• 沒有找到結果。

Section 16.4 Green’s Theorem

N/A
N/A
Protected

Academic year: 2022

Share "Section 16.4 Green’s Theorem"

Copied!
3
0
0

加載中.... (立即查看全文)

全文

(1)

Section 16.4 Green’s Theorem

SECTION 16.4 GREEN’S THEOREM ¤ 655

3. (a) 1:  =  ⇒  = ,  = 0 ⇒  = 0 , 0 ≤  ≤ 1.

2:  = 1 ⇒  = 0 ,  =  ⇒  = , 0 ≤  ≤ 2.

3:  = 1 −  ⇒  = −,  = 2 − 2 ⇒  = −2 , 0 ≤  ≤ 1.

Thus 

  + 23 = 

1+ 2+ 3

  + 23

=1

0 0  +2

03 +1 0

−(1 − )(2 − 2) − 2(1 − )2(2 − 2)3



= 0 +1

442 0+1

0

−2(1 − )2− 16(1 − )5



= 4 +2

3(1 − )3+83(1 − )61

0= 4 + 0 −103 =23 (b)

  + 23 =

(23) − ()

 =1 0

2

0 (23− )  

=1 0

1

24− =2

=0  =1

0(85− 22)  = 4323 = 23

4. (a) 1:  =  ⇒  = ,  = 2 ⇒  = 2 , 0 ≤  ≤ 1

2:  = 1 −  ⇒  = −,  = 1 ⇒  = 0 , 0 ≤  ≤ 1

3:  = 0 ⇒  = 0 ,  = 1 −  ⇒  = −, 0 ≤  ≤ 1

Thus

22 +   = 

1+2+3

22 +  

=1 0

2(2)2 + (2)(2 ) +1

0

(1 − )2(1)2(−) + (1 − )(1)(0 )

+1 0

(0)2(1 − )2(0 ) + (0)(1 − )(−)

=1 0

6+ 24

 +1 0

−1 + 2 − 2

 +1 0 0 

=1

77+2551 0+

− + 21331

0+ 0 =1

7+25 +

−1 + 1 −13

=10522

(b)

22 +   =

() − (22)

 =1 0

1

2( − 22)  

=1 0

1

22− 22=1

=2 =1 0

1

2 − 2124+ 6



=1

2 −1331015+1771

0= 1213101 +17 = 10522 5.The region  enclosed by  is [0 3] × [0 4], so

 + 2 =

(2) −  ()

 =3 0

4

0 (2− )  

=3

04 0  =

3 0

4

0= (3− 0)(4 − 0) = 4(3− 1)

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

656 ¤ CHAPTER 16 VECTOR CALCULUS

6. The region  enclosed by  is given by {( ) | 0 ≤  ≤ 1 0 ≤  ≤ 2}, so

(2+ 2)  + (2− 2)  =

(2− 2) − (2+ 2)



=1 0

2

0 (2 − 2)  

=1 0

2− 2=2

=0 

=1

0(42− 42)  =1

0 0  = 0 7.

 + 

 + (2 + cos 2)  =

(2 + cos 2) −

 + 



=1 0

2 (2 − 1)   =1 0(√

 − 2)  =

2

3321331 0= 13 8.

4 + 23 =

(23) − (4)

 =

(23− 43) 

= −2

3 = 0

because ( ) = 3is an odd function with respect to  and  is symmetric about the -axis.

9.

3 − 3 =

(−3) − (3)

 =

(−32− 32)  =2

0

2

0(−32)   

= −32

0 2

03 = −3

2

0

1 442

0= −3(2)(4) = −24

10.

(1 − 3)  + (3+ 2)  =

(3+ 2) − (1 − 3)

 =

(32+ 32) 

=2

0

3

2 (32)    = 32

0 3 23

= 3

2

0

1

443

2= 3(2) ·14(81 − 16) = 195211. F( ) = h cos  −  sin   +  cos i and the region  enclosed by  is given by

{( ) | 0 ≤  ≤ 2 0 ≤  ≤ 4 − 2}.  is traversed clockwise, so − gives the positive orientation.

F· r = −

−( cos  −  sin )  + ( +  cos )  = −

( +  cos ) − ( cos  −  sin )



= −

( −  sin  + cos  − cos  +  sin )  = −2 0

4−2

0   

= −2 0

1

22=4−2

=0  = −2 0

1

2(4 − 2)2 = −2

0(8 − 8 + 22)  = −

8 − 42+2332 0

= −

16 − 16 +163 − 0

= −163

12. F( ) =

−+ 2 −+ 2

and the region  enclosed by  is given by {( ) | −2 ≤  ≤ 2 0 ≤  ≤ cos }.

is traversed clockwise, so − gives the positive orientation.

F· r = −

−

−+ 2

 +

−+ 2

 = −



−+ 2



−+ 2



= −2

−2

cos 

0 (2 − 2)   = −2

−2

2 − 2=cos 

=0 

= −2

−2(2 cos  − cos2)  = −2

−2

2 cos  −12(1 + cos 2)



= −

2 sin  + 2 cos  −12

 +12sin 22

−2 [integrate by parts in the first term]

= −

 −14 −  −14

= 12

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

656 ¤ CHAPTER 16 VECTOR CALCULUS

6. The region  enclosed by  is given by {( ) | 0 ≤  ≤ 1 0 ≤  ≤ 2}, so

(2+ 2)  + (2− 2)  =

(2− 2) − (2+ 2)



=1 0

2

0 (2 − 2)  

=1 0

2− 2=2

=0 

=1

0(42− 42)  =1

0 0  = 0 7.

 + 

 + (2 + cos 2)  =

(2 + cos 2) −

 + 



=1 0

2 (2 − 1)   =1 0(√

 − 2)  =

2

3321331 0= 13 8.

4 + 23 =

(23) − (4)

 =

(23− 43) 

= −2

3 = 0

because ( ) = 3is an odd function with respect to  and  is symmetric about the -axis.

9.

3 − 3 =

(−3) − (3)

 =

(−32− 32)  =2

0

2

0(−32)   

= −32

0 2

03 = −3

2

0

1

442

0= −3(2)(4) = −24

10.

(1 − 3)  + (3+ 2)  =

(3+ 2) − (1 − 3)

 =

(32+ 32) 

=2

0

3

2 (32)    = 32

0 3 23

= 3

2

0

1 443

2= 3(2) ·14(81 − 16) = 195211. F( ) = h cos  −  sin   +  cos i and the region  enclosed by  is given by

{( ) | 0 ≤  ≤ 2 0 ≤  ≤ 4 − 2}.  is traversed clockwise, so − gives the positive orientation.

F· r = −

−( cos  −  sin )  + ( +  cos )  = −

( +  cos ) − ( cos  −  sin )



= −

( −  sin  + cos  − cos  +  sin )  = −2 0

4−2

0   

= −2 0

1

22=4−2

=0  = −2 0

1

2(4 − 2)2 = −2

0(8 − 8 + 22)  = −

8 − 42+2332 0

= −

16 − 16 +163 − 0

= −163

12. F( ) =

−+ 2 −+ 2

and the region  enclosed by  is given by {( ) | −2 ≤  ≤ 2 0 ≤  ≤ cos }.

is traversed clockwise, so − gives the positive orientation.

F· r = −

−

−+ 2

 +

−+ 2

 = −



−+ 2



−+ 2



= −2

−2

cos 

0 (2 − 2)   = −2

−2

2 − 2=cos 

=0 

= −2

−2(2 cos  − cos2)  = −2

−2

2 cos  −12(1 + cos 2)



= −

2 sin  + 2 cos  −12

 +12sin 22

−2 [integrate by parts in the first term]

= −

 −14 −  −14

= 12

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

1

(2)

SECTION 16.4 GREEN’S THEOREM ¤ 657

13. F( ) = h − cos   sin i and the region  enclosed by  is the disk with radius 2 centered at (3 −4).

is traversed clockwise, so − gives the positive orientation.

F· r = −

−( − cos )  + ( sin )  = −

( sin ) − ( − cos )



= −

(sin  − 1 − sin )  =

 =area of  = (2)2= 4

14. F( ) =√

2+ 1 tan−1

and the region  enclosed by  is given by {( ) | 0 ≤  ≤ 1  ≤  ≤ 1}.

is oriented positively, so

F· r =

√2+ 1  + tan−1  =



 



tan−1

− 

(

2+ 1)



=

1 0

1

 1

1 + 2 − 0

  =

1 0

1 1 + 2

=1

= =

1 0

1

1 + 2(1 − ) 

=

1 0

 1

1 + 2 −  1 + 2

 =

tan−1 −1

2ln(1 + 2)

1 0

=  4 −1

2ln 2 15. Here  = 1+ 2where

1can be parametrized as  = ,  = 0, −2 ≤  ≤ 2, and

2is given by  = −,  = cos , −2 ≤  ≤ 2.

Then the line integral is

1+2

34 + 54 =2

−2(0 + 0)  +2

−2[(−)3(cos )4(−1) + (−)5(cos )4(− sin )] 

= 0 +2

−2(3cos4 + 5cos4 sin )  = 1514414411252+7,578,368253,125 ≈ 00779 according to a CAS. The double integral is





 −



 =

2

−2

cos  0

(544− 433)   = 1514414411252+7,578,368253,125 ≈ 00779, verifying Green’s

Theorem in this case.

16. We can parametrize  as  = cos ,  = 2 sin , 0 ≤  ≤ 2. Then the line integral is

  +   =2

0

2 cos  − (cos )3(2 sin )5

(− sin )  +2

0 (cos )3(2 sin )8· 2 cos  

=2

0 (−2 cos  sin  + 32 cos3 sin6 + 512 cos4 sin8)  = 7, according to a CAS. The double integral is





 −



 =

1

−1

 √4− 42

4− 42

(328+ 534)   = 7.

17. By Green’s Theorem,  =

F· r =

( + )  + 2 =

(2− )  where  is the path described in the question and  is the triangle bounded by . So

 =1 0

1−

0 (2− )   =1 0

1

33−  = 1−

 = 0  =1 0

1

3(1 − )3− (1 − )



=

121(1 − )4122+1331 0=

12+13

−

121

= −121

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

658 ¤ CHAPTER 16 VECTOR CALCULUS 18. By Green’s Theorem,  =

F· r =

sin   +

sin  + 2+133

 =

(2+ 2− 0) , where

is the region (a quarter-disk) bounded by . Converting to polar coordinates, we have

 =2 0

5

02·    =

2 0

1

445

0=12625

4

=6258 .

19. Let 1be the arch of the cycloid from (0 0) to (2 0), which corresponds to 0 ≤  ≤ 2, and let 2be the segment from (2 0)to (0 0), so 2is given by  = 2 − ,  = 0, 0 ≤  ≤ 2. Then  = 1∪ 2is traversed clockwise, so − is oriented positively. Thus − encloses the area under one arch of the cycloid and from (5) we have

 = −

−  =

1  +

2  =2

0 (1 − cos )(1 − cos )  +2

0 0 (−)

=2

0 (1 − 2 cos  + cos2)  + 0 =

 − 2 sin  +12 +14sin 22

0 = 3

20.  =

  =2

0 (5 cos  − cos 5)(5 cos  − 5 cos 5) 

=2

0 (25 cos2 − 30 cos  cos 5 + 5 cos25) 

= 251

2 +14sin 2

− 301

8sin 4 +121 sin 6 + 51

2 +201 sin 102

0

[Use Formula 80 in the Table of Integrals]

= 30

21. (a) Using Equation 16.2.8, we write parametric equations of the line segment as  = (1 − )1+ 2,  = (1 − )1+ 2, 0 ≤  ≤ 1. Then  = (2− 1) and  = (2− 1) , so

  −   =1

0 [(1 − )1+ 2](2− 1)  + [(1 − )1+ 2](2− 1) 

=1

0 (1(2− 1) − 1(2− 1) + [(2− 1)(2− 1) − (2− 1)(2− 1)]) 

=1

0 (12− 21)  = 12− 21

(b) We apply Green’s Theorem to the path  = 1∪ 2∪ · · · ∪ , where is the line segment that joins ( )to (+1 +1)for  = 1, 2,   ,  − 1, and is the line segment that joins ( )to (1 1). From (5),

1 2

  −   =

, where  is the polygon bounded by . Therefore area of polygon = () =

 = 12

  −  

=12

1  −   +

2  −   + · · · +

−1  −   +

  −   To evaluate these integrals we use the formula from (a) to get

() =12[(12− 21) + (23− 32) + · · · + (−1− −1) + (1− 1)].

(c)  =12[(0 · 1 − 2 · 0) + (2 · 3 − 1 · 1) + (1 · 2 − 0 · 3) + (0 · 1 − (−1) · 2) + (−1 · 0 − 0 · 1)]

=12(0 + 5 + 2 + 2) =92 22. By Green’s Theorem, 21

2 = 21 

2  = 1 

  = and

21

2 = −21



(−2)  = 1



  = .

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

658 ¤ CHAPTER 16 VECTOR CALCULUS 18. By Green’s Theorem,  =

F· r =

sin   +

sin  + 2+133

 =

(2+ 2− 0) , where

is the region (a quarter-disk) bounded by . Converting to polar coordinates, we have

 =2 0

5

02·    =

2 0

1

445

0=12625

4

=6258 .

19. Let 1be the arch of the cycloid from (0 0) to (2 0), which corresponds to 0 ≤  ≤ 2, and let 2be the segment from (2 0)to (0 0), so 2is given by  = 2 − ,  = 0, 0 ≤  ≤ 2. Then  = 1∪ 2is traversed clockwise, so − is oriented positively. Thus − encloses the area under one arch of the cycloid and from (5) we have

 = −

−  =

1  +

2  =2

0 (1 − cos )(1 − cos )  +2

0 0 (−)

=2

0 (1 − 2 cos  + cos2)  + 0 =

 − 2 sin  +12 +14sin 22

0 = 3

20.  =

  =2

0 (5 cos  − cos 5)(5 cos  − 5 cos 5) 

=2

0 (25 cos2 − 30 cos  cos 5 + 5 cos25) 

= 251

2 +14sin 2

− 301

8sin 4 +121 sin 6 + 51

2 +201 sin 102

0

[Use Formula 80 in the Table of Integrals]

= 30

21. (a) Using Equation 16.2.8, we write parametric equations of the line segment as  = (1 − )1+ 2,  = (1 − )1+ 2, 0 ≤  ≤ 1. Then  = (2− 1) and  = (2− 1) , so

  −   =1

0 [(1 − )1+ 2](2− 1)  + [(1 − )1+ 2](2− 1) 

=1

0 (1(2− 1) − 1(2− 1) + [(2− 1)(2− 1) − (2− 1)(2− 1)]) 

=1

0 (12− 21)  = 12− 21

(b) We apply Green’s Theorem to the path  = 1∪ 2∪ · · · ∪ , where is the line segment that joins ( )to (+1 +1)for  = 1, 2,   ,  − 1, and is the line segment that joins ( )to (1 1). From (5),

1 2

  −   =

, where  is the polygon bounded by . Therefore area of polygon = () =

 = 12

  −  

=12

1  −   +

2  −   + · · · +

−1  −   +

  −   To evaluate these integrals we use the formula from (a) to get

() =12[(12− 21) + (23− 32) + · · · + (−1− −1) + (1− 1)].

(c)  =12[(0 · 1 − 2 · 0) + (2 · 3 − 1 · 1) + (1 · 2 − 0 · 3) + (0 · 1 − (−1) · 2) + (−1 · 0 − 0 · 1)]

=12(0 + 5 + 2 + 2) =92 22. By Green’s Theorem, 21

2 = 21 

2  = 1 

  = and

21

2 = −21



(−2)  = 1



  = .

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

660 ¤ CHAPTER 16 VECTOR CALCULUS

  +   +

−0

  +   =





 −



 =



0  = 0 and

F· r =

0F· r. We parametrize 0as r() =  cos  i +  sin  j, 0 ≤  ≤ 2. Then

F· r =

0

F· r =

2

0

2 ( cos ) ( sin ) i +

2sin2 − 2cos2

 j

2cos2 + 2sin22 ·

−  sin  i +  cos  j



= 1

2

0

− cos  sin2 − cos3

 =1

2

0

− cos  sin2 − cos 

1 − sin2



= −1

2

0

cos   = −1

sin 

2

0

= 0

28. and  have continuous partial derivatives on R2, so by Green’s Theorem we have

F· r =





 −



 =



(3 − 1)  = 2



 = 2 · () = 2 · 6 = 12 29. Since  is a simple closed path which doesn’t pass through or enclose the origin, there exists an open region that doesn’t

contain the origin but does contain . Thus  = −(2+ 2)and  = (2+ 2)have continuous partial derivatives on this open region containing  and we can apply Green’s Theorem. But by Exercise 16.3.35(a),  = , so

F· r =

0  = 0.

30. We express  as a type II region:  = {( ) | 1() ≤  ≤ 2(),  ≤  ≤ } where 1and 2are continuous functions.

Then





  =

2()

1()



   =

[(2() ) − (1() )] by the Fundamental Theorem of

Calculus. But referring to the figure,

  = 

1+ 2+ 3+ 4

 .

Then

1  =

(1() ) ,

2  =

4  = 0, and

3  =

(2() ) . Hence

  =

[(2() ) − (1() ) ]  =

() .

31. Using the first part of (5), we have that

  = () =

 . But  = ( ), and  = 

 +

, and we orient  by taking the positive direction to be that which corresponds, under the mapping, to the positive direction along , so



  =



( )



 +



=



( )

 + ( )



= ±



( )



( )

 [using Green’s Theorem in the -plane]

= ±







 + ( ) 2



− ( ) 2

 [using the Chain Rule]

= ±













 [by the equality of mixed partials] = ±

()

() 

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

660 ¤ CHAPTER 16 VECTOR CALCULUS

  +   +

−0

  +   =





 −



 =



0  = 0 and

F· r =

0F· r. We parametrize 0as r() =  cos  i +  sin  j, 0 ≤  ≤ 2. Then

F· r =

0

F· r =

2

0

2 ( cos ) ( sin ) i +

2sin2 − 2cos2

 j

2cos2 + 2sin22 ·

−  sin  i +  cos  j



= 1

2

0

− cos  sin2 − cos3

 =1

2

0

− cos  sin2 − cos 

1 − sin2



= −1

2

0 cos   = −1

sin 

2

0

= 0

28. and  have continuous partial derivatives on R2, so by Green’s Theorem we have

F· r =





 −



 =



(3 − 1)  = 2



 = 2 · () = 2 · 6 = 12

29. Since  is a simple closed path which doesn’t pass through or enclose the origin, there exists an open region that doesn’t contain the origin but does contain . Thus  = −(2+ 2)and  = (2+ 2)have continuous partial derivatives on this open region containing  and we can apply Green’s Theorem. But by Exercise 16.3.35(a),  = , so

F· r =

0  = 0.

30. We express  as a type II region:  = {( ) | 1() ≤  ≤ 2(),  ≤  ≤ } where 1and 2are continuous functions.

Then





  =

2()

1()



   =

[(2() ) − (1() )] by the Fundamental Theorem of Calculus. But referring to the figure,

  = 

1+ 2+ 3+ 4

 .

Then

1  =

(1() ) ,

2  =

4  = 0, and

3  =

(2() ) . Hence

  =

[(2() ) − (1() ) ]  =

() .

31. Using the first part of (5), we have that

  = () =

 . But  = ( ), and  = 

 +

, and we orient  by taking the positive direction to be that which corresponds, under the mapping, to the positive direction along , so



  =



( )



 +



=



( )

 + ( )



= ±



( )



( )

 [using Green’s Theorem in the -plane]

= ±







 + ( ) 2



− ( ) 2

 [using the Chain Rule]

= ±













 [by the equality of mixed partials] = ±

()

() 

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

2

(3)

SECTION 16.5 CURL AND DIVERGENCE ¤ 661

The sign is chosen to be positive if the orientation that we gave to  corresponds to the usual positive orientation, and it is negative otherwise. In either case, since () is positive, the sign chosen must be the same as the sign of ( )

( ). Therefore () =



  =





( )

( )



  .

16.5 Curl and Divergence

1. (a) curl F = ∇ × F =







i j k

  

222222







=

 

(22) − 

(22)

 i−

 

(22) − 

(22)

 j+

 

(22) − 

(22)

 k

= (22 − 22) i − (22 − 22) j + (22− 22) k = 0

(b) div F = ∇ · F = 

(22) + 

(22) + 

(22) = 22+ 22+ 22

2. (a) curl F = ∇ × F =







i j k

  

0 3243







=

 

(43) − 

(32)

 i−

 

(43) − 

(0)

 j+

 

(32) − 

(0)

 k

= (433− 23) i − (0 − 0) j + (322− 0) k = (433− 23) i + 322k

(b) div F = ∇ · F = 

(0) + 

(32) + 

(43) = 0 + 32+ 342= 32+ 342

3. (a) curl F = ∇ × F =







i j k

  

 0 







= (− 0) i − (− ) j + (0 − ) k

= i+ (− ) j − k

(b) div F = ∇ · F = 

() + 

(0) + 

() = + 0 + = (+ )

4. (a) curl F = ∇ × F =







i j k

  

sin  sin  sin 







= ( cos  −  cos ) i − ( cos  −  cos ) j + ( cos  −  cos ) k

= (cos  − cos ) i + (cos  − cos ) j + (cos  − cos ) k

(b) div F = ∇ · F = 

(sin ) + 

(sin ) + 

(sin ) = 0 + 0 + 0 = 0

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

3

參考文獻

相關文件

The closed curve theorem tells us that the integral of a function that is holomorphic in an open disk (or an open polygonally simply connected region) D over a closed contour C ⊂ D

Let D(t/s) be a standard open subset in Spec(S −1 A)... Here h is the induced map of the

This shows that q is an interior point

Stokes’ Theorem Let S be an oriented piecewise-smooth surface that is bounded by a simple, closed, piecewise-smooth boundary curve C with positive orientation.. (Orient C to

In order to use Green’s theorem we must make sure C satisfies all of the assumptions for the theorem, that is that C is a positively oriented, piecewise smooth, and simple

Since  is a simple closed path which doesn’t pass through or enclose the origin, there exists an open region that doesn’t contain the origin but does contain .. All

So we suspect that the limit exists and equals 0; we use the Squeeze Theorem to prove our assertion.. All

The t-submodule theorem says that all linear relations satisfied by a logarithmic vector of an algebraic point on t-module should come from algebraic relations inside the t-module