# 分類正確率與計算時間的比較

In document 利用基因演算法產生模糊分類系統 (Page 55-64)

## 第五章 實驗結果與分析

### 5.4 收歛速度的比較

Breast W Data

80.00 85.00 90.00 95.00 100.00

0 10 20 30 40 50

Diabetes Data

30.00 40.00 50.00 60.00 70.00 80.00

0 10 20 30 40 50

Glass Data

25.00 35.00 45.00 55.00 65.00 75.00

0 10 20 30 40 50

Heart C Data

25.00 35.00 45.00 55.00 65.00

0 10 20 30 40 50

Iris Data

40.00 50.00 60.00 70.00 80.00 90.00 100.00

0 1 2 3 4 5

Sonar Data

15.00 35.00 55.00 75.00 95.00

0 20 40 60 80 100

Wine Data

10.00 25.00 40.00 55.00 70.00 85.00 100.00

0 4 8 12 16 20

## 第六章 結論

PmNreplace以及Pdon'tcare等等，如何依不同的 data set 找出最適合的參

數值，使得改良式 fuzzy GBML 演算法所建構的 FRBCS 對每個 data set 的正確分類率均為最佳，我們認為這是未來另一個可以研究的方向。

## 參考文獻

[1]. L. A. Zadeh, “Fuzzy sets,” Information and Control, vol.8, pp.338-353, 1965.

[2]. L. X. Wang, a Course in Fuzzy Systems and Control. Prentice Hall, 1997.

[3]. L. X. Wang and J. M. Mendel, “Generating fuzzy rules by learning from examples,” IEEE Transactions on Systems, Man, and

### Cybernetics, vol.22, no.6, pp.1414-1427, 1992.

[4]. J. S. R. Jang, “Self-learning fuzzy controllers based on temporal back propagation,” IEEE Transactions on Neural Networks, vol.3, no.5, pp.714-723, 1992.

[5]. M. Grabisch and F. Dispot, “A comparison of some methods of fuzzy classification on real data,” in Proc. 2nd

### Int. Conf. Fuzzy Logic Neural Networks, Iizuka, Japan, July 1992, pp.659-662.

[6]. J. C. Bezdek, Pattern Recognition with Fuzzy Objective Function

### Algorithms. New York: Plenum, 1981.

[7]. J. H. Holland, Adaptation in Natural and Artificial Systems.

University of Michigan Press, 1975.

[8]. D. E. Goldberg, Genetic Algorithms in Search, Optimization, and

### Machine Learning. Addison Wesley, 1989.

[9]. P. Thrift, “Fuzzy logic synthesis with genetic algorithms,” in Proc.

th

### Int. Conf. Genetic Algorithms, University of California, San

Diego, July 13-16, 1991, pp.509-513.

[10]. H. Nomura, I. Hayashi, and N. Wakami, “A self-tuning method of fuzzy reasoning by genetic algorithm,” in Proc. of the Int. Fuzzy

### Systems Intelligent Control Conf., Louisville, KY, Mar. 16-18,1992,

pp.236-245.

[11]. M. Valenzuela-Rendon, “The fuzzy classifier system: a classifier system for continuously varying variables,” in Proc. 4th

### Genetic Algorithms, University of California, San Diego, July 13-16,

1991, pp.346-353.

[12]. C. Z. Janikow, “A genetic algorithm for optimizing fuzzy decision trees,” in Proc. 6th

### Int. Conf. Genetic Algorithms, University

Pittsburgh, Pittsburgh, PA, July 15-19, 1995, pp.421-428.

[13]. Y. Yuan and H. Zhuang, “A genetic algorithm for generating fuzzy classification rules,” Fuzzy Sets System, vol.84, no.1, pp.1-19, Nov.

1996.

[14]. S. Abe and M. -S. Lan, “A method for fuzzy rules extraction directly from numerical data and its application to pattern classification,”

### IEEE Transactions on Fuzzy Systems, vol.3, no.1, pp.18-28, Feb.

1995.

[15]. S. F. Smith, “A learning system based on genetic algorithms,” Ph.D.

dissertation, University Pittsburgh, Pittsburgh, PA, 1980.

[16]. L. B. Booker, D. E. Goldberg, and J. H. Holland, “Classifier systems and genetic algorithms,” Artificial Intelligence, vol.40, pp.235-282, Sep. 1989.

[17]. H. Ishibuchi, T. Yamamoto, and T. Nakashima, “Hybridization of fuzzy GBML approaches for pattern classification problems,” IEEE

### Transactions on Systems, Man, and Cybernetics B, vol.35, no.2,

pp.359-365, Apr. 2005.

[18]. H. Ishibuchi, T. Nakashima, and T. Murata, “Performance evaluation of fuzzy classifier systems for multi-dimensional pattern classification problems,” IEEE Transactions on Systems, Man, and

### Cybernetics B, vol.29, no.5, pp.601-618, Oct. 1999.

[19]. H. Ishibuchi and T. Nakashima, “Improving the performance of fuzzy classifier systems for pattern classification problems with

In document 利用基因演算法產生模糊分類系統 (Page 55-64)