• 沒有找到結果。

Section 10.2 Calculus with Parametric Curves

N/A
N/A
Protected

Academic year: 2022

Share "Section 10.2 Calculus with Parametric Curves"

Copied!
2
0
0

加載中.... (立即查看全文)

全文

(1)

Section 10.2 Calculus with Parametric Curves

880 ¤ CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

10.2 Calculus with Parametric Curves

1.  = 

1 + ,  =√

1 +  ⇒ 

 = 1

2(1 + )−12 = 1 2√

1 + , 

 =(1 + )(1) − (1) (1 + )2 = 1

(1 + )2, and



 = 

 =1(2√ 1 +  )

1(1 + )2 = (1 + )2 2√

1 + = 1

2(1 + )32.

2.  = ,  =  + sin  ⇒ 

 = 1 + cos , 

 = + = ( + 1), and 

 = 

 = 1 + cos 

( + 1).

3.  = 3+ 1,  = 4+ ;  = −1. 

 = 43+ 1, 

 = 32, and 

 = 

 = 43+ 1

32 . When  = −1, ( ) = (0 0) and  = −33 = −1, so an equation of the tangent to the curve at the point corresponding to  = −1 is

 − 0 = −1( − 0), or  = −.

4.  =√,  = 2− 2;  = 4.

 = 2 − 2,

 = 1 2√

, and

 =

 = (2 − 2)2√

 = 4( − 1)√. When  = 4, ( ) = (2 8)and  = 4(3)(2) = 24, so an equation of the tangent to the curve at the point corresponding to  = 4 is

 − 8 = 24( − 2), or  = 24 − 40.

5.  = 4+ 1,  = 3+ ;  = −1 

 = 32+ 1, 

 = 43, and 

 = 

 =32+ 1

43 . When  = −1,

( ) = (2 −2) and  = −44 = −1, so an equation of the tangent to the curve at the point corresponding to  = −1 is  − (−2) = (−1)( − 2), or  = −.

6.  = sin ,  = 2;  = 0. 

 = 22, 

 = ( cos ) + (sin )= ( cos  + sin ), and



 = 

 = 22

( cos  + sin ) = 2

 cos  + sin . When  = 0, ( ) = (0 1) and  = 2, so an equation of the tangent to the curve at the point corresponding to  = 0 is  − 1 =2( − 0), or  = 2 + 1.

7. (a)  = 1 + ln ,  = 2+ 2; (1 3). 

 = 2 

 = 1

and

 = 

 = 2

1 = 22. At (1 3),

 = 1 + ln  = 1 ⇒ ln  = 0 ⇒  = 1 and 

= 2, so an equation of the tangent is  − 3 = 2( − 1), or  = 2 + 1.

(b)  = 1 + ln  ⇒ ln  =  − 1 ⇒  = −1, so  = 2+ 2 = (−1)2+ 2 = 2−2+ 2, and 0= 2−2· 2.

At (1 3), 0= 2(1)−2· 2 = 2, so an equation of the tangent is  − 3 = 2( − 1), or  = 2 + 1.

8. (a)  = 1 +√,  = 2; (2 ). 

 = 2· 2, 

 = 1 2√

, and 

 =

 = 22 1

2√

 = 4322. At (2 ),

 = 1 +√

 = 2 ⇒ √

 = 1 ⇒  = 1 and

 = 4, so an equation of the tangent is  −  = 4( − 2), or  = 4 − 7.

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

880 ¤ CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

10.2 Calculus with Parametric Curves

1.  = 

1 + ,  =√

1 +  ⇒ 

 = 1

2(1 + )−12 = 1 2√

1 + , 

 =(1 + )(1) − (1) (1 + )2 = 1

(1 + )2, and



 = 

 =1(2√ 1 +  )

1(1 + )2 = (1 + )2 2√

1 + = 1

2(1 + )32.

2.  = ,  =  + sin  ⇒ 

 = 1 + cos , 

 = + = ( + 1), and 

 = 

 = 1 + cos 

( + 1).

3.  = 3+ 1,  = 4+ ;  = −1. 

 = 43+ 1, 

 = 32, and 

 = 

 = 43+ 1

32 . When  = −1, ( ) = (0 0) and  = −33 = −1, so an equation of the tangent to the curve at the point corresponding to  = −1 is

 − 0 = −1( − 0), or  = −.

4.  =√,  = 2− 2;  = 4.

 = 2 − 2,

 = 1 2√

, and

 =

 = (2 − 2)2√

 = 4( − 1)√. When  = 4, ( ) = (2 8)and  = 4(3)(2) = 24, so an equation of the tangent to the curve at the point corresponding to  = 4 is

 − 8 = 24( − 2), or  = 24 − 40.

5.  = 4+ 1,  = 3+ ;  = −1 

 = 32+ 1, 

 = 43, and 

 = 

 =32+ 1

43 . When  = −1,

( ) = (2 −2) and  = −44 = −1, so an equation of the tangent to the curve at the point corresponding to  = −1 is  − (−2) = (−1)( − 2), or  = −.

6.  = sin ,  = 2;  = 0. 

 = 22, 

 = ( cos ) + (sin )= ( cos  + sin ), and



 = 

 = 22

( cos  + sin ) = 2

 cos  + sin . When  = 0, ( ) = (0 1) and  = 2, so an equation of the tangent to the curve at the point corresponding to  = 0 is  − 1 =2( − 0), or  = 2 + 1.

7. (a)  = 1 + ln ,  = 2+ 2; (1 3). 

 = 2 

 = 1

and

 = 

 = 2

1 = 22. At (1 3),

 = 1 + ln  = 1 ⇒ ln  = 0 ⇒  = 1 and 

= 2, so an equation of the tangent is  − 3 = 2( − 1), or  = 2 + 1.

(b)  = 1 + ln  ⇒ ln  =  − 1 ⇒  = −1, so  = 2+ 2 = (−1)2+ 2 = 2−2+ 2, and 0= 2−2· 2.

At (1 3), 0= 2(1)−2· 2 = 2, so an equation of the tangent is  − 3 = 2( − 1), or  = 2 + 1.

8. (a)  = 1 +√

,  = 2; (2 ). 

 = 2· 2, 

 = 1 2√

, and 

 =

 = 22 1

2√

 = 4322. At (2 ),

 = 1 +√

 = 2 ⇒ √

 = 1 ⇒  = 1 and

 = 4, so an equation of the tangent is  −  = 4( − 2), or  = 4 − 7.

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

SECTION 10.2 CALCULUS WITH PARAMETRIC CURVES ¤ 881 (b)  = 1 +√

 ⇒ √

 =  − 1 ⇒  = ( − 1)2, so  = 2= (−1)4, and 0= (−1)4· 4( − 1)3. At (2 ), 0=  · 4 = 4, so an equation of the tangent is  −  = 4( − 2), or  = 4 − 7.

9. = 2− ,  = 2+  + 1; (0 3). 

 =

 =2 + 1

2 − 1. To find the value of  corresponding to the point (0 3), solve  = 0 ⇒

2−  = 0 ⇒ ( − 1) = 0 ⇒  = 0 or  = 1. Only  = 1 gives

 = 3. With  = 1,  = 3, and an equation of the tangent is

 − 3 = 3( − 0), or  = 3 + 3.

10. = sin ,  = 2+ ; (0 2). 

= 

 = 2 + 1

 cos . To find the value of  corresponding to the point (0 2), solve  = 2 ⇒

2+  − 2 = 0 ⇒ ( + 2)( − 1) = 0 ⇒  = −2 or  = 1.

Either value gives  = −3, so an equation of the tangent is

 − 2 = −3( − 0), or  = −3 + 2.

11.  = 2+ 1,  = 2+  ⇒ 

 =

 =2 + 1

2 = 1 + 1

2 ⇒ 2

2 =







 = −1(22) 2 = − 1

43. The curve is CU when2

2  0, that is, when   0.

12. = 3− 12,  = 2− 1 ⇒ 

 = 

 = 2

32− 12 ⇒

2

2 =







 =

(32− 12) · 2 − 2(6) (32− 12)2

32− 12 = −62− 24

(32− 12)3 = −6(2+ 4)

33(2− 4)3 = −2(2+ 4) 9(2− 4)3 . Thus, the curve is CU when 2− 4  0 ⇒ ||  2 ⇒ −2    2.

13. = 2 sin ,  = 3 cos , 0    2.



 =

 = −3 sin  2 cos  = −3

2tan , so2

2 =







 =−32sec2 2 cos  = −3

4sec3.

The curve is CU when sec3  0 ⇒ sec   0 ⇒ cos   0 ⇒ 2    32 . 14. = cos 2,  = cos , 0    .



 =

 = −sin 

−2 sin 2 = sin 

2 · 2 sin  cos  = 1 4 cos  =1

4sec , so2

2 =







 =

1

4sec  tan 

−4 sin  cos = − 1 16sec3

The curve is CU when sec3  0 ⇒ sec   0 ⇒ cos   0 ⇒ 2    .

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

SECTION 10.2 CALCULUS WITH PARAMETRIC CURVES ¤ 881 (b)  = 1 +√

 ⇒ √

 =  − 1 ⇒  = ( − 1)2, so  = 2= (−1)4, and 0= (−1)4· 4( − 1)3. At (2 ), 0=  · 4 = 4, so an equation of the tangent is  −  = 4( − 2), or  = 4 − 7.

9.  = 2− ,  = 2+  + 1; (0 3). 

 = 

= 2 + 1

2 − 1. To find the value of  corresponding to the point (0 3), solve  = 0 ⇒

2−  = 0 ⇒ ( − 1) = 0 ⇒  = 0 or  = 1. Only  = 1 gives

 = 3. With  = 1,  = 3, and an equation of the tangent is

 − 3 = 3( − 0), or  = 3 + 3.

10.  = sin ,  = 2+ ; (0 2). 

 = 

 = 2 + 1

 cos . To find the value of  corresponding to the point (0 2), solve  = 2 ⇒

2+  − 2 = 0 ⇒ ( + 2)( − 1) = 0 ⇒  = −2 or  = 1.

Either value gives  = −3, so an equation of the tangent is

 − 2 = −3( − 0), or  = −3 + 2.

11.  = 2+ 1,  = 2+  ⇒ 

 = 

 =2 + 1

2 = 1 + 1

2 ⇒ 2

2 =







 = −1(22) 2 = − 1

43. The curve is CU when2

2  0, that is, when   0.

12.  = 3− 12,  = 2− 1 ⇒ 

 = 

 = 2

32− 12 ⇒

2

2 =







 =

(32− 12) · 2 − 2(6) (32− 12)2

32− 12 = −62− 24

(32− 12)3 = −6(2+ 4)

33(2− 4)3 = −2(2+ 4) 9(2− 4)3. Thus, the curve is CU when 2− 4  0 ⇒ ||  2 ⇒ −2    2.

13.  = 2 sin ,  = 3 cos , 0    2.



 = 

 = −3 sin  2 cos  = −3

2tan , so2

2 =







 = −32sec2 2 cos  = −3

4sec3.

The curve is CU when sec3  0 ⇒ sec   0 ⇒ cos   0 ⇒ 2    32. 14.  = cos 2,  = cos , 0    .



 = 

 = −sin 

−2 sin 2 = sin 

2 · 2 sin  cos = 1 4 cos = 1

4sec , so2

2 =







 =

1

4sec  tan 

−4 sin  cos  = −1 16sec3

The curve is CU when sec3  0 ⇒ sec   0 ⇒ cos   0 ⇒ 2    .

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

882 ¤ CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES 15.  =  − ln ,  =  + ln  [note that   0] ⇒ 

 = 

 = 1 + 1

1 − 1 = + 1

 − 1 ⇒

2

2 =







 =

( − 1)(1) − ( + 1)(1) ( − 1)2

( − 1) = −2

( − 1)3. The curve is CU when 2

2  0, that is, when 0    1.

16.  = cos ,  = sin 2, 0     ⇒ 

= 

= 2 cos 2

− sin  ⇒

2

2 =







 =

(− sin )(−4 sin 2) − (2 cos 2)(− cos ) (− sin )2

− sin  =(sin )(8 sin  cos ) + [2(1 − 2 sin2)](cos ) (− sin ) sin2

= (cos )(8 sin2 + 2 − 4 sin2)

(− sin ) sin2 = −cos 

sin ·4 sin2 + 2

sin2 [ (− cot ) · positive expression]

The curve is CU when2

2  0, that is, when − cot   0 ⇔ cot   0 ⇔ 2    .

17.  = 3− 3,  = 2− 3. 

 = 2, so

 = 0 ⇔  = 0 ⇔ ( ) = (0 −3). 

 = 32− 3 = 3( + 1)( − 1), so

 = 0 ⇔

 = −1 or 1 ⇔ ( ) = (2 −2) or (−2 −2). The curve has a horizontal tangent at (0 −3) and vertical tangents at (2 −2) and (−2 −2).

18.  = 3− 3,  = 3− 32. 

 = 32− 6 = 3( − 2), so

 = 0 ⇔

 = 0or 2 ⇔ ( ) = (0 0) or (2 −4). 

 = 32− 3 = 3( + 1)( − 1), so

 = 0 ⇔  = −1 or 1 ⇔ ( ) = (2 −4) or (−2 −2). The curve has horizontal tangents at (0 0) and (2 −4), and vertical tangents at (2 −4) and (−2 −2).

19.  = cos ,  = cos 3. The whole curve is traced out for 0 ≤  ≤ .



 = −3 sin 3, so

= 0 ⇔ sin 3 = 0 ⇔ 3 = 0, , 2, or 3 ⇔

 = 0, 3, 23 , or  ⇔ ( ) = (1 1),1 2 −1,

12 1

, or (−1 −1).



 = − sin , so

 = 0 ⇔ sin  = 0 ⇔  = 0 or  ⇔ ( ) = (1 1)or (−1 −1). Both

and 

 equal 0 when  = 0 and .

To find the slope when  = 0, we find lim

→0



 = lim

→0

−3 sin 3

− sin 

= limH

→0

−9 cos 3

− cos  = 9, which is the same slope when  = .

Thus, the curve has horizontal tangents at1

2 −1and

12 1, and there are no vertical tangents.

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

SECTION 10.2 CALCULUS WITH PARAMETRIC CURVES ¤ 885

28.  =  cos3,  =  sin3.

(a) 

 = −3 cos2 sin , 

 = 3 sin2 cos , so 

 = −sin 

cos  = − tan .

(b) The tangent is horizontal ⇔  = 0 ⇔ tan  = 0 ⇔  =  ⇔ ( ) = (± 0).

The tangent is vertical ⇔ cos  = 0 ⇔  is an odd multiple of2 ⇔ ( ) = (0 ±)  (c)  = ±1 ⇔ tan  = ±1 ⇔  is an odd multiple of 4 ⇔ ( ) =

±42 ±42 [All sign choices are valid.]

29.  = 32+ 1,  = 3− 1 ⇒ 

 = 

= 32 6 = 

2. The tangent line has slope1 2when 

2 =1

2 ⇔  = 1, so the point is (4 0).

30.  = 32+ 1,  = 23+ 1, 

 = 6,

 = 62, so

 =62

6 =  [even where  = 0].

So at the point corresponding to parameter value , an equation of the tangent line is  − (23+ 1) = [ − (32+ 1)].

If this line is to pass through (4 3), we must have 3 − (23+ 1) = [4 − (32+ 1)] ⇔ 23− 2 = 33− 3 ⇔

3− 3 + 2 = 0 ⇔ ( − 1)2( + 2) = 0 ⇔  = 1 or −2. Hence, the desired equations are  − 3 =  − 4, or

 =  − 1, tangent to the curve at (4 3), and  − (−15) = −2( − 13), or  = −2 + 11, tangent to the curve at (13 −15).

31. By symmetry of the ellipse about the - and -axes,

 = 4

0   = 40

2 sin  (− sin )  = 42

0 sin2  = 42 0

1

2(1 − cos 2) 

= 2

 −12sin 22

0 = 2

2

= 

32. The curve  = 2− 2 = ( − 2),  =√

intersects the -axis when  = 0, that is, when

 = 0and  = 2. The corresponding values of  are 0 and√2. The shaded area is given by

= 2

=0

(− )  =

=2

=0 [0 − ()] 0()  = −

2 0

(2− 2)

 1 2√



= −2 0

1

232− 12

 = −

1

55223322 0

= −

1

5 · 25223· 232

= −2124

543

= −√ 2

158

=158 √ 2

33. The curve  = 3+ 1,  = 2 − 2 = (2 − ) intersects the -axis when  = 0, that is, when  = 0 and  = 2. The corresponding values of  are 1 and 9. The shaded area is given by

=9

=1

(− )  =

=2

=0 [() − 0] 0()  =

2

0 (2 − 2)(32) 

= 32

0(23− 4)  = 3

1

241552 0= 3

8 −325

=245

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

SECTION 10.2 CALCULUS WITH PARAMETRIC CURVES ¤ 887 40.  =  +√

,  =  −√

, 0 ≤  ≤ 1. 

 = 1 + 1 2√

 and 

 = 1 − 1 2√

, so





2

+





2

=

 1 + 1

2√

2

+

 1 − 1

2√

2

= 1 + 1

√+ 1

4+ 1 − 1

√+ 1

4= 2 + 1 2. Thus,  =

()2+ ()2 =

1 0

 2 + 1

2 = lim

→0+

1

 2 + 1

2 ≈ 20915.

41.  = 1 + 32,  = 4 + 23, 0 ≤  ≤ 1.  = 6 and  = 62, so ()2+ ()2= 362+ 364.

Thus,  =

1 0

362+ 364 =

1 0

6

1 + 2 = 6

2 1

√1

2 [ = 1 + 2,  = 2 ]

= 3

2 3322

1= 2(232− 1) = 2 2√

2 − 1

42.  = − ,  = 42, 0 ≤  ≤ 2.  = − 1 and  = 22, so

()2+ ()2= (− 1)2+ (22)2= 2− 2+ 1 + 4= 2+ 2+ 1 = (+ 1)2. Thus,

 =

2 0

(+ 1)2 =

2 0

+ 1  = 2 0

(+ 1)  =

+ 2

0= (2+ 2) − (1 + 0) = 2+ 1.

43.  =  sin ,  =  cos , 0 ≤  ≤ 1. 

 =  cos  + sin and

 = − sin  + cos , so





2

+





2

= 2cos2 + 2 sin  cos  + sin2 + 2sin2 − 2 sin  cos  + cos2

= 2(cos2 + sin2) + sin2 + cos2 = 2+ 1.

Thus,  =1 0

√2+ 1 =211

2√

2+ 1 +12ln

 +√

2+ 11 0=12

2 +12ln 1 +√

2. 44.  = + −,  = 5 − 2, 0 ≤  ≤ 3.  = − −and  = −2, so

()2+ ()2= 2− 2 + −2+ 4 = 2+ 2 + −2= (+ −)2. Thus,  =3

0(+ −)  =

− −3

0= 3− −3− (1 − 1) = 3− −3.

45.  = cos ,  = sin , 0 ≤  ≤ .





2

+



2

= [(cos  − sin )]2+ [(sin  + cos )]2

= ()2(cos2 − 2 cos  sin  + sin2) + ()2(sin2 + 2 sin  cos  + cos2

= 2(2 cos2 + 2 sin2) = 22

Thus,  = 0

√22 = 0

√2  =√ 2

0 =√

2 (− 1).

46.  = cos  + ln(tan12),  = sin , 4 ≤  ≤ 34.



 = − sin  +

1

2sec2(2)

tan(2) = − sin  + 1

2 sin(2) cos(2) = − sin  + 1

sin  and

 = cos , so





2

+





2

= sin2 − 2 + 1

sin2+ cos2 = 1 − 2 + csc2 = cot2. Thus,

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

SECTION 10.2 CALCULUS WITH PARAMETRIC CURVES ¤ 887 40.  =  +√

,  =  −√

, 0 ≤  ≤ 1. 

 = 1 + 1 2√

 and 

 = 1 − 1 2√

, so





2

+





2

=

 1 + 1

2√

2

+

 1 − 1

2√

2

= 1 + 1

√+ 1

4+ 1 − 1

√+ 1

4= 2 + 1 2. Thus,  =

()2+ ()2 =

1 0

 2 + 1

2 = lim

→0+

1

 2 + 1

2 ≈ 20915.

41.  = 1 + 32,  = 4 + 23, 0 ≤  ≤ 1.  = 6 and  = 62, so ()2+ ()2= 362+ 364.

Thus,  = 1 0

362+ 364 =

1 0

6

1 + 2 = 6

2 1

√1

2 [ = 1 + 2,  = 2 ]

= 3

2 3322

1= 2(232− 1) = 2 2√

2 − 1

42.  = − ,  = 42, 0 ≤  ≤ 2.  = − 1 and  = 22, so

()2+ ()2= (− 1)2+ (22)2= 2− 2+ 1 + 4= 2+ 2+ 1 = (+ 1)2. Thus,

 =

2 0

(+ 1)2 =

2 0

+ 1  = 2 0

(+ 1)  =

+ 2

0= (2+ 2) − (1 + 0) = 2+ 1.

43.  =  sin ,  =  cos , 0 ≤  ≤ 1. 

 =  cos  + sin and

 = − sin  + cos , so





2

+





2

= 2cos2 + 2 sin  cos  + sin2 + 2sin2 − 2 sin  cos  + cos2

= 2(cos2 + sin2) + sin2 + cos2 = 2+ 1.

Thus,  =1 0

√2+ 1 =211

2√

2+ 1 +12ln

 +√

2+ 11 0=12

2 +12ln 1 +√

2 . 44.  = + −,  = 5 − 2, 0 ≤  ≤ 3.  = − −and  = −2, so

()2+ ()2= 2− 2 + −2+ 4 = 2+ 2 + −2= (+ −)2. Thus,  =3

0(+ −)  =

− −3

0= 3− −3− (1 − 1) = 3− −3.

45.  = cos ,  = sin , 0 ≤  ≤ .





2

+



2

= [(cos  − sin )]2+ [(sin  + cos )]2

= ()2(cos2 − 2 cos  sin  + sin2) + ()2(sin2 + 2 sin  cos  + cos2

= 2(2 cos2 + 2 sin2) = 22

Thus,  = 0

√22 = 0

√2  =√ 2

0 =√

2 (− 1).

46.  = cos  + ln(tan12),  = sin , 4 ≤  ≤ 34.



 = − sin  +

1

2sec2(2)

tan(2) = − sin  + 1

2 sin(2) cos(2) = − sin  + 1

sin  and

 = cos , so





2

+





2

= sin2 − 2 + 1

sin2+ cos2 = 1 − 2 + csc2 = cot2. Thus,

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

1

(2)

890 ¤ CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

Some earlier versions of Maple (as well as Mathematica) cannot do the integral exactly, so we use the command evalf(Int(sqrt(diff(x,t)ˆ2+diff(y,t)ˆ2),t=0..4*Pi)); to estimate the length, and find that the arc length is approximately 29403. Derive’s Para_arc_length function in the utility file Int_apps simplifies the integral to 114

0

−4 cos  cos11

2

− 4 sin  sin11

2

+ 5 .

56. (a) It appears that as  → ∞, ( ) →1

212

, and as  → −∞, ( ) →

12 −12

.

(b) By the Fundamental Theorem of Calculus,  = cos 22and

 = sin

22, so by Theorem 5, the length of the curve from the origin to the point with parameter value  is

 = 0





2

+



2

 = 0

 cos2

22

+ sin2 22



=

01  =  [or − if   0]

We have used  as the dummy variable so as not to confuse it with the upper limit of integration.

57.  =  sin ,  =  cos , 0 ≤  ≤ 2.  =  cos  + sin  and  = − sin  + cos , so ()2+ ()2= 2cos2 + 2 sin  cos  + sin2 + 2sin2 − 2 sin  cos  + cos2

= 2(cos2 + sin2) + sin2 + cos2 = 2+ 1

 =

2  =2

0 2 cos √

2+ 1  ≈ 47394.

58.  = sin ,  = sin 2, 0 ≤  ≤ 2.  = cos  and  = 2 cos 2, so ()2+ ()2= cos2 + 4 cos22.

 =

2  =2

0 2 sin 2√

cos2 + 4 cos22  ≈ 80285.

59.  =  + ,  = −, 0 ≤  ≤ 1.

 = 1 + and  = −−, so ()2+ ()2= (1 + )2+ (−−)2= 1 + 2+ 2+ −2.

 =

2  =1

0 2−

1 + 2+ 2+ −2 ≈ 106705.

60.  = 1 + ,  = (2+ 1), 0 ≤  ≤ 1.





2

+



2

= (+ )2+ [(2+ 1)+ (2)]2= [( + 1)]2+ [(2+ 2 + 1)]2

= 2( + 1)2+ 2( + 1)4= 2( + 1)2[1 + ( + 1)2], so

 =

2  =1

0 2(2+ 1)

2( + 1)2(2+ 2 + 2)  =1

0 2(2+ 1)2( + 1)√

2+ 2 + 2  ≈ 1035999

61.  = 3 − 3,  = 32, 0 ≤  ≤ 1. 



2

+



2

= (3 − 32)2+ (6)2= 9(1 + 22+ 4) = [3(1 + 2)]2.

 =1

0 2 · 32· 3(1 + 2)  = 181

0(2+ 4)  = 181

33+1551 0 =485

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

SECTION 10.2 CALCULUS WITH PARAMETRIC CURVES ¤ 891 62.  = 22+ 1,  = 8√

, 1 ≤  ≤ 3.





2

+





2

=

 4 − 1

2

2

+

 4

√

2

= 162−8

 + 1

4 +16

 = 162+8

 + 1

4 =

 4 + 1

2

2

.

 =

3 1

2



2

+



2

 =

3 1

2 8√



4 + 1

2

2

 = 16

3 1

12(4 + −2) 

= 16

3 1

(432+ −32)  = 16

8

552− 2−123

1= 16

72 5

√3 −23

√3

− (85− 2)

= 16206

15

√3 +156

=3215 103√

3 + 3 63.  =  cos3,  =  sin3, 0 ≤  ≤ 2. 



2

+



2

= (−3 cos2 sin )2+ (3 sin2 cos )2= 92sin2 cos2.

 =2

0 2 ·  sin3 · 3 sin  cos   = 622

0 sin4 cos   =652

sin52 0 =652 64.  = 2 cos  − cos 2,  = 2 sin  − sin 2 ⇒





2

+



2

= (−2 sin  + 2 sin 2)2+ (2 cos  − 2 cos 2)2

= 4[(sin2 − 2 sin  sin 2 + sin22) + (cos2 − 2 cos  cos 2 + cos22)]

= 4[1 + 1 − 2(cos 2 cos  + sin 2 sin )] = 8[1 − cos(2 − )] = 8(1 − cos ) We plot the graph with parameter interval [0 2], and see that we should only integrate

between 0 and . (If the interval [0 2] were taken, the surface of revolution would be generated twice.) Also note that  = 2 sin  − sin 2 = 2 sin (1 − cos ). So

 =

0 2 · 2 sin (1 − cos ) 2√ 2√

1 − cos  

= 8√ 2

0 (1 − cos )32sin   = 8√ 22

0

√3

 = 1− cos 

 = sin  

= 8√ 22

5

522 0= 165

2(252) = 1285

65.  = 32,  = 23, 0 ≤  ≤ 5 ⇒ 



2

+



2

= (6)2+ (62)2= 362(1 + 2) ⇒

 =5

0 2

()2+ ()2 =5

0 2(32)6√

1 + 2 = 185 02

1 + 22 

= 1826

1 ( − 1)√

 

 = 1 + 2

 = 2 

= 1826

1 (32− 12)  = 18

2

552233226 1

= 182

5· 676√

26 −23· 26√ 26

−2

523

=245 949√

26 + 1

66.  = − ,  = 42, 0 ≤  ≤ 1. 



2

+



2

= (− 1)2+ (22)2= 2+ 2+ 1 = (+ 1)2.

 =1

0 2(− )

(− 1)2+ (22)2 =1

0 2(− )(+ 1)

= 21

22+ − ( − 1)1221

0 = (2+ 2 − 6)

67. If 0is continuous and 0() 6= 0 for  ≤  ≤ , then either 0()  0for all  in [ ] or 0()  0for all  in [ ]. Thus,  is monotonic (in fact, strictly increasing or strictly decreasing) on [ ]. It follows that  has an inverse. Set  =  ◦ −1, that is, define  by  () = (−1()). Then  = () ⇒ −1() = , so  = () = (−1()) =  ().

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

2

參考文獻

相關文件

[r]

Determine how much money the company should spend on newspaper advertising and on television advertising per month to maximize its monthly

External evidence, as discussed above, presents us with two main candidates for translatorship (or authorship 5 ) of the Ekottarik gama: Zhu Fonian, and Sa ghadeva. 6 In

This leaves you 8 hours of time to allocate between studying t 1 hours at the K-book center, singing for t 2 hours at the KTV, and teaching t 3 hours hours as a private tutor for

(a)  is the rate at which the percentage of the city’s electrical power produced by solar panels changes with respect to time , measured in percentage points per year..

(In Section 7.5 we will be able to use Newton's Law of Cooling to find an equation for T as a function of time.) By measuring the slope of the tangent, estimate the rate of change

(b) 0 = IV, since from left to right, the slopes of the tangents to graph (b) start out at a fixed positive quantity, then suddenly become negative, then positive again..

(b)- IV, since from left to right, the slopes of the tangents to graph (b) start out at a fixed positive quantity, then suddenly become negative, then