference of squares in the numerator and the difference of cubes in the denominator.

lim→1

4− 1

3− 1= lim

→1

(2− 1)(2+ 1) ( − 1)(2+  + 1) = lim

→1

( − 1)( + 1)(2+ 1) ( − 1)(2+  + 1) = lim

→1

( + 1)(2+ 1)

2+  + 1 =2(2) 3 =4

3

21. lim

→0

√9 +  − 3

 = lim

→0

√9 +  − 3

 ·

√9 +  + 3

√9 +  + 3= lim

→0

√9 + 2

− 32

√

9 +  + 3 = lim

→0

(9 + ) − 9

√

9 +  + 3

= lim

→0

√

9 +  + 3 = lim

→0

√ 1

9 +  + 3 = 1 3 + 3= 1

6

22. lim

→2

√4 + 1 − 3

 − 2 = lim

→2

√4 + 1 − 3

 − 2 ·

√4 + 1 + 3

√4 + 1 + 3= lim

→2

√4 + 12

− 32 ( − 2)√

4 + 1 + 3

= lim

→2

4 + 1 − 9 ( − 2)√

4 + 1 + 3 = lim

→2

4( − 2) ( − 2)√

4 + 1 + 3

= lim

→2

√ 4

4 + 1 + 3= 4

√9 + 3=2 3

23. lim

→3

1

−1 3

 − 3 = lim

→3

1

−1 3

 − 3 ·3

3= lim

→3

3 − 

3( − 3) = lim

→3

−1 3 = −1

9

24. lim

→0

(3 + )−1− 3−1

 = lim

→0

1 3 + −1

3

 = lim

→0

3 − (3 + )

(3 + )3 = lim

→0

−

(3 + )3

= lim

→0

− 1

3(3 + )

= − 1

lim→0[3(3 + )] = − 1

3(3 + 0) = −1 9

25. lim

→0

√1 +  −√ 1 − 

 = lim

→0

√1 +  −√ 1 − 

 ·

√1 +  +√ 1 − 

√1 +  +√

1 − = lim

→0

√1 + 2

−√

1 − 2

√

1 +  +√ 1 − 

= lim

→0

(1 + ) − (1 − )

√

1 +  +√

1 −  = lim

→0

2

√

1 +  +√

1 −  = lim

→0

√ 2

1 +  +√ 1 − 

= 2

√1 +√ 1= 2

2= 1

26. lim

→−1

2+ 2 + 1

4− 1 = lim

→−1

( + 1)2

(2+ 1)(2− 1) = lim

→−1

( + 1)2 (2+ 1)( + 1)( − 1)

= lim

→−1

 + 1

(2+ 1)( − 1)= 0 2(−2) = 0

27. lim

→16

4 −√ 16 − 2 = lim

→16

(4 −√ )(4 +√ ) (16 − 2)(4 +√

 )= lim

→16

16 − 

(16 − )(4 +√

 )

= lim

→16

1

(4 +√

 )= 1

16 4 +√

16 = 1 16(8) = 1

128

28. lim

→2

2− 4 + 4

4− 32− 4= lim

→2

( − 2)2

(2− 4)(2+ 1) = lim

→2

( − 2)2 ( + 2)( − 2)(2+ 1)

= lim

→2

 − 2

( + 2)(2+ 1) = 0 4 · 5 = 0

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

84 ¤ CHAPTER 2 LIMITS AND DERIVATIVES 29. lim

→0

 1

√

1 + −1

= lim

→0

1 −√ 1 + 

√

1 +  = lim

→0

1 −√ 1 + 

1 +√ 1 + 

√

 + 1 1 +√

1 +  = lim

→0

−

√ 1 + 

1 +√ 1 + 

= lim

→0

√ −1 1 + 

1 +√

1 +  = √ −1 1 + 0

1 +√

1 + 0 = −1 2

30. lim

→−4

√2+ 9 − 5

 + 4 = lim

→−4

√2+ 9 − 5√

2+ 9 + 5 ( + 4)√

2+ 9 + 5 = lim

→−4

(2+ 9) − 25 ( + 4)√

2+ 9 + 5

= lim

→−4

2− 16 ( + 4)√

2+ 9 + 5 = lim

→−4

( + 4)( − 4) ( + 4)√

2+ 9 + 5

= lim

→−4

 − 4

√2+ 9 + 5=√−4 − 4

16 + 9 + 5= −8 5 + 5= −4

5

31. lim

→0

( + )3− 3

 = lim

→0

(3+ 32 + 32+ 3) − 3

 = lim

→0

32 + 32+ 3

= lim

→0

(32+ 3 + 2)

 = lim

→0(32+ 3 + 2) = 32

32. lim

→0

1

( + )2 − 1

2

 = lim

→0

2− ( + )2 ( + )22

 = lim

→0

2− (2+ 2 + 2)

2( + )2 = lim

→0

−(2 + )

2( + )2

= lim

→0

−(2 + )

2( + )2 = −2

2· 2 = − 2

3 33. (a)

lim→0

√ 

1 + 3 − 1 ≈ 2 3

(b)

  ()

−0001 0666 166 3

−0000 1 0666 616 7

−0000 01 0666 661 7

−0000 001 0666 666 2 0000 001 0666 667 2 0000 01 0666 671 7 0000 1 0666 716 7 0001 0667 166 3

The limit appears to be2 3.

(c) lim

→0

 

√1 + 3 − 1·

√1 + 3 + 1

√1 + 3 + 1

= lim

→0

√

1 + 3 + 1 (1 + 3) − 1 = lim

→0

√

1 + 3 + 1 3

=1 3 lim

→0

√1 + 3 + 1

[Limit Law 3]

=1 3

lim

→0(1 + 3) + lim

→01

[1 and 11]

=1 3

lim

→01 + 3 lim

→0 + 1

[1, 3, and 7]

=1 3

√1 + 3 · 0 + 1 [7 and 8]

=1

3(1 + 1) = 2 3

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

84 ¤ CHAPTER 2 LIMITS AND DERIVATIVES 29. lim

→0

 1

√

1 + −1

= lim

→0

1 −√ 1 + 

√

1 +  = lim

→0

1 −√ 1 + 

1 +√ 1 + 

√

 + 1 1 +√

1 +  = lim

→0

−

√ 1 + 

1 +√ 1 + 

= lim

→0

√ −1 1 + 

1 +√

1 +  = √ −1 1 + 0

1 +√

1 + 0 = −1 2

30. lim

→−4

√2+ 9 − 5

 + 4 = lim

→−4

√2+ 9 − 5√

2+ 9 + 5 ( + 4)√

2+ 9 + 5 = lim

→−4

(2+ 9) − 25 ( + 4)√

2+ 9 + 5

= lim

→−4

2− 16 ( + 4)√

2+ 9 + 5 = lim

→−4

( + 4)( − 4) ( + 4)√

2+ 9 + 5

= lim

→−4

 − 4

√2+ 9 + 5=√−4 − 4

16 + 9 + 5= −8 5 + 5= −4

5

31. lim

→0

( + )3− 3

 = lim

→0

(3+ 32 + 32+ 3) − 3

 = lim

→0

32 + 32+ 3

= lim

→0

(32+ 3 + 2)

 = lim

→0(32+ 3 + 2) = 32

32. lim

→0

1

( + )2 − 1

2

 = lim

→0

2− ( + )2 ( + )22

 = lim

→0

2− (2+ 2 + 2)

2( + )2 = lim

→0

−(2 + )

2( + )2

= lim

→0

−(2 + )

2( + )2 = −2

2· 2 = − 2

3 33. (a)

lim→0

√ 

1 + 3 − 1 ≈ 2 3

(b)

  ()

−0001 0666 166 3

−0000 1 0666 616 7

−0000 01 0666 661 7

−0000 001 0666 666 2 0000 001 0666 667 2 0000 01 0666 671 7 0000 1 0666 716 7 0001 0667 166 3

The limit appears to be2 3.

(c) lim

→0

 

√1 + 3 − 1·

√1 + 3 + 1

√1 + 3 + 1

= lim

→0

√

1 + 3 + 1 (1 + 3) − 1 = lim

→0

√

1 + 3 + 1 3

=1 3 lim

→0

√1 + 3 + 1

[Limit Law 3]

=1 3

lim

→0(1 + 3) + lim

→01

[1 and 11]

=1 3

lim

→01 + 3 lim

→0 + 1

[1, 3, and 7]

=1 3

√1 + 3 · 0 + 1 [7 and 8]

=1

3(1 + 1) = 2 3

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

SECTION 2.3 CALCULATING LIMITS USING THE LIMIT LAWS ¤ 85 34. (a)

lim→0

√3 +  −√ 3

 ≈ 029

(b)

  ()

−0001 0288 699 2

−0000 1 0288 677 5

−0000 01 0288 675 4

−0000 001 0288 675 2 0000 001 0288 675 1 0000 01 0288 674 9 0000 1 0288 672 7 0001 0288 651 1

The limit appears to be approximately 02887.

(c) lim

→0

 √3 +  −√ 3

 ·

√3 +  +√

√ 3

3 +  +√ 3

= lim

→0

(3 + ) − 3

√

3 +  +√

3 = lim

→0

√ 1

3 +  +√ 3

=

lim→01

lim→0

√3 +  + lim

→0

√3 [Limit Laws 5 and 1]

= 1

lim

→0(3 + ) +√

3 [7 and 11]

= 1

√3 + 0 +√

3 [1, 7, and 8]

= 1

2√ 3 35.Let () = −2, () = 2cos 20and () = 2. Then

−1 ≤ cos 20 ≤ 1 ⇒ −2≤ 2cos 20 ≤ 2 ⇒ () ≤ () ≤ ().

So since lim

→0 () = lim

→0() = 0, by the Squeeze Theorem we have

lim→0() = 0.

36.Let () = −√

3+ 2, () =√

3+ 2 sin(), and () =√

3+ 2. Then

−1 ≤ sin() ≤ 1 ⇒ −√

3+ 2≤√

3+ 2sin() ≤√

3+ 2

 () ≤ () ≤ (). So since lim

→0 () = lim

→0() = 0, by the Squeeze Theorem we have lim

→0() = 0.

37.We have lim

→4(4 − 9) = 4(4) − 9 = 7 and lim

→4

2− 4 + 7

= 42− 4(4) + 7 = 7. Since 4 − 9 ≤ () ≤ 2− 4 + 7 for  ≥ 0, lim→4 () = 7by the Squeeze Theorem.

38.We have lim

→1(2) = 2(1) = 2and lim

→1(4− 2+ 2) = 14− 12+ 2 = 2. Since 2 ≤ () ≤ 4− 2+ 2for all ,

lim→1() = 2by the Squeeze Theorem.

39.−1 ≤ cos(2) ≤ 1 ⇒ −4 ≤ 4cos(2) ≤ 4. Since lim

→0

−4

= 0and lim

→04 = 0, we have

lim→0

4cos(2)

= 0by the Squeeze Theorem.

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

86 ¤ CHAPTER 2 LIMITS AND DERIVATIVES

40. −1 ≤ sin() ≤ 1 ⇒ −1≤ sin()≤ 1 ⇒ √

/ ≤√ sin()≤√ . Since lim

→0+(√/) = 0and lim

→0+(√ ) = 0, we have lim

→0+

√ sin()

= 0by the Squeeze Theorem.

41. | − 3| =

 − 3 if  − 3 ≥ 0

−( − 3) if  − 3  0 =

 − 3 if  ≥ 3 3 −  if   3 Thus, lim

→3+(2 + | − 3|) = lim

→3+(2 +  − 3) = lim

→3+(3 − 3) = 3(3) − 3 = 6 and lim

→3(2 + | − 3|) = lim

→3(2 + 3 − ) = lim

→3( + 3) = 3 + 3 = 6. Since the left and right limits are equal,

lim→3(2 + | − 3|) = 6.

42. | + 6| =

 + 6 if  + 6 ≥ 0

−( + 6) if  + 6  0 =

 + 6 if  ≥ −6

−( + 6) if   −6 We’ll look at the one-sided limits.

lim

→−6+

2 + 12

| + 6| = lim

→−6+

2( + 6)

 + 6 = 2 and lim

→−6

2 + 12

| + 6| = lim

→−6

2( + 6)

−( + 6) = −2 The left and right limits are different, so lim

→−6

2 + 12

| + 6| does not exist.

43.

23− 2

 =

2(2 − 1)

 =

2

 · |2 − 1| = 2|2 − 1|

|2 − 1| =

2 − 1 if 2 − 1 ≥ 0

−(2 − 1) if 2 − 1  0 =

2 − 1 if  ≥ 05

−(2 − 1) if   05 So23− 2 = 2[−(2 − 1)] for   05.

Thus, lim

→05

2 − 1

|23− 2|= lim

→05

2 − 1

2[−(2 − 1)] = lim

→05

−1

2 = −1

(05)2 = −1 025= −4.

44. Since || = − for   0, we have lim

→−2

2 − ||

2 +  = lim

→−2

2 − (−) 2 +  = lim

→−2

2 +  2 + = lim

→−21 = 1.

45. Since || = − for   0, we have lim

→0

1

− 1

||

= lim

→0

1

− 1

−

= lim

→0

2

, which does not exist since the denominator approaches 0 and the numerator does not.

46. Since || =  for   0, we have lim

→0+

1

− 1

||

= lim

→0+

1

−1

= lim

→0+0 = 0.

47. (a) (b) (i) Since sgn  = 1 for   0, lim

→0+sgn  = lim

→0+1 = 1.

(ii) Since sgn  = −1 for   0, lim

→0sgn  = lim

→0−1 = −1.

(iii) Since lim

→0sgn  6= lim

→0+

sgn , lim

→0sgn does not exist.

(iv) Since |sgn | = 1 for  6= 0, lim

→0|sgn | = lim

→01 = 1.

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

86 ¤ CHAPTER 2 LIMITS AND DERIVATIVES

40. −1 ≤ sin() ≤ 1 ⇒ −1≤ sin()≤ 1 ⇒ √

/ ≤√

 sin()≤√ . Since lim

→0+(√

/) = 0and

lim

→0+(√ ) = 0, we have lim

→0+

√ sin()

= 0by the Squeeze Theorem.

41. | − 3| =

 − 3 if  − 3 ≥ 0

−( − 3) if  − 3  0 =

 − 3 if  ≥ 3 3 −  if   3 Thus, lim

→3+(2 + | − 3|) = lim

→3+(2 +  − 3) = lim

→3+(3 − 3) = 3(3) − 3 = 6 and lim

→3(2 + | − 3|) = lim

→3(2 + 3 − ) = lim

→3

( + 3) = 3 + 3 = 6. Since the left and right limits are equal,

lim→3(2 + | − 3|) = 6.

42. | + 6| =

 + 6 if  + 6 ≥ 0

−( + 6) if  + 6  0 =

 + 6 if  ≥ −6

−( + 6) if   −6 We’ll look at the one-sided limits.

lim

→−6+

2 + 12

| + 6| = lim

→−6+

2( + 6)

 + 6 = 2 and lim

→−6

2 + 12

| + 6| = lim

→−6

2( + 6)

−( + 6) = −2 The left and right limits are different, so lim

→−6

2 + 12

| + 6| does not exist.

43. 23− 2 =2(2 − 1) =2

 · |2 − 1| = 2|2 − 1|

|2 − 1| =

2 − 1 if 2 − 1 ≥ 0

−(2 − 1) if 2 − 1  0 =

2 − 1 if  ≥ 05

−(2 − 1) if   05 So23− 2 = 2[−(2 − 1)] for   05.

Thus, lim

→05

2 − 1

|23− 2|= lim

→05

2 − 1

2[−(2 − 1)] = lim

→05

−1

2 = −1

(05)2 = −1 025= −4.

44. Since || = − for   0, we have lim

→−2

2 − ||

2 +  = lim

→−2

2 − (−) 2 +  = lim

→−2

2 +  2 + = lim

→−21 = 1.

45. Since || = − for   0, we have lim

→0

1

− 1

||

= lim

→0

1

− 1

−

= lim

→0

2

, which does not exist since the denominator approaches 0 and the numerator does not.

46. Since || =  for   0, we have lim

→0+

1

− 1

||

= lim

→0+

1

−1

= lim

→0+

0 = 0.

47. (a) (b) (i) Since sgn  = 1 for   0, lim

→0+sgn  = lim

→0+

1 = 1.

(ii) Since sgn  = −1 for   0, lim

→0sgn  = lim

→0−1 = −1.

(iii) Since lim

→0sgn  6= lim

→0+sgn , lim

→0sgn does not exist.

(iv) Since |sgn | = 1 for  6= 0, lim

→0|sgn | = lim

→01 = 1.

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

88 ¤ CHAPTER 2 LIMITS AND DERIVATIVES 51. For the lim

→2()to exist, the one-sided limits at  = 2 must be equal. lim

→2() = lim

→2

4 −12

= 4 − 1 = 3 and lim

→2+() = lim

→2+

√ +  =√2 + . Now 3 =√

2 +  ⇒ 9 = 2 +  ⇔  = 7.

52. (a) (i) lim

→1() = lim

→1 = 1 (ii) lim

→1+() = lim

→1+(2 − 2) = 2 − 12= 1. Since lim

→1() = 1and lim

→1+() = 1, we have lim

→1() = 1.

Note that the fact (1) = 3 does not affect the value of the limit.

(iii) When  = 1, () = 3, so (1) = 3.

(iv) lim

→2() = lim

→2(2 − 2) = 2 − 22= 2 − 4 = −2 (v) lim

→2+() = lim

→2+( − 3) = 2 − 3 = −1 (vi) lim

→2()does not exist since lim

→2() 6= lim

→2+

().

(b)

() =











 if   1

3 if  = 1

2 − 2 if 1   ≤ 2

 − 3 if   2

53. (a) (i) [[]] = −2 for −2 ≤   −1, so lim

→−2+[[]] = lim

→−2+(−2) = −2 (ii) [[]] = −3 for −3 ≤   −2, so lim

→−2[[]] = lim

→−2(−3) = −3.

The right and left limits are different, so lim

→−2[[]]does not exist.

(iii) [[]] = −3 for −3 ≤   −2, so lim→−24[[]] = lim

→−24(−3) = −3.

(b) (i) [[]] =  − 1 for  − 1 ≤   , so lim

→[[]] = lim

→( − 1) =  − 1.

(ii) [[]] =  for  ≤    + 1, so lim

→+[[]] = lim

→+ = .

(c) lim

→[[]]exists ⇔  is not an integer.

54. (a) See the graph of  = cos .

Since −1 ≤ cos   0 on [− −2), we have  = () = [[cos ]] = −1 on [− −2).

Since 0 ≤ cos   1 on [−2 0) ∪ (0 2], we have () = 0 on [−2 0) ∪ (0 2].

Since −1 ≤ cos   0 on (2 ], we have () = −1 on (2 ].

Note that (0) = 1.

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

1

(2)

SECTION 2.3 CALCULATING LIMITS USING THE LIMIT LAWS ¤ 89 (b) (i) lim

→0 () = 0and lim

→0+

 () = 0, so lim

→0 () = 0.

(ii) As  → (2), () → 0, so lim

→(2)  () = 0.

(iii) As  → (2)+, () → −1, so lim

→(2)+ () = −1.

(iv) Since the answers in parts (ii) and (iii) are not equal, lim

→2 ()does not exist.

(c) lim

→ ()exists for all  in the open interval (− ) except  = −2 and  = 2.

55.The graph of () = [[]] + [[−]] is the same as the graph of () = −1 with holes at each integer, since () = 0 for any integer . Thus, lim

→2 () = −1 and lim

→2+ () = −1, so lim

→2 () = −1. However,

 (2) = [[2]] + [[−2]] = 2 + (−2) = 0, so lim

→2 () 6= (2).

56. lim

→

0

 1 −2

2

= 0

1 − 1 = 0. As the velocity approaches the speed of light, the length approaches 0.

A left-hand limit is necessary since  is not defined for   .

57.Since () is a polynomial, () = 0+ 1 + 22+ · · · + . Thus, by the Limit Laws,

lim→() = lim

→

0+ 1 + 22+ · · · + 

= 0+ 1lim

→ + 2lim

→2+ · · · + lim

→

= 0+ 1 + 22+ · · · + = () Thus, for any polynomial , lim

→() = ().

58.Let () = ()

()where () and () are any polynomials, and suppose that () 6= 0. Then

lim→() = lim

→

()

() =

lim→()

lim→ () [Limit Law 5] =()

() [Exercise 57] = ().

59. lim

→1[ () − 8] = lim

→1

 () − 8

 − 1 · ( − 1)

= lim

→1

 () − 8

 − 1 · lim

→1( − 1) = 10 · 0 = 0.

Thus, lim

→1 () = lim

→1{[() − 8] + 8} = lim

→1[ () − 8] + lim

→18 = 0 + 8 = 8.

Note: The value of lim

→1

 () − 8

 − 1 does not affect the answer since it’s multiplied by 0. What’s important is that

lim→1

 () − 8

 − 1 exists.

60. (a) lim

→0 () = lim

→0

 ()

2 · 2

= lim

→0

 ()

2 · lim

→02= 5 · 0 = 0 (b) lim

→0

 ()

 = lim

→0

 ()

2 · 

= lim

→0

 ()

2 · lim

→0 = 5 · 0 = 0 61.Observe that 0 ≤ () ≤ 2for all , and lim

→00 = 0 = lim

→02. So, by the Squeeze Theorem, lim

→0 () = 0.

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

SECTION 2.3 CALCULATING LIMITS USING THE LIMIT LAWS ¤ 89 (b) (i) lim

→0 () = 0and lim

→0+ () = 0, so lim

→0 () = 0.

(ii) As  → (2), () → 0, so lim

→(2)

 () = 0.

(iii) As  → (2)+, () → −1, so lim

→(2)+ () = −1.

(iv) Since the answers in parts (ii) and (iii) are not equal, lim

→2 ()does not exist.

(c) lim

→ ()exists for all  in the open interval (− ) except  = −2 and  = 2.

55.The graph of () = [[]] + [[−]] is the same as the graph of () = −1 with holes at each integer, since () = 0 for any integer . Thus, lim

→2 () = −1 and lim

→2+ () = −1, so lim

→2 () = −1. However,

 (2) = [[2]] + [[−2]] = 2 + (−2) = 0, so lim

→2 () 6= (2).

56. lim

→

0

 1 −2

2

= 0

√1 − 1 = 0. As the velocity approaches the speed of light, the length approaches 0.

A left-hand limit is necessary since  is not defined for   .

57.Since () is a polynomial, () = 0+ 1 + 22+ · · · + . Thus, by the Limit Laws,

lim→() = lim

→

0+ 1 + 22+ · · · + 

= 0+ 1lim

→ + 2lim

→2+ · · · + lim

→

= 0+ 1 + 22+ · · · + = () Thus, for any polynomial , lim

→() = ().

58.Let () = ()

()where () and () are any polynomials, and suppose that () 6= 0. Then

lim→() = lim

→

()

() =

lim→()

lim→ () [Limit Law 5] =()

() [Exercise 57] = ().

59. lim

→1[ () − 8] = lim

→1

 () − 8

 − 1 · ( − 1)

= lim

→1

 () − 8

 − 1 · lim

→1( − 1) = 10 · 0 = 0.

Thus, lim

→1 () = lim

→1{[() − 8] + 8} = lim

→1[ () − 8] + lim

→18 = 0 + 8 = 8.

Note: The value of lim

→1

 () − 8

 − 1 does not affect the answer since it’s multiplied by 0. What’s important is that

lim→1

 () − 8

 − 1 exists.

60. (a) lim

→0 () = lim

→0

 ()

2 · 2

= lim

→0

 ()

2 · lim

→02= 5 · 0 = 0 (b) lim

→0

 ()

 = lim

→0

 ()

2 · 

= lim

→0

 ()

2 · lim

→0 = 5 · 0 = 0 61.Observe that 0 ≤ () ≤ 2for all , and lim

→00 = 0 = lim

→02. So, by the Squeeze Theorem, lim

→0 () = 0.

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

SECTION 2.3 CALCULATING LIMITS USING THE LIMIT LAWS ¤ 89 (b) (i) lim

→0 () = 0and lim

→0+ () = 0, so lim

→0 () = 0.

(ii) As  → (2), () → 0, so lim

→(2)

 () = 0.

(iii) As  → (2)+, () → −1, so lim

→(2)+ () = −1.

(iv) Since the answers in parts (ii) and (iii) are not equal, lim

→2 ()does not exist.

(c) lim

→ ()exists for all  in the open interval (− ) except  = −2 and  = 2.

55.The graph of () = [[]] + [[−]] is the same as the graph of () = −1 with holes at each integer, since () = 0 for any integer . Thus, lim

→2 () = −1 and lim

→2+ () = −1, so lim

→2 () = −1. However,

 (2) = [[2]] + [[−2]] = 2 + (−2) = 0, so lim

→2 () 6= (2).

56. lim

→

0

 1 −2

2

= 0

√1 − 1 = 0. As the velocity approaches the speed of light, the length approaches 0.

A left-hand limit is necessary since  is not defined for   .

57.Since () is a polynomial, () = 0+ 1 + 22+ · · · + . Thus, by the Limit Laws,

lim→() = lim

→

0+ 1 + 22+ · · · + 

= 0+ 1lim

→ + 2lim

→2+ · · · + lim

→

= 0+ 1 + 22+ · · · + = () Thus, for any polynomial , lim

→() = ().

58.Let () = ()

()where () and () are any polynomials, and suppose that () 6= 0. Then

lim→() = lim

→

()

() =

lim→()

lim→ () [Limit Law 5] =()

() [Exercise 57] = ().

59. lim

→1[ () − 8] = lim

→1

 () − 8

 − 1 · ( − 1)

= lim

→1

 () − 8

 − 1 · lim

→1( − 1) = 10 · 0 = 0.

Thus, lim

→1 () = lim

→1{[() − 8] + 8} = lim

→1[ () − 8] + lim

→18 = 0 + 8 = 8.

Note: The value of lim

→1

 () − 8

 − 1 does not affect the answer since it’s multiplied by 0. What’s important is that

lim→1

 () − 8

 − 1 exists.

60. (a) lim

→0 () = lim

→0

 ()

2 · 2

= lim

→0

 ()

2 · lim

→02= 5 · 0 = 0 (b) lim

→0

 ()

 = lim

→0

 ()

2 · 

= lim

→0

 ()

2 · lim

→0 = 5 · 0 = 0 61.Observe that 0 ≤ () ≤ 2for all , and lim

→00 = 0 = lim

→02. So, by the Squeeze Theorem, lim

→0 () = 0.

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

90 ¤ CHAPTER 2 LIMITS AND DERIVATIVES

62. Let () = [[]] and () = −[[]]. Then lim→3 ()and lim

→3()do not exist [Example 10]

but lim

→3[ () + ()] = lim

→3([[]] − [[]]) = lim

→30 = 0.

63. Let () = () and () = 1 − (), where  is the Heaviside function defined in Exercise 1.3.59.

Thus, either  or  is 0 for any value of . Then lim

→0 ()and lim

→0()do not exist, but lim

→0[ ()()] = lim

→00 = 0.

64. lim

→2

√6 −  − 2

√3 −  − 1 = lim

→2

 √√6 −  − 2 3 −  − 1·

√6 −  + 2

√6 −  + 2·

√3 −  + 1

√3 −  + 1

= lim

→2

 √6 − 2

− 22

√3 − 2

− 12 ·

√3 −  + 1

√6 −  + 2

= lim

→2

6 −  − 4 3 −  − 1·

√3 −  + 1

√6 −  + 2

= lim

→2

(2 − )√

3 −  + 1 (2 − )√

6 −  + 2 = lim

→2

√3 −  + 1

√6 −  + 2 =1 2

65. Since the denominator approaches 0 as  → −2, the limit will exist only if the numerator also approaches 0as  → −2. In order for this to happen, we need lim

→−2

32+  +  + 3

= 0 ⇔

3(−2)2+ (−2) +  + 3 = 0 ⇔ 12 − 2 +  + 3 = 0 ⇔  = 15. With  = 15, the limit becomes

lim→−2

32+ 15 + 18

2+  − 2 = lim

→−2

3( + 2)( + 3) ( − 1)( + 2) = lim

→−2

3( + 3)

 − 1 =3(−2 + 3)

−2 − 1 = 3

−3= −1.

66. Solution 1: First, we find the coordinates of  and  as functions of . Then we can find the equation of the line determined by these two points, and thus find the -intercept (the point ), and take the limit as  → 0. The coordinates of  are (0 ).

The point  is the point of intersection of the two circles 2+ 2= 2and ( − 1)2+ 2= 1. Eliminating  from these equations, we get 2− 2= 1 − ( − 1)2 ⇔ 2= 1 + 2 − 1 ⇔  = 122. Substituting back into the equation of the shrinking circle to find the -coordinate, we get1

222

+ 2= 2 ⇔ 2= 2

1 −142

⇔  =  1 −142 (the positive -value). So the coordinates of  are

1 22 

1 −142

. The equation of the line joining  and  is thus

 −  =



1 −142− 

1

22− 0 ( − 0). We set  = 0 in order to find the -intercept, and get

 = −

1 22



1 −142− 1 =−122

1 −142+ 1

1 −142− 1 = 2

1 −142+ 1

Now we take the limit as  → 0+: lim

→0+ = lim

→0+2

1 −142+ 1

= lim

→0+2√

1 + 1= 4.

So the limiting position of  is the point (4 0).

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

2

參考文獻

相關文件

In this section we use the following properties of limits, called the Limit Laws, to calculate limits.... Calculating Limits Using the

[This function is named after the electrical engineer Oliver Heaviside (1850–1925) and can be used to describe an electric current that is switched on at time t = 0.] Its graph

Consistent with the negative price of systematic volatility risk found by the option pricing studies, we see lower average raw returns, CAPM alphas, and FF-3 alphas with higher

A factorization method for reconstructing an impenetrable obstacle in a homogeneous medium (Helmholtz equation) using the spectral data of the far-field operator was developed

A factorization method for reconstructing an impenetrable obstacle in a homogeneous medium (Helmholtz equation) using the spectral data of the far-eld operator was developed

1.5 Inverse Functions and Logarithms 2.1 The Tangent and Velocity Problems 2.2 The Limit of a Function.. 2.3 Calculating Limits Using the Limit Laws 2.4 The Precise Definition of

Full credit if they got (a) wrong but found correct q and integrated correctly using their answer.. Algebra mistakes -1% each, integral mistakes

[r]