• 沒有找到結果。

# [PDF] Top 20 2015 ITMO 個人賽試題

Has 10000 "2015 ITMO 個人賽試題" found on our website. Below are the top 20 most common "2015 ITMO 個人賽試題".

### 2015 ITMO 個人賽試題

... For problems involving more than one answer, points are given only when ALL answers are correct.. Each question is worth 5 points.[r] ... See full document

7

### 2015 ITMO 個人賽試題參考解法

... 允許學生、非營利性的圖書館或公立學校合理使用 本基金會網站所提供之各項及其解答。可直接下載 而不須申請。 重版、系統地複製或大量重製這些資料的任何部分，必 須獲得財團法人臺北市九章數學教育基金會的授權許 可。 ... See full document

7

### 2015 ITMO 隊際賽試題

... What is the minimum number of police squads so that every square not occupied by a police squad must share a side with a square occupied by a police squad. ANSWER: police squads.[r] ... See full document

12

### 2017 ITMO小學組個人賽試題

... On the second day, the youngest brother divided all the remaining candies into five equal parts with one remaining candy, and then this youngest brother took two parts.. On the third d[r] ... See full document

5

### 2017 ITMO國中組個人賽試題

... The sum of all the numbers above the main diagonal (diagonal from the top-left cell to the bottom-right cell) is equal to three times the sum of all the numbers below the main diagonal[r] ... See full document

6

### 2015 ITMO 隊際賽試題參考解法

... 10. What is the minimum number of fourth powers of integers, not necessarily distinct, such that their sum is 2015? 【Submitted by BURGAS】 【Solution】 Since 7 4 = 2401 2015 > , we can only use the fourth ... See full document

7

### 2017 ITMO國中組個人賽試題參考解法

... Deduced that the numbers on the diagonal should all be 11 and arrived with the correct answer, or correct answer only (without any explanation), 5 marks. In the figure below, ABCD is [r] ... See full document

10

### 2017 ITMO小學組個人賽試題參考解法

... On the second day, the youngest brother divided all the remaining candies into five equal parts with one remaining candy, and then this youngest brother took two parts.. On the third d[r] ... See full document

8

### 2013 AITMO 個人賽試題

... For problems involving more than one answer, points are given only when ALL answers are correct.. Each question is worth 5 points.[r] ... See full document

7

### 2011 AITMO 個人賽試題

... For problems involving more than one answer, points are given only when ALL answers are correct.. Each question is worth 5 points.[r] ... See full document

6

### 2016 IYMC 高中組個人賽試題

... You are allowed 90 minutes for this paper, consisting of 8 questions to which only numerical answers are required.. Each question is worth 10 points.[r] ... See full document

3

### 2016 IYMC 國中組個人賽試題

... At the end of the contest, you must hand in the envelope containing the question paper, your answer sheet and all scratch papers... Each weighs an integral numbers of kilograms?[r] ... See full document

3

### 2016 IYMC 高中組個人賽試題參考解法

... If (1) occurs, then Anna wins, and if (2) occurs, then Boris wins, regardless of the outcome of Boris’ last toss.. If (3) occurs, then the winner will be decided by the outcome of Bori[r] ... See full document

5

### 2016 IYMC 國中組個人賽試題參考解法

... The four lines from the top vertex divide the triangle into five narrow triangles with same area. The three lines parallel to the base divide the triangle into four horizontal strips[r] ... See full document

4

### 2014決賽試題

... 一、填充 1. 若八位數 273 49 5 x y 是 495 的倍數，求 x  y 的值。 2. 已知正立方體ABCD-EFGH (如右圖)，有一隻螞蟻從A點出發，沿著正立方體的邊界 爬行，到達G點後立即停止。已知除了八頂點之外，其餘邊界上的點都至多被螞蟻爬 行過一次，問：從A爬行至G點共有多少條路徑可供螞蟻選擇？ ... See full document

1

### 99初賽試題

... 迴路位址為 (9) 。 10. 請問用 32 位元記憶體，可以儲存的最大有號整數（Largest signed integer） 是多少 (10) ？ 11. 在具有 1 條輸入線與 n 條輸出線的組合邏輯電路中，可以根據訊號線的指 示，讓 1 條輸入訊號從 n 條輸出線輸出，具有此功能的電路稱為 (11) 。 12. 在 C/C++語言中 x=2; y=(++x!=3); 這兩指令執行完後，x 與 y 的值分別 ... See full document

6

### 100高中程式競賽初賽試題

... 19. 下列何者不是計算機結構中的必要單元? (A)ALU (B)CPU (C)RAM (D)USB 20. 所謂的 32 位元或是 64 位元電腦, 是以何者為基礎來認定? (A)控制匯流排 (B)資料匯流排 (C)位址匯流排 (D)I/O 的數 21. 有一種計算機結構，其內部指令集所能使用的指令數並不多，但卻大量採 用暫存器來加速處理效果，這種結構的電腦稱之為：(A)CISC Computers ... See full document

6

### 101決賽試題 高中組

... 小明跟大華常常猜拳賭輸贏，但久了後覺得很沒趣，現在他們想出一新的 方法，利用方格紙來玩賭輸贏的遊戲，兩以不同的角色與動作進行，規則如下： 平面上方格紙上有許多點(註：100 點以內)，小明與大華兩各任選兩點， 小明利用他選的兩點圍出一矩形區域(即通過這兩點與 X 座標軸或 Y 座標軸平 ... See full document

7

### 2017 ITMO國中組隊際賽試題

... A computer randomly chooses three different points on the given grid below (all points have the equal chance of being chosen). Let p[r] ... See full document

12

### 2017 ITMO小學組隊際賽試題

... Form edges along the dotted lines to create shapes so that each circle is the symmetry center (each shape when rotated 180 degrees along the circle, the shape appears identical) of the[r] ... See full document

12