• 沒有找到結果。

熵正則化及無窮多個比值的廣義型分數規劃問題

N/A
N/A
Protected

Academic year: 2021

Share "熵正則化及無窮多個比值的廣義型分數規劃問題"

Copied!
5
0
0

加載中.... (立即查看全文)

全文

(1)

行政院國家科學委員會專題研究計畫 成果報告

熵正則化及無窮多個比值的廣義型分數規劃問題

計畫類別: 個別型計畫 計畫編號: NSC91-2115-M-006-017- 執行期間: 91 年 08 月 01 日至 92 年 10 月 31 日 執行單位: 國立成功大學數學系暨應用數學所 計畫主持人: 許瑞麟 報告類型: 精簡報告 報告附件: 出席國際會議研究心得報告及發表論文 處理方式: 本計畫可公開查詢

中 華 民 國 92 年 10 月 29 日

(2)

æñ

:

G£†“£Ì¤Ö_ªMí2}bd•½æ

…û˝l•3bû˝©/|ü|×}b½æ

:

(P) min

u∈Wmaxt∈T ft(u)

íÜ£l¶}

.

憦}

,

BbAŠíô.7

Crouzeix, Ferland and

Schaible [1]

íj¶V°j½æ

(P).

6ÿuz

,

Bb„p7Ê

X

¸

T

Ñ'KÕ¯

v

,

†½æ

(P)

í|7M}u-ƒbí;

(Pα) P (α) = min

x∈Xmaxt∈T [ft(x)− αgt(x)].

1/6°vz

Crouzeix, Ferland and Schaible [1]

FZ|Víƶ ô.ƒ°

j©/|ü|×}b½æ

.

7Ê¥ší²¬˙2

,

â-Þí¥WVz

p

T

u'KÕ¯í½b4

.

Example: Let X = [1/2, 1]× [1/2, 1] and T = [0, ∞).

5?}bd•

: inf (x1,x2)∈X sup t∈T{(−2x1− 1)/(tx1+ x2+ 1)}.

%âø<lªJ)øw|7MÑ

α∗ = 0.

çBb5?-Þí½æv

P (α) = inf (x1,x2)∈X sup t∈T{−2x1− 1 − α(tx1+ x2+ 1)},

BbªJ)ø

úk

α > 0, P (α) = −2α − 3.

úk

α = 0, P (α) = −3.

úk

α < 0, P (α) = inf (x1,x2)∈X∞ = ∞.

Ê¥_Wä2

,

BbªJ)ø

P (α∗) = P (0) =−3.

péD̪Mí|ü

|ד½æ!.¯

.

-Bb„pç

X

¸

T

·u'KÕ¯v

,

†ªJAŠ

à°j

P (α)

í;V×)½æ

P

í|7M

.

(1) Theorem If both X and T are compact, then P (α) < 0 if and only if α > α∗.

(2) Theorem If X and T are compact, then P (α∗) = 0. Moreover, problem (P)

and (Pα∗) have the same optimal solutions, that is, argmin

x∈X maxt∈T {ft(x)/gt(x)} = argminx∈X maxt∈T {ft(x)− α g

t(x)}.

Ê¥_ô.|Víƶ2

,

BbÊq¶c˛2Ûb5?ƒ°jø_©/

|ü|ד½æ

,

¥³BbUà

Iterative Entropic Regularization [2]

Dinkelbach

ƶ!¯

.

yªø¥

,

â¥_j¶BbZ|ø_ƶ

,

Ê©ø_q¶c˛2.Ûb°jƒ|7jOuEÍUcñƶ)ƒY¹4

.

à¤

,

ªJªêrl|q¶c˛ í|7M)ƒyßíl^0

.

¥_ƶ

Bb˚5Ñ

Modified Dinkelbach algorithm with entropic regularization,

˚Ñ

MDER.

(3)

2 Algorithm (MDER)

Step 1. Given x0∈ X, t1 ∈ T and η, γ > 0, 0 < δ < 1. Compute ˜

α1 = max

t∈T {ft(x0)/gt(x0)}.

Set p = 10, m = 1, T1={t1}, k = 1, j = 1 and ˜xmp, ˜α

k = x0.

Step 2. Approximate the following continuous minimax problem (P˜αk) P (˜αk) = min

x∈Xmaxt∈T [ft(x)− ˜αkgt(x)].

by the iterative entropic regularization [2]

Fp, ˜αm k(x) = (1/p) ln m  i=1 exp(p(fti(x)− ˜αkgti(x)))  . (1) Find ˜xmp, ˜α k that satisfies Fp, ˜αm kxmp, ˜αk)≤ min x∈XF m p, ˜αk(x) + δj (2) and compute ˜ rk = max t∈T {ftx m p, ˜αk)− ˜αkgtxmp, ˜α k)}. (3)

Step 3. If ˜rk < −η, update the Dinkelbach parameter ˜ αk+1 = max t∈T {ftx m p, ˜αk)/gtxmp, ˜α k)}; (4)

the iteration counter k = k + 1; and η = η∗ (1 + δ). Go to Step 2.

Step 4. If ˜rk ≥ −η, set η = |˜rk|; improve m and p to obtain a better approximate solution. Step 4.1. If ˜rk > Fp, ˜αm kxmp, ˜αk) + δk, choose tm+1 ∈ argmax t∈T {ftx m p, ˜αk)− ˜αkgtxmp, ˜αk)}. (5)

Set Tm+1= Tm∪ {tm+1}, p = p1+ε and j = j + 1. Go to Step 2. Step 4.2. δj+ (ln m)/p > γ− δk, set p = p1+ε and j = j + 1. Go to Step 2. Step 5. (Stopping Criteria)

If η > γ, compute ˜αk+1 = max

t∈T {ftx m

p, ˜αk)/gtxmp, ˜α

k)}, k=k+1 and return to

Step 2. Otherwise, stop and report that ˜xmp, ˜α

k is a γ-optimal solution of (P).

úk¥_ƶ

,

Bb)ƒø<½bíùÜ£ìÜà-

,

¥<uàV„p

MDER

íY¹45à

(3) Lemma Let α∗ be the optimal value of problem (P). Then, ˜αk ≥ α∗.

(4) Lemma The optimal value P ( ˜αk) of parametric problem P˜αk is non-positive.

(5) Lemma Fp, ˜αm

k(x∗˜αk)≤ maxt∈Tm[ft(x∗˜αk)− ˜αkgt(x∗˜αk)] + (ln m)/p

(6) Lemma If ˜rk ≤ Fp, ˜αm

kxmp, ˜αk) + δk, then

(4)

(7) Lemma If max{−η, P (˜αk)} ≤ ˜rk ≤ P (˜αk) + (ln m)/p + δj+ δk, then −δk− δj− (ln m)/p − η ≤ P (˜αk)≤ 0.

-¥_ìÜuzpçƶÊ

Step5

¢ÏWv

, P ( ˜αk)

¸

0

íÏÏBÖ

u

2γ,

6ÿuBbªJ)ƒø_¸ˇÊ

í¡Nj

(2γ-optimal solution).

(8) Theorem When the algorithm stops in Step 5 with k = ¯k, then the following inequality

−2γ ≤ P (˜α¯k)≤ 0

hold.

(9) Lemma If the algorithm does not stop at Step 5, then

˜

rk < −γ < 0 and

−γ + ˜rk ≤ P (˜αk).

(10) Lemma {˜αk} is a decreasing sequence.

(11) Lemma If ˜αk > ˜αk+1, then P ( ˜αk)≤ P (˜αk+1) + ( ˜αk+1− ˜αk) min

t∈T gt(x

˜αk+1).

(12) Lemma If ˜αk > α∗, then P ( ˜αk)≤ P (α∗) + (α∗− ˜αk) min

t∈T gt(x ). (13) Theorem If P ( ˜αk) < ˜rk < −γ < 0, then ( ˜αk+1− α∗)/( ˜αk− α∗)≤ 1 − m(g)/M(g) − ˜rk/( ˜αk − α∗) max t∈T gtx m p, ˜αk)  .

(14) Condition There exists some positive integer K such that

0 < εk < (m(g)/M(g)) − γ, ∀k > K.

°v

,

Ê_çí‘K-

(Condition 14),

BbªJ„p

MDER

íY¹§u

(4í

.

(15) Theorem Under Condition 14, if the algorithm does not stop at Step 5, then, from certain iterate K on,

( ˜αk+1− α∗)/( ˜αk − α∗)≤ 1 − γ, ∀k > K

In other words, {˜αk} converges to α∗ linearly.

Êl,

,

BbõÒÏW7ù_Wä

,

Example1.

¥uø_(4}bd•

min

x∈Xmaxt∈T {(−tx1+ x2)/(x1+ x2)}

w2

X = [1/2, 30] × [1/2, 100]

¸

T = [0, 1].

¥_Wäí|7MªJ%âøOí

l)ƒu

1/61,

|7õ†êÞÊ

(30, 1/2).

Ê

Table 1.

Bb|7˙FUà

í¡b£l!‹

.

Table 1 Computational results for Example 1

x0 δ γ Iters. x∗ Optvalue Time

(1/2, 100) 0.25 1e-5 38 (30, 0.5) 0.016393 2.016

â¥WäBbªJ)ƒí!u¥_ƶªJAŠíj|

Example 1

í

(5)

4 Example 2.

ù_Wäu-í}bd•

min x∈Xmaxt∈T {(t 2x 1x2+ x2t1 + tx33)/(5(t− 1)2x41+ 2x22+ 4tx3)}

w2

(x1, x2, x3)∈ X = [1/2, 5] × [1/2, 5] × [1/2, 5]

¸

t ∈ T = [0, 1].

ƶ

MDER

à

(5, 5, 5)

ç–áõ1/!!Ê

(0.5, 1.4916, 0.5),

7|7MÑ

−0.209954.

Bbà

P (−0.209954) = min x∈Xmaxt∈T {f(t) + 0.209954g(t)} = 0

£

Theorem 1

¸

2

‡ì

(0.5, 1.4916, 0.5)

íüu

Example 2

í|7j

.

¥<!‹

Bb}Ê

Table 2

¸

Table 3.

Table 2 Computational results for Example 2

x0 γ Iters. x∗ Optimal value Time

(5,5,5) 1e-2 112 (0.5, 1.491666160, 0.5) -0.209954624 5.703 Table 3 Verification of optimal value -0.209954 by Matlab

α P (α)

-0.209554 -3.4010e-005

*

Table 5.4

2ªJõ|

MDER

ÊLSøjÞ̬f$í

Dinkelbach

al-gorithm,

w2¨7ÏWvÈ

,

LHŸbJ£jíü

¡5d.

[1] J. P. Crouzeix, J. A. Ferland, and S. Schaible. An algorithm for generalized fractional programs.

Journal of Optimization Theory and Applications 47 (1985), 35–49.

[2] R. L. Sheu and J. Y. Lin. On solving continuous min-max problems by iteratively entropic-regularization method. To appear in Journal of Optimization Theory and Applications (2003).

參考文獻

相關文件

Nonsmooth regularization induces sparsity in the solution, avoids oversmoothing signals, and is useful for variable selection.. The regularized problem can be solved effectively by

( )一線性規劃問題的可行解區域為坐標平面上的正 八邊形 ABCDEFGH

由於較大型網路的 規劃必須考慮到資料傳 輸效率的問題,所以在 規劃時必須將網路切割 成多個子網路,稱為網 際網路。橋接器是最早

此極限便是觀察分子或者分母誰「跑得比較快」。若是分子 趨近無窮大的速度快很多,則極限為無窮大 ,若是分母快很 多,則極限便是

Lagrangian method can resolve material or slip lines sharply if there is not too much grid tangling.. Generalized curvilinear grid is often

The existence of transmission eigenvalues is closely related to the validity of some reconstruction methods for the inverse scattering problems in an inhomogeneous medium such as

GMRES: Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems..

整數 基本的 整數的 Division Algorithm,