• 沒有找到結果。

2. Eulerian 數與

N/A
N/A
Protected

Academic year: 2022

Share "2. Eulerian 數與"

Copied!
21
0
0

加載中.... (立即查看全文)

全文

(1)

Eulerian 數的應用

賴惠伶

1. 前言

Eulerian 數早由 Euler [3] 於 1755 年提出。

本文目的是由 Eulerian 數定義出發去討論 Eulerian 數的性質及組合應用。

我們以 D 代表dxd, 將幾何級數P

k=0xk = 1−x1 (|x| < 1) 連續做 xD 的運算得 (xD)0( 1

1 − x) =

X

k=0

kxk = 1 1 − x, (xD)1( 1

1 − x) =

X

k=0

k2xk = x (1 − x)2 (xD)2( 1

1 − x) =

X

k=0

k3xk = x2 + x (1 − x)3 (xD)3( 1

1 − x) =

X

k=0

k4xk = x3+ 4x2+ x (1 − x)4 ...

於是 Euler 定義 (xD)k(1−x1 ) 中分子部分 xk 的係數為 Eulerian 數 n

k 。 (xD)0( 1

1 − x)的分子為1 = 1 =0 0



(xD)1( 1

1 − x)的分子為x = 0 + 1x =1 0

 +1

1

 x (xD)2( 1

1 − x)的分子為x2+ x = 0 + 1x + 1x2 =2 0

 +2

1



x+2 2

 x2 (xD)3( 1

1 − x)的分子為x3+ 4x2+ x = 0 + 1x + 4x2+ x3

=3 0

 +3

1



x+3 2



x2+3 3

 x3 ...

(2)

(xD)n( 1

1 − x)的分子為n 0

 +n

1



x+n 2



x2 + · · · +n k



xk+ · · · +n n

 xn. 從而可得到以下 n

k 的表

n

k k= 0 k = 1 k = 2 k= 3 k = 4 . . . k = n

n= 0 1 0 0 0 0 . . . 0

n= 1 0 1 0 0 0 . . . 0

n= 2 0 1 1 0 0 . . . 0

n= 3 0 1 4 1 0 . . . 0

n= 4 0 1 11 11 1 . . . 0

... ... ... ... ... ... . .. ...

n= n n

0

n

1

n

2

n

3

n

4

. . . n

n

由定義我們可以整理出一般式

(xD)n( 1 1 − x) =

X

k=0

knxk = Pn

k=0

n

k xk

(1 − x)n+1 。 (1) 另外, 也可以用其組合意義來定義 Eulerian 數,n

k 的組合意義為對稱群 Sn 中恰有 k − 1 個 下降 (descent) 的 n-置換 (permutation) 的個數, 本文不從組合意義下去探討, 想了解請參 閱 B´ona [1]。

在第二節中, 我們討論Eulerian 數與Pn

k=0km的關聯, 在第三節中我們找出 Eulerian 數 與 n 維三角數還有差分之間的關係, 而最後一節我們則討論與 Stirling 數的關聯性。

2. Eulerian 數與

n

P

k=0

k

m

的關聯

Eulerian 數具有以下兩個性質, 其證明請參閱 Comtet [2]:

n

k+1 = n−kn ,

n

k = kn−1k + (n − k + 1)n−1k−1 。 其封閉表達式為

n k



=

k

X

j=0

(−1)jn + 1 j



(k − j)n =

k

X

l=0

n + 1 k− l



(−1)k−lln

Eulerian 數與連續整數冪次和 Pn

k=0km 有關, 其結果如下定理。

(3)

定理 1. 對任意正整數 n 及 m

n

X

k=0

km=

m

X

i=1

m i

n + m + 1 − i n− i



證明: 由(1) 式知

( 1 1 − x)

X

k=0

kmxk = Pm

k=0

m

k xk (1 − x)n+1 , 兩邊同乘 1

1−x可得 ( 1

1 − x)

X

k=0

kmxk = 1 1 − x

Pm k=0

m

k xk (1 − x)m+1

= (

m

X

k=0

m k



xk)(1 − x)(m+2)

= (

m

X

k=0

m k

 xk)(

X

j=0

j + m + 1 m+ 1

 xj)

= (m 1



x+m 2



x2+ · · · +m m

 xm)(

X

j=0

j + m + 1 m+ 1

 xj)。

接著我們取兩邊xn的係數

n

X

k=0

km =m 1

n − 1 + m + 1 m+ 1



+m 2

n − 2 + m + 1 m+ 1



+m 3

n − 3 + m + 1 m+ 1



+ · · · +m m

n − m + m + 1 m+ 1



=m 1

n + m m+ 1



+m 2

n + m − 1 m+ 1



+ · · · +m m

 n + 1 m+ 1



=m 1

n + m n− 1



+m 2

n + m − 1 n− 2



+ · · · +m m

 n + 1 n− m



=

m

X

i=0

m i

n + m + 1 − i n− i



。 

例 1.

n

X

k=0

k3 =3 1

n + 3 4

 +3

2

n + 2 4

 +3

3

n + 1 4



= 1(n+3)(n+2)(n+1)n

4! +4(n+2)(n+1)n(n−1)

4! +1(n+1)n(n−1)(n−2) 4!

(4)

= n2(n + 1)2 4! 。

德國數學家 Worpitzky [7] 於 1883 年定義 Eulerian 數為 xn =

n

X

k=0

n k

n + x − k n



=

n

X

k=0

n k

x + k − 1 n



。 例 2.

32 =2 0

6 2

 +2

1

5 2

 +2

2

4 2



= 1 × 6 + 1 × 3, 33 =3

0

3 + 3 − 0 3

 +3

1

3 + 3 − 1 3

 +3

2

3 + 3 − 2 3

 +3

3

3 + 3 − 3 3



= 0 + 1 × 10 + 4 × 4 + 1 × 1 = 27。

由此公式也可以得出

n

X

k=0

km =

n

X

k=0 m

X

i=0

m i

m + k − i m



=

m

X

i=0

m i

 n

X

k=0

m + k − i m



=

m

X

i=0

m i

m + k − i + 1 m+ 1



=

m

X

i=0

m i

m + k − i + 1 k− i



。 與定理 1 相同。

定理 1 是有關 Pn

k=0km 與 Eulerian 數的關聯, 自然地我們猜測是否交錯和 Eulerian 數也有類似的關係, 為了達到此目的我們先證明以下引理。

引理 1. 對任意正整數 m

X

k=0

km(−x)k= ((−x)D)m( 1 1 + x) =

Pm k=0

m

k (−1)kxk (1 + x)m+1 。 證明: 將 x 以 −x 代入(1) 即可得

((−x)D)m( 1 1 + x) =

X

k=0

km(−x)k= Pm

k=0

m

k (−1)kxk (1 + x)m+1 接著由引理1來求Pn

k=0(−1)kkm

(5)

定理 2.

n

X

k=0

(−1)kkm =

m

X

a=0 n−a

X

j=0

(−1)n−jm a

n − a − j + m m



。 證明: 由引理1知

X

k=0

km(−x)k= ((−x)D)m( 1 1 + x) =

Pm k=0

m

k (−1)kxk (1 + x)m+1 。 等號兩邊同除 1

1−x

( 1 1 − x)

m

X

k=0

km(−x)k = 1 1 − x

Pm k=0

m

k (−1)k(x)k (1 + x)m+1

= (m 1



(−1)1x+m 2



(−1)2x2+ · · · +m m



(−1)mxm)(1 − x)1(1 + x)(m+1)

= (m 1



(−)1x+m 2



(−1)2x2+ · · · +m m



(−1)mxm)(

X

i=0

xi)(

X

j=0

j + m m



(−x)j)。

我們取等號兩邊xn的係數

n

X

k=0

(−1)kkm =

m

X

a=0

m a



(−1)a(

n−a

X

j=0

n − a − j + m m



(−1)n−a−j)

=

m

X

a=0 n−a

X

j=0

(−1)n−jm a

n − a − j + m m



。 

例 3.

n

X

k=0

(−1)kk3 =

3

X

a=0 n−a

X

j=0

(−1)n−j3 a

n − a − j + 3 3



。 令g = n − a − j, 因此 g 的範圍是從 0 到 n − a,

n

X

k=0

(−1)kk3 =

3

X

a=0

3 a

n−a

X

g=0

(−1)a+gg + 3 3



=

3

X

a=0

3 a

 (−1)a

n−a

X

g=0

(−1)gg + 3 3



所以當n = 3時, 左式 =

3

X

k=0

(−1)kk3 = −1 + 8 − 27 = −20

(6)

右式 =3 1



(−1)1((−1)03 3



+ (−1)14 3



+ (−1)25 3

 ) +3

2



(−1)2((−1)03 3



+ (−1)14 3



) +3 3



(−1)3((−1)03 3

 )

= −1 × (1 − 4 + 10) + 4 × (1 − 4) + (−1) × 1 = −7 − 12 − 1 = −20。

接著我們已經知道

1 1 − x =

X

k=0

xk。 因此我們想探討如果只加到有限項Pn

k=0xk, 則對其做 (xD)k 會變成怎樣的形式。

定理 3. 令 n 為正整數, 則 (xD)k(1 − xn+1

1 − x ) =

n

X

r=0

rkxr

= −xn+1

k

X

r=0

k r



(n + 1)k−r

r

X

m=0

r

m xm (1 − x)m+1 +

k

X

r=0

k

r xr (1 − x)k+1 。 證明:

n

X

r=0

rkxr = (xD)k 1 − xn+1 1 − x



= (xD)k(−xn+1

1 − x) + (xD)k( 1 1 − x)

= (xD)k(−xn+1 1 − x) +

k

X

r=0

k

r xr (1 − x)k+1

= −(xD)k−1(1 0



(n + 1)xn+1( 1

1 − x) +1 1



xn+1(xD)( 1 1 − x)) +

k

X

r=0

k

r xr (1 − x)k+1

= −(xD)k−2(1 0



(n + 1)2xn+1( 1

1 − x) +1 1



(n + 1)xn+1(xD)( 1 1 − x) +1

0



(n + 1)xn+1(xD)( 1

1 − x) +1 1



xn+1(xD)2( 1 1 − x)) +

k

X

r=0

k

r xr (1 − x)k+1

= −(xD)k−2(2 0



(n + 1)2xn+1( 1

1 − x) +2 1



(n + 1)xn+1(xD)( 1 1 − x) +2

2



xn+1(xD)2( 1 1 − x)) +

k

X

r=0

k

r xr (1 − x)k+1

(7)

= · · ·

= −

k

X

r=0

k r



(n + 1)k−r(xD)r( 1 1 − x) +

k

X

r=0 k rxr (1 − x)k+1

= −xn+1

k

X

r=0

k r



(n + 1)k−r

r

X

m=0 k mxm (1 − x)m+1 +

k

X

r=0 k rxr

(1 − x)k+1。  註: 在 Hsu 與 Shiue [5] 中有給出類似的證明。

3.

n

k

與 n 維三角數的關聯

本節之目的是說明 Eulerian 數與 n 維三角數 [6] 的關聯。 首先, 我們先介紹何謂 n 維 三角數。 像商家平常賣水果一般會先將水果排成一排, 形成一條線的樣子, 這樣就是一維的三角 數。 之後排不夠我們會排第二、 三排等, 形成平面的樣子, 這就是二維的三角數, 然而水果還是 很多我們就會將它疊到原本第一及第二排的上面依序排下去, 形成立體的樣子, 這就是三維的 三角數, 依此類推可以推到 n 維的三角數。 以數學式子來表示則推出以下定理。

定義 1. 令 tkn 代表每邊為 n 的 k 維三角數,

tkn= tk−1n + tk−1n−1+ · · · + tk−12 + tk−11 , 其中t1n = n, 其堆疊的方式如下圖。

1: n= 5 的一維三角數 t1n2: n = 3 的二維三角數 t2n

3: n= 3 的三維三角數 t3n4: n = 3 的四維三角數 t4n

(8)

觀察 tkn (k = 1, 2, . . .) 的值:

t1n = n =n 1



t2n = 1 + 2 + · · · + n =

n

X

k=0

k 1



= n(n + 1)

2! =n + 1 2



t3n = (1 + 2 + · · · + n) + (1 + 2 + · · · + n − 1) + · · · + (1 + 2) + (1)

= t2n+ t2n−1+ · · · + t22 + t21

=

n

X

k=0

k + 1 2



= n(n + 1)(n + 2)

3! =n + 2 3



t4n = t3n+ t3n−1+ · · · + t32 + t31

=

n

X

k=0

k + 2 3



= n(n + 1)(n + 2)(n + 3)

4! =n + 3 4



...

tkn = tk−1n + tk−1n−1+ · · · + tk−12 + tk−11

=

n

X

r=0

n + k k− 1



= n(n + 1)(n + 2) · · · (n + k − 1)

k! =n + k − 1 k



。 由上面式子我們可以得到以下定理。

定理 4.

tkn =n + k − 1 k



。 由定理4我們發現三角數有以下性質。

性質 1.

tkn= tkn−1+ tk−1n 。 證明:

tkn=n + k − 1 k



=n + k − 2 k



+n + k − 2 k− 1



= tkn−1 + tk−1n 。  性質 2.

xn =

n

X

i=0

n i



tnx+1−i。 證明:

xn=

n

X

i=0

n i

n + x − i n



(9)

tnx+1−i =x + 1 − i + n − 1 n



=n + x − i n



所以可推得

xn =

n

X

i=0

n i



tnx+1−i。 

接著我們藉由觀察以下的圖來找出規律。

5: 32 的圖我們可以將其拆成 t23 + t226: 23 的圖我們可以將其拆成t32+ 4t31

7: 33 的圖我們可以將其拆成 t33 + 4t32+ t31

圖 6 和圖 7 為立體圖, 我們將前面的圖疊加在後面的圖後就可以發現我們所說的三角數, 我們會發現當我們從 kn 到 (k + 1)n 時就相當於在往下多一層而上面不變, 而從圖 5 到圖 6 我們會發現其三角數的維度會增加 1, 且其係數恰為 Eulerian 數, 確實與性質 2 相同。

註: 另外圖7為何是這樣分割, 請查閱[6]。

另外我們也發現三角數與差分 △h 也有關係, 差分 △h 如下定義:

(10)

定義 2.

△f (x) = f (x) − f (x − 1)

k+1f(x) = △kf(x) − △kf(x − 1) 令 hk = kn, 則

△hk= kn− (k − 1)n

2hk= △(△hk) = △hk− △hk−1 = (kn− (k − 1)n) − ((k − 1)n− (k − 2)n)

= kn+ (k − 2)n ...

lhk= △l−1hk− △l−1hk−1

因此由性質1及性質2我們可以得到其差分表。

kn △h △2h △3h △4h . . .

1n=Pn i=0

n

i tn2−i

Pn i=0

n

i tn−13−i 2n=Pn

i=0

n

i tn3−i Pn

i=0

n

i tn−24−i Pn

i=0

n

i tn−14−i Pn

i=0

n

i tn−35−i 3n=Pn

i=0

n

i tn4−i Pn

i=0

n

i tn−25−i Pn

i=0

n

i tn−46−i Pn

i=0

n

i tn−15−i Pn

i=0

n

i tn−36−i 4n=Pn

i=0

n

i tn5−i Pn

i=0

n

i tn−26−i Pn

i=0

n

i tn−47−i Pn

i=0

n

i tn−16−i Pn

i=0

n

i tn−37−i 5n=Pn

i=0

n

i tn6−i Pn

i=0

n

i tn−27−i Pn

i=0

n

i tn−48−i

... ... ... ... ... ...

(k−1)n=Pn i=0

n

i tnk−i Pn

i=0

n

i tn−2k+1−i Pn

i=0

n

i tn−1k+1−i kn=Pn

i=0

n

i tnk+1−i 從而發現以下定理。

定理 5. 若hk= kn

lhk =

n

X

i=0

n i



tn−lk−i+1 =

n

X

i=0

n i

n − l + k − i k− i + 1



證明: 我們將利用數學歸納法來證明。

(11)

當l = 1時,

1hx = xn− (x − 1)n=

n

X

i=0

n i



tnx+1−i

n

X

i=0

n i

 tnx−i =

n

X

i=0

n i



tn−1x+1−i 成立。

假設l = a時,

ahk =

n

X

i=0

n i



tn−ak−i+1 成立。

則當l = a + 1時,

a+1hk = △(△ahk)

=

n

X

i=0

n i



tn−ak−i+1

n

X

i=0

n i

 tn−ak−i

=

n

X

i=0

n i



(tn−ak−i+1− tn−ak−i)

=

n

X

i=0

n i



tn−(a+1)k−i+1 成立。

由數學歸納法原理可知

lhk =

n

X

i=0

n i



tn−lk−i+1 。 

4.

n

k

與 Stirling 數的關聯

Stirling 數 [2] 有分為第一類 s(n, k) 跟第二類 S(n, k) , 分別由下式定義 第一類: [x]n =

n

X

k=0

s(n, k)xk, (2)

第二類: xn =

n

X

k=0

S(n, k)[x]k, (3)

其中[x]k= x(x − 1)(x − 2) · · · (x − k + 1), [x]0 = 1。

第二類Stirling 數具有以下性質

X

k=0

knxk =

n

X

k=0

k!S(n, k) xk

(1 − x)k+1, (4)

S(p, k) = kS(p − 1, k) + S(p − 1, k − 1)。 (5)

(12)

其證明可分別參閱 Gould[4] 和 Comtet[2]。

此節我們想要尋找 Stirlng 數與 Eulerian 數的關係。

定理 6. 對任意正整數n有

n

X

k=0

2n−kn k



=

n

X

k=0

S(n, k)k!。

證明: 由(1) 與 (4) 得

n

X

k=0

n k

 xk

(1 − x)n+1 =

X

k=0

knxk =

n

X

k=0

k!S(n, k) xk (1 − x)k+1, 可推得

n

X

k=0

n k

 xk =

n

X

k=0

k!S(n, k)xk(1 − x)n−k。 當 x = 12

n

X

k=0

n k

 (1

2)k=

n

X

k=0

k!S(n, k)(1 2)k(1

2)n−k =

n

X

k=0

k!S(n, k)(1 2)n, 等式兩邊同乘 2n

n

X

k=0

n k



2n−k =

n

X

k=0

k!S(n, k)。 

例 4. 當 n = 3 時,

3

X

k=0

3 k



23−k =3 0



23+3 1



22+3 2



21+3 3



20 = 1 × 4 + 4 × 2 + 1 × 1 = 13

=

3

X

k=0

k!S(3, k) = 0!S(3, 0) + 1!S(3, 1) + 2!S(3, 2) + 3!S(3, 3)

= 1 + 2 × 3 + 6 = 13。

由上面定理 6 可反推得以下定理。

定理 7.

n! =

n

X

j=0 j

X

k=0

(−1)n+j2j−kj k



s(n, j), 其中s(n, j)為 Stirling 數第一型。

(13)

證明: 由定理6可得知,

n

X

k=0

k!S(n, k) =

n

X

k=0

n k

 2n−k。 其矩陣式為

1 0 0 . . . 0 0 S(1, 1) 0 . . . 0 0 S(2, 1) S(2, 2) . . . 0 ... ... ... ... ...

0 S(n, 1) S(n, 2) . . . S(n, n)

 0!

1!

2!

...

n!

=

1 P1

k=0

1

k 21−k P2

k=0

2

k 22−k ...

Pn k=0

n

k 2n−k

 由[2]可知上式中的第二類Stirling 矩陣之反矩陣為

1 0 0 . . . 0 0 s(1, 1) 0 . . . 0 0 s(2, 1) s(2, 2) . . . 0 ... ... ... ... ...

0 s(n, 1) s(n, 2) . . . s(n, n)

 故兩邊同乘上反矩陣後可得

 0!

1!

2!

...

n!

=

1 0 0 . . . 0 0 s(1, 1) 0 . . . 0 0 s(2, 1) s(2, 2) . . . 0 ... ... ... ... ...

0 s(n, 1) s(n, 2) . . . s(n, n)

1 P1

k=0

1

k 21−k P2

k=0

2

k 22−k ...

Pn k=0

n

k 2n−k

 ,

比較矩陣內的元素可得 n! =

n

X

j=1

s(n, j)

j

X

k=0

j k



2j−k =

n

X

j=1 j

X

k=0

2j−kj k



s(n, j) 。

又我們已知

n! =

n

X

k=0

n k

 , 因此可得

n! =

n

X

k=0

n k



=

n

X

j=1 j

X

k=0

2j−kj k



s(n, j)。 

(14)

例 5. 當 n = 3 時, 3! =

3

X

k=0

3 k



=3 0

 +3

1

 +3

2

 +3

3



= 6

=

3

X

j=1 j

X

k=0

2j−kj k



s(3, j) =X

k = 0121−k1 k

 s(3, 1)

+

2

X

k=0

22−k2 k



s(3, 2) +X

k = 0223−k3 k

 s(3, 3)

= 21−01 0



s(3, 1) + 21−11 1



s(3, 1) + 22−02 0



s(3, 2) + 22−12 1

 s(3, 2) +22−22

2



s(3, 2) + 23−03 0



s(3, 3) + 23−13 1



s(3, 3) + 23−23 2

 s(3, 3) +23−33

3

 s(3, 3)

= 0 + 1 × 2 + 0 + 2 × (−3) + 1 × (−3) + 0 + 4 × 1 + 2 × 4 + 1 = 6。

引理 2.

n

X

k=0

km =

n

X

r=0

r!S(m, r)n + 1 r+ 1



。 證明: 由 (4) 可知

X

r=0

rmxr =

n

X

r=0

r!S(m, r) xr (1 − x)r+1, 2 邊同乘1−x1

1 1 − x

X

r=0

rmxr =

n

X

r=0

r!S(m, r) xr (1 − x)r+2

=

n

X

r=0

r!S(m, r)xr

X

t=0

t + r + 1 t

 xt。 我們取兩邊 xn 的係數

n

X

k=0

km =

n

X

r=0

r!S(m, r)n − r + r + 1 n− r



=

n

X

r=0

r!S(m, r)n + 1 n− r



=

n

X

r=0

r!S(m, r)n + 1 r+ 1



。 

(15)

註: 在[2]中也證明了引理2, 但其方法與本文不同。

我們導出兩個第二類 Stirling 數與 Eulerian 數的關係式。 定理八將 Stirling 數用 Eu- lerian 數表示, 而定理九將 Eulerian 數用 Stirling 數表示。

定理 8.

S(m, n) = 1 n!

n

X

j=1 j

X

r=0

(−1)n+jn j

m r

n + m + 1 − r n− r



證明: 由引理2和定理1可推得

n

X

r=0

r!S(m, r)n + 1 r+ 1



=

n

X

r=0

m r

n + m + 1 − r n− r



將其以矩陣形式表示如下

0 0

 0 0 . . . 0

1 0

 1

1

 0 . . . 0

2 0

 2

1

 2

2

 . . . 0 ... ... ... ... ...

n+1 0

 n+1

1

 n+1

2  . . . n+1n+1

 0 0!S(m, 0) 1!S(m, 1)

...

n!S(m, n)

=

0 0 P1

r=0

m

r

1+m+1−r

1−r

 ...

Pn r=0

m

r

n+m+1−r

n−r



由二項式定理可知上式中的 n

k 矩陣之反矩陣 [2] 為

0 0

 0 . . . 0

10 1

1

 . . . 0

2 0

 − 21

. . . 0 ... ... . .. ...

(−1)n+0 n+10  (−1)n+1 n+11  . . . (−1)2n+1 n+1n+1

因此

 0 0!S(m, 0) 1!S(m, 1)

... n!S(m, n)

=

0 0

 0 0 . . . 0

10 1

1

 0 . . . 0

2 0

 − 21 2

2

 . . . 0 ... ... ... . .. ...

(−1)n+0 n+10  (−1)n+1 n+11  (−1)n+1 n+12  . . . (−1)2n+1 n+1n+1

(16)

×

0 0 P1

r=0

m

r

1+m+1−r

1−r

 ...

Pn r=0

m

r

n+m+1−r

n−r



可推得

n!S(m, n) =

n

X

j=1

(−1)n+jn j

 j X

r=0

m r

n + m + 1 − r n− r



S(m, n) = 1 n!

n

X

j=1

(−1)n+jn j

 j X

r=0

m r

n + m + 1 − r n− r



= 1 n!

n

X

j=1 j

X

r=0

(−1)n+jn j

n + m + 1 − r n− r

m r



。 

引理 3. 令 xD = x(dxd) 可推得

(xD)m =

m

X

k=0

S(m, k)xkDk 證明: 我們利用數學歸納法來證明。

當 m = 1 時,

xD =

1

X

k=0

S(1, k)xD = S(1, 0)xD + S(1, 1)xD = xD成立。

設 m = n 時,

(xD)n=

n

X

k=0

S(n, k)xkDk成立。

則 m = n + 1 時,

(xD)n+1 = (xD)(xD)n = xD

n

X

k=0

S(n, k)xkDk

=

n

X

k=0

S(n, k)kxkDk+

n

X

k=0

S(n, k)xk+1Dk+1

=

n+1

X

k=0

S(n, k)kxkDk+

n+1

X

k=1

S(n, k − 1)xkDk =

n+1

X

k=0

S(n + 1, k)xkDk。 

(17)

引理 4.

n

X

k=0

s + k k

n − k m



=s + n + 1 n− m



證明: 當 n = 1 時,

討論s 0

 1 m



+s + 1 1

 0 m



是否等於 s + 2 1 − m



• 當 m = 0 時,

s 0

1 0



+s + 1 1

0 0



= s + 2 =s + 2 1



• 當 m = 1 時,

s 0

1 1



+s + 1 1

0 1



= 1 =s + 2 1 − 1



• 當 m > 2 時,

s 0

 1 m



+s + 1 1

 0 m



= 0 = s + 2 1 − m



因此可知 n = 1 是對的。

設 n = h 時,

h

X

k=0

s + k k

h − k m



=s + h + 1 h− m

 成立。

則 n = h + 1時,

h+1

X

k=0

s + k k

h + 1 − k m



=

h

X

k=0

s + k k



(h − k m



+ h − k m− 1

 )

+s + h + 1 h+ 1

h + 1 − h − 1 m



=s + h + 1 h− m



+ s + h + 1 h− m − 1



=s + h + 2 h− m

 成立。

由數學歸納法原理得知

n

X

k=0

s + k k

n − k m



=s + n + 1 n− m



 定理 9.

n i



=

n

X

k=0

(−1)i−kn − k i− k



k!S(n, k)。

(18)

證明: 由上面引理3可得

(xD)n( 1 1 − x) =

n

X

k=0

S(n, k)xk

X

n=0

(h + k)!

h! xh P

r=0

n

r xr (1 − x)n+1 =

n

X

k=0

S(n, k)xk

X

n=0

(h + k)!

h! xk。 兩邊同乘 (1 − x)n+1,

X

r=0

n r

 xr=

n

X

k=0

S(n, k)xk

X

h=0

(h + k)!

h! xh(1 − x)n+1

=

n

X

k=0

S(n, k)xk

X

h=0

(h + k)!

h! xh

n+1

X

i=0

n + 1 i



(−1)ixi

=

n

X

k=0

X

h=0 n+1

X

i=0

S(n, k)(h + k)!

h!

n + 1 i



(−1)ixk+h+i。 取兩邊 xi 項可得,

n i

 xi=

n

X

k=0

S(n, k)xk

X

h=0

(h + k)!

h! xh

 n+ 1 i− k − h



(−1)i−k−hxi−k−h

=

n

X

k=0

X

h=0

S(n, k)k!h + k h

 n+ 1 i− k − h



(−1)i−k−hxi

=

n

X

k=0

S(n, k)k!

X

h=0

h + k h

i − h − k − n − 2

−n − 2

 xi

=

n

X

k=0

S(n, k)k!

i−k−n−2

X

h=0

h + k h

i − h − k − n − 2

−n − 2

 xi 由引理 4 可知

=

n

X

k=0

S(n, k)k!i − n − 1 i− k

 xi

=

n

X

k=0

S(n, k)k!(−1)i−kn − k i− k

 xi 因此可得出

n i



=

n

X

k=0

(−1)i−kn − k i− k



k!S(n, k)。

例 6. 當n = 3且i = 2時,

3 2



=

3

X

k=0

(−1)2−k3 − k 2 − k



k!S(3, k)

(19)

= (−1)23 2



0!S(3, 0) + (−1)12 1



1!S(3, 1) + (−1)01 0



2!S(3, 2)

= 0 + (−2) + 6 = 4

當n = 4且i = 2時,

4 2



=

4

X

k=0

(−1)2−k4 − k 2 − k



k!S(4, k)

= (−1)24 2



0!S(4, 0) + (−1)13 1



1!S(4, 1) + (−1)02 0



2!S(4, 2)

= 0 + (−3) + 14 = 11

最後, 在前面的第三節裡我們提到三角數與Eulerian 的關係, 我們將用性質2與 Stirling 數的定義來推得 Stirling 數與三角數的關係

定理 10.

S(n, k) =

x

X

j=0 n

X

i=0

(−1)x+jx j

n i

 tnj+1−i

證明: 由性質2與 Stirling 數的定義可推得

xn=

n

X

i=0

n i



tnx+1−i =

n

X

k=0

S(n, k)k!x k



將其以矩陣形式表示如下

0 0

 0 0 . . . 0 . . . 0

1 0

 1

1

 0 . . . 0 . . . 0

2 0

 2

1

 2

2 . . . 0 . . . 0 ... ... ... . .. ... . . . ...

x 0

 x

1

 x

2 . . . xx . . . 0 ... ... ... ... ... . . . ...

n 0

 n

1

 n

2 . . . nx . . . nn

 0 0!S(m, 0) 1!S(m, 1)

... x!S(m, x)

...

n!S(m, n)

=

 Pn

i=0

n

i tn1−i Pn

i=0

n

i tn2−i Pn

i=0

n

i tn3−i ... Pn

i=0

n

i tnx+1−i ...

Pn i=0

n

i tnn+1−i

(20)

由二項式定理可知上式中的 nk矩陣之反矩陣[2]為

0 0

 0 . . . 0

10 1

1

 . . . 0

2 0

 − 21

. . . 0 ... ... . .. ...

(−1)x+0 x0 (−1)x+1 x1 . . . 0 ... ... . .. ... (−1)n+0 n0

(−1)n n1

. . .(−1)2n nn

因此

 0 0!S(m, 0) 1!S(m, 1)

... x!S(m, x)

...

n!S(m, n)

=

0 0

 0 0 . . . 0

10 1

1

 0 . . . 0

2 0

 − 21 2

2

 . . . 0 ... ... ... . .. ... (−1)x x0 (−1)x+1 x1 (−1)x+2 x2 . . . 0 ... ... ... . .. ...

(−1)n n0 (−1)n+1 n1 (−1)n+2 n2 . . . (−1)2n nn

×

 Pn

i=0

n

i tn1−i Pn

i=0

n

i tn2−i Pn

i=0

n

i tn3−i ... Pn

i=0

n

i tnx+1−i ...

Pn i=0

n

i tnn+1−i

可推得

x!S(m, x) =

x

X

j=0

(−1)x+jx j

 n X

i=0

n i

 tij+1−i

S(m, x) = 1 x!

x

X

j=0

(−1)x+jx j

 n

X

r=0

n i

 tij+1−i

= 1 x!

x

X

j=0 n

X

r=0

(−1)x+jx j

n i



tij+1−i。 

(21)

例 7. 當n = 4且x = 2時, S(4, 2) = 7

= 1 2!

2

X

j=0

(−1)2+j2 j

 4

X

i=0

t4j+1−i

= 1

2((−1)22 0

 4 X

i=0

t41−i+ (−1)32 1

 4 X

i=0

t42−i+ (−1)42 2

 4 X

i=0

t43−i)

= 1

2((−2)(4 1



t41) + (4 1



t42+4 2

 t41))

= 1

2(−2 + 5 + 11) = 7

致謝

感謝中研院數學所提供筆者在暑期的時候來參與組合數學與圖論專題的暑期研習, 使筆者 有機會與美國回來的薛昭雄教授學習與研究。 非常感謝薛昭雄教授的大力指導與協助, 另外還 要感謝廖信傑和孫維良的幫忙, 筆者才能完成此篇文章。

參考資料

1. K. B´ona, Combinatorics of Permuations, New York, CHAPMAN HALL/CRC, 2004.

2. L. Comtet, Advance combinatorics, Reidel,Dordrecht, 1974.

3. L. Eulerus, Institutiones calculi differentialis cum eius usu in analysi finitorum ac doc- trina serierum [Foundations of differential calculus,with applications to finite analysis and series], Academia imperialis scientiarum Petropolitana;Berolini: Officina Michaelis, 1755.

4. H. W. Gould, Evaluation of sums of convolved powers using Stirling und Eulerian numbers, Fibonacci Quart., 16(1978), 488-497.

5. L. C. Hsu and P. J.-S. Shiue, On certain summation problems and generalizations of Eulerian polynomials and numbers, Discrete Methematics, 204(1999), 237-247.

6. mathrecreation, Triangular Numbers and Euler’s Number Triangle,

http://www.mathrecreation.com/2009/01/triangular-numbers-and-eulers-number.html.

7. J. Worpitzky, Studien ¨ uber die Bernoullischen and Eulerschen Zahlen, Journal f¨ ur die reine und angewandte Mathematik, YEAR = 94(1883), 203-232.

本文作者就讀國立交通大學應用數學所

參考文獻

相關文件

The research proposes a data oriented approach for choosing the type of clustering algorithms and a new cluster validity index for choosing their input parameters.. The

Matrix model recursive formulation of 1/N expansion: all information encoded in spectral curve ⇒ generates topological string amplitudes... This is what we

Chen, Properties of circular cone and spectral factorization associated with circular cone, to appear in Journal of Nonlinear and Convex Analysis, 2013.

The thesis uses text analysis to elaborately record calculus related contents that are included in textbooks used in universities and to analyze current high school

Methods involving finite differences for solving boundary-value problems replace each of the derivatives in the differential equation by an appropriate

The algorithms have potential applications in several ar- eas of biomolecular sequence analysis including locating GC-rich regions in a genomic DNA sequence, post-processing

• A cell array is a data type with indexed data containers called cells, and each cell can contain any type of data. • Cell arrays commonly contain either lists of text

files Controller Controller Parser Parser.