• 沒有找到結果。

Amin J., Ananthan J., Voellmy R. (1988). Key features of heat shock regulatory elements. Molecular Cell Biollogy 8, 3761-3769.

Bachmair A., Novatchkova M., Potuschak T., Eisenhaber F. (2001). Ubiquitylation in plants: a post-genomic look at a post-translational modification. Trends Plant Sciences 6, 463-470.

Bai C., Sen P., Hofmann K., Ma L., Goebl M., Harper JW., Elledge SJ. (1996). Skp1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the F-box. Cell 86, 263-274.

Barsoum J., Varshavsky A. (1985). Preferential localization of variant nucleosomes neatrh e 5'-end of the mouse dihydrofolate Reductase Gene. Journal of Biology Chemistry 260, 7688-7697.

Bhattacharyya S., Pattanaik S., Maiti IB. (2003). Intron-mediated enhancement of gene expression in transgenic plants using chimeric constructs composed of the Peanut chlorotic streak virus (PCISV) promoter-leader and the antisense orientation of PCISV ORF VII (p7R). Planta 218, 115-124.

Callis J., Carpenter T., Sun CW., Vierstra R. (1995). Structure and evolution of genes encoding polyubiquitin and ubiquitin-like proteins in Arabidopsis thaliana ecotype Columbia. Genetics 139, 921-939.

Callis J., Raasch J., Vierstra R.D. (1990). Ubiquitin extension proteins of Arabidopsis thaliana : structure, localization and expression of their promoters in transgenic tobacco. Journal of Biology Chemistry 265, 12486-12493.

Chan CS., Guo L., Shih MC. (2001). Promoter analysis of the nuclear gene encoding the chloroplast glyceraldehyde-3-phosphate dehydrogenase B subunit of Arabidopsis thaliana. Plant Molecilar Biology 46, 131-141.

Chang HY., Sun CW. (2009). Expression analyses of Arabidopsis polyubiquitin genes UBQ3 and UBQ4. Master thesis. National Taiwan Normal University.

Chinnusamy V., Zhu JH., Zhu JK. (2007). Cold stress regulation of gene expression in plants. TRENDS in Plant Science 12, 1380-1385.

Christensen A.H., Sharrok R.A., Quail P.H. (1992). Maize polyubiquitin genes : structure, thermal perturbation of expression and transcript splicing, and promoter

activity following transfer to protoplasts by electroporation. Plant Molecilar Biology 18, 675-689.

Daisuke H., Shu H., Yoshinori J., Nobuyuki Y., Shigehito T., Hideki T. (2007). The LeATL6-associated ubiquitin/proteasome system may contribute to fungal

elicitor-activated defense response via the jasmonic acid-dependent signaling pathway in tomato. Molecular Plant-Microbe Interactions 20, 72-81.

Fenget S., Martinez C., Gusmaroli G., Wang Y., Zhou J., Wang F., Chen L., Yu L., Iglesias-Pedraz JM., Kircher S., Schafer E., Fu X., Fan LM., Deng XW. (2008).

Coordinated regulation of Arabidopsis thaliana development by light and gibberellins.

Nature 451, 475-479.

Finley D., Ozkaynak E., Varshavsky A. (1987). The yeast polyubiquitin gene is essential for resistance to high temperatures, starvation, and other stresses. Cell 48, 1035-1046.

Graciela C. (2005).The leader intron of Arabidopsis thaliana genes encoding

cytochrome oxidase subunit 5c promotes high-level expression by increasing transcript abundance and translation efficiency. Journal of Experimental Botany 56, 2563-2571.

Hershko A., Leshinsky E., Ganoth D., Heller H. (1984). ATP-dependent degradation of ubiquitin-protein conjugates. Proceedings of the National Academy of Sciences 81, 1619-1623.

Hochstrasser M. (1996). Ubiquitin-dependent protein degradation. Annual Review of Genetics 30, 405-439.

Hoffman N.E., Ko K., Milkowski D., Pichersky E. (1991). Isolation and

characterization of tomato cDNA and genomic clones encoding the ubiquitin gene ubi3. Plant Molecilar Biology 17, 1189-1201.

Hofmann K., Bucher P. (1998). The PCI domain: a common theme in three multi-protein complexes. Trends in Biochemical Sciences 23, 204-205.

Ibarra-Molero B., Makhatadze GI., Sanchez-Ruiz JM. ( 1999). Cold denaturation of ubiquitin. Biochimica et Biophysica Acta 1429, 384-390.

Imaizumi T., Tran H.G., Swartz T.E., Briggs W.R., Kay S.A. (2003). FKF1 is essential for photoperiodic-specific light signalling in Arabidopsis. Nature 426, 302-306.

Koken MH., Hoogerbrugge JW., Jasper D., Wit J., Willemsen R., Roest HP.,

Grootegoed JA., Hoeijmakers JH. (1996). Expression of the ubiquitin-conjugating DNA repair enzymes HHR6A and B suggests a role in spermatogenesis and chromatin

modification. Developmental Biology 173, 119-132.

Kim MJ., Kim H., Shin JS., Chung CH., Ohlrogge JB., Suh MC.(2006). Seed-specific expression of sesame microsomal oleic acid desaturase is controlled by combinatorial properties between negative cis-regulatory elements in the SeFAD2 promoter and enhancers in the 5’-UTR intron. Molecular Genetics and Genomics 276, 351–368.

Kyozaka J., Fujimoto H., Izawa T., Shimamoto K. (1991). Anaerobic induction and tissue- specific expression of maize Adh1 promoter in transgenic rice plants and their progeny. Molecular Genetics and Genomics 228, 40-48.

Lai Z., Ma W., Han B., Liang L., Zhang Y., Hong G., Xue Y. (2002). An F-box gene linked to the self-incompatibility (S) locus of Antirrhinum is expressed specifically in pollen and tapetum. Plant Molecular Biology 50, 29-42.

Ma JF., Goto S., Tamai K., Ichii M. (2001). Role of root hairs and lateral roots in silicon uptake by rice. Plant Physiology 127, 1773-1780.

Moon J., Parry G., Estelle M. (2004). The Ubiquitin-Proteasome Pathway and Plant Development. The Plant Cell 16, 3181-3195.

Murashige T., Skoog F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum 15, 473-497.

Ni W., Xie D.,Hobbie L., Feng B.,Zhao D., Akkara J., Ma H. (2004). Regulation of Flower Development in Arabidopsis by SCF Complexes. Plant Physiology 134, 1574-1585.

Norris SR., Meyer SE., Callis J. (1993). The intron of Arabidopsis thaliana

polyubiquitin genes is conserved in location and is a quantitative determinant of chimeric gene expression. Plant Molecular Biology 21, 895-906.

Pagano M. (1997). Cell cycle regulation by the ubiquitin pathway. FASEB Journal 11, 1067-1075.

Patton EE., Willems AR., Tyers M. (1998). Combinatorial control in

ubiquitin-dependent proteolysis: don't Skp the F-box hypothesis. Trends in genet 14, 236-243.

Philip Z., Matthias HH., Hennig L., Gruissem W. (2004). GENEVESTIGATOR.

Arabidopsis microarray database and analysis toolbox. Plant Physiology 136, 2621-2632.

Pozo JC., Timpte C., Tan S.,Callis J., Estelle M. (1998). The ubiquitin-related protein RUB1 and auxin response in Arabidopsis. Science. 280, 1760-1763.

Rechesteiner M. (1987). Natural substrates of the ubiquitin proteolytic pathway. Cell 66, 615-618.

Rose AB., Elfersi T., Parra G., Korf I. (2008). Promoter-proximal introns in

Arabidopsis thaliana are enriched in dispersed signals that elevate gene expression.

The Plant Cell 20, 543-551.

Schwechheimer C., Serino G., Callis J., Crosby WL., Lyapina S., Deshaies RJ., Gray WM., Estelle M., Deng XW. (2001). Interactions of the COP9 signalosome with

the E3 ubiquitin ligase SCFTIR1 in mediating auxin response. Science 292, 1379- 1382.

Shanklin J., Jabben M., Vierstra RD. (1987). Red light-induced formation of ubiquitin-phytochrome conjugates: identification of possible intermediates of phytochrome degradation. The proceedings of the national academy of sciences 84, 359-363.

Singh MB., Xu H. Bhalla PL., Zhang Z., Swoboda I., Russell SD. (2002).

Developmental expression of polyubiquitin genes and distribution of ubiquitinated proteins in generative and sperm cells. Sex Plant Reproduction 14, 325-329.

Sivamani E., Qu R. (2006). Expression enhancement of a rice polyubiquitin gene promoter. Plant Molecular Biology 60, 225-239.

Sun CW., Callis J. (1997). Independent modulation of Arabidopsis thaliana

polyubiquitin mRNAs in different organs and in response to environmental changes.

Plant Journal 11, 1017-1027.

Sun CW., Griffen S., Callis J. (1997). A model for the evolution of polyubiquitin genes from the study of Arabidopsis thaliana ecotypes. Plant Molecular Biology 34,

745-758.

Tornero P., Merritt P., Sadanandom A., Shirasu K., Innes RW., Dangl JL. (2002).

RAR1 and NDR1 contribute quantitatively to disease resistance in Arabidopsis, and

their relative contributions are dependent on the R gene assayed. The Plant Cell. 14, 1005-1015.

Wang J., Jiang J., Oard J. (2000). Structure, expression and promoter activity of two polyubiquitin genes from rice (Oryza satvia L.). Plant Science 156, 201-211.

Wang X., Kong H., Ma H. (2009). F-box proteins regulate ethylene signaling and more.

Genes & Development 23, 391-396.

WeakeVM., Workman JL. (2008). Histone ubiquitination: triggering gene activity.

Molecular Cell 29, 653-663.

Yanagisawa S. (2000). Dof1 and Dof2 transcription factors are associated with expression of multiple genes involved in carbon metabolism in maize. The Plant Journal 21, 281-288.

Yin XJ., Volk S., Ljung K., Mehlmer N., Dolezal K., Ditengou F., Hanano S., Davis SJ., Schmelzer E., Sandberg G., Teige M., Palme K., Pickart C., Bachmair A.

(2007). Ubiquitin lysine 63 chain-forming ligases regulate apical dominance in Arabidopsis. The Plant Cell 19, 1898-1911.

Zhang YY., Xie Q. (2007). Ubiquitination in abscisic acid-related pathway. Journal of Integrative Plant Biology 49, 87-93.

表格與圖片

表一. UBQ10、UBQ11 和 UBQ14 基因之啟動子作一連串刪除使用引子資料表(一) 名稱 限制酵素切點 序列(5'-3')

UBQ14-F2 Kpn I GGGGTACCCACCATCCCATATTAATATCGATTC UBQ14-F3 Kpn I GGGGTACCCATGCTCATTCGTAATCGAAATC UBQ14-F4 Kpn I GGGGTACCGCGATGTGGGACATTGTACAC UBQ14-F5 Kpn I GGGGTACCCAATTGTATTAATGCTTCTATTCTGG UBQ14-F6 Kpn I GGGGTACCGGATTTAACTCCTAGTTCTATCGC UBQ14-F7 Kpn I GGGGTACCCATACTATCCCATGTTATTATCCAC UBQ14-F8 Kpn I GGGGTACCCTAAGATTTCTCTCGCAGTATATC UBQ14-F9 Kpn I GGGGTACCCCAAACCCGTCCTACCATATAAC UBQ14-F10 Kpn I GGGGTACCCAATATCGACCCAAAATTCATCATTG UBQ14-F11 Kpn I GGGGTACCGATTTTTCCTATAATATATCGTCTCG UBQ14-F12 Kpn I GGGGTACCTCCGAGTAAAATCGGATAACTATT UBQ14-F13 Kpn I GGGGTACCCCAGGATCCGAACAGAGTTAAAC

UBQ14-F14 Kpn I GGGGTACCATTATCTTCAAAAACCTCCTACAAAAATG UBQ14-F15 Kpn I GGGGTACCCATGGGTAACGGTTCAATATGATC

UBQ14-F16 Kpn I GGGGTACCGCTCTAATAACCGGGACGATAG UBQ14-F17 Kpn I GGGGTACCGTAAAAGTTACGTGTCAAGCTTTG UBQ14-F18 Kpn I GGGGTACCCCTAAGACCTATTCTTCTTCACA UBQ14-R2 Sal I CGCGTCGACCTTGATCCCGATTGAGAGATTTGA UBQ14-R3 Sal I CGCGTCGACCTGTAATTCACAAAAAACTGAGA UBQ14-R4 Sal I CGCGTCGACACCACCACGGAGCCTGAGAAC UBQ11-F2 Kpn I GGGGTACCCGCCATTTTCAATATCACGGTCC UBQ11-F3 Kpn I GGGGTACCCAGTACCAAAGAGTTGCTTCATG

UBQ11-F4 Kpn I GGGGTACCGAACTTGATTGGGATCATTTACTG UBQ11-F5 Kpn I GGGGTACCCTGAATGTCCACCTGAATCCTTG

UBQ11-F16 Kpn I GGGGTACCGAATGGGTGAGAGACGAATGCC UBQ11-F17 Kpn I GGGGTACCGTGTGATACTGATGTTAACTGTG UBQ11-F18 Kpn I GGGGTACCGTAGACGCTGCTTGAAACTTAAAG

表一. UBQ10、UBQ11 和 UBQ14 基因之啟動子作一連串刪除使用引子資料表(二) 名稱 限制酵素切點 序列(5'-3')

UBQ11-F19 Kpn I GGGGTACCCCGAGTCAAAATGTGTTGTGTG UBQ11-F20 Kpn I GGGGTACCGATTTATCTGCATCAAATGCTTTC UBQ11-F21 Kpn I GGGGTACCCACTTGTGAACCTTACACAAAGG

UBQ11-F22 Kpn I GGGGTACCGACAAACAAAACCCATCTCTTTCAG UBQ11-F23 Kpn I GGGGTACCGATCTCATCTAATGGTAATTCAAC

UBQ11-F24 Kpn I GGGGTACCCAACTTTGCGTGTGAACAACGC UBQ11-R2 Sal I CGCGTCGACCTTGATCACGGTTGAGAGATTTG UBQ11-R3 Sal I CGCGTCGACCTGTTAATCAGAAAAACCGAGA UBQ10-F2 Kpn I GGGGTACCCTTCTGGCCCTTAAGTCACAATG UBQ10-F3 Kpn I GGGGTACCGAATCGGGATAATGACAGCACAG UBQ10-F4 Kpn I GGGGTACCGAGACTTGTTCACCAACTTGATAC UBQ10-R2 Cla I CCATCGATCTTGATCACGGTAGAGAGAATTG UBQ10-R3 Cla I CCATCGATCTGTTAATCAGAAAAACTCAGAT UBQ10-R4 Cla I CCATCGATACCACCACGGAGCCTGAGGA

UBQ10-R5 Cla I CCATCGATAATCTGCATACCACCACGGAGCCTGAGGA UBQ10-F5 Kpn I GGGGTACCGTGGATTTTATCCTATTTGTAGGTG

UBQ10-F6 Kpn I GGGGTACCCAGCGATCAAGCTTCTCTTATAAG UBQ10-F7 Kpn I GGGGTACCGAAATCTCATTGCAACATCAAATGG UBQ10-F8 Kpn I GGGGTACCGGCTCAACAACAAACTTTCCATTC UBQ10-F9 Kpn I GGGGTACCGAATACAACTTTAGATCATAATTCTC UBQ10-F10 Kpn I GGGGTACCGATACTTTATGTCTTGGATAATTGG UBQ10-F11 Kpn I GGGGTACCCATAACACCTTCCCTGTATGATC UBQ10-F12 Kpn I GGGGTACCGTGGTGGAGCTTCCCATGTTTC UBQ10-F13 Kpn I GGGGTACCCCTTACTAATACCTCATTGGTTCC UBQ10-F14 Kpn I GGGGTACCGGACTAAAGCCTCCACATTCTTC UBQ10-F15 Kpn I GGGGTACCCATAGCGAACTTATTCAAAGAATG UBQ10-F16 Kpn I GGGGTACCGGACCAGGCCCCAAATAAGATC UBQ10-F17 Kpn I GGGGTACCCACAATATGTTATACGATAAAGAAG UBQ10-F18 Kpn I GGGGTACCACGAAATACGCTTCAATGCAGTG UBQ10-F19 Kpn I GGGGTACCCGTAACGATCGTTAAATCTCAACG UBQ10-F20 Kpn I GGGGTACCGCACACACGAGTCGTGTTTATC

表二. RT-PCR實驗所使用的引子資料表

名稱 序列(5'-3') 預測放大序列長度

UBQ14-F1 TTTCGTGAAGACTCTCACTGG

UBQ14-R1 ACTTCTTCTGATTCATAACAGAGATAA 256 bp UBQ11-F1 CACTCTTGAAGTTGAGAGCTC

UBQ11-R1 ATACATGAACTTGGTTCAGTAACC 240 bp UBQ10-F1 CTTCGTCAAGACTTTGACCG

UBQ10-R1 CTTCTTAAGCATAACAGAGACGAG 251 bp UBQ5-F1 GGTGGTGCTAAGAAGAGGAAGA

UBQ5-R1 GATCAAGCTTCAACTCCTTCTT 254 bp PP2A F1 GTGGCCAAAATGATGCAATCTC

PP2A R1 CAATGGTCACGTACGTGTAAAG 270 bp eIF-1A-1F GATAATAATGATGATGACTATGTTG eIF-1A-1R CTTATGCAACAAGAACACCAAG 217 bp CBF2-F1 GACGTGTCCTTATGGAGCTATTA

CBF2-R1 CCATTTACATTCGTTTCTCACAAC 131 bp

表三. 阿拉伯芥泛素基因之微陣列資料分析

取自於GENEVESTIGATOR資料庫的微陣列資料,可分為在不同突變株(mutant) 和接受不同環境處理(stimulus)之後,各基因的表現情況,以1為標準植。將取 得的數值計算平均值(mean)以及標準誤(standard error),平均值愈趨近於1,標 準誤愈小,則表示此基因的表現愈穩定。

Name Accession Number Mutant Mean ± Standard Error

Stimulus Mean ± Standard Error UBQ3 BAH19791 1.25± 0.09 1.2± 0.06

UBQ4 BAF00213 1.08± 0.024 1.07±0.023 UBQ10 CAB81074 1.03± 0.014 1.01± 0.012

UBQ11 CAB81047 1.11± 0.04 1.14± 0.03 UBQ14 BAH19554 1.02± 0.02 1.11± 0.025

UBQ1 AAK59652 1.00± 0.01 1.00± 0.013

UBQ2 AAM15407 1.01± 0.016 0.97±0.017 UBQ5/UBQ6 BAE98979/AAC34235 1.00± 0.009 1.01±0.014

UBQ5/6 like ABD59101 1.15±0.06 1.02±0.052

表四. UPE1、UPE2以及UPE3序列在PLACE比對出的已知順式作用元素

由MEME比對出UBQ10/UBQ11/UBQ14啟動子上的保守序列,再比較PLACE資 料庫中已知的順式作用元素序列。

UPE1 Factor or Site Name Loc.(Str.) Signal Sequence

CAATBOX1 7 (-) CAAT

CBFHV 35 (+) RYCGAC

DOFCOREZM 25 (-) AAAG DRE2COREZMRAB17 35 (+) ACCGAC DRECRTCOREAT 35 (+) RCCGAC GTGANTG10 32 (+) GTGA GTGANTG10 13 (-) GTGA LTRECOREATCOR15 36 (+) CCGAC

MYB1AT 2 (-) WAACCA

POLLEN1LELAT52 26 (-) AGAAA REALPHALGLHCB21 1 (-) AACCAA RHERPATEXPA7 30 (-) KCACGW WBOXNTERF3 33 (+) TGACY

WRKY71OS 33 (+) TGAC

UPE2 CAATBOX1 9 (+) CAAT DOFCOREZM 26 (-) AAAG SEF4MOTIFGM7S 17 (-) RTTTTTR TATABOX5 1 (-) TTATTT TBOXATGAPB 25 (+) ACTTTG UPE3 ASF1MOTIFCAMV 4 (-) TGACG

CACTFTPPCA1 10 (-) YACT

DOFCOREZM 8 (+) AAAG

TBOXATGAPB 7 (-) ACTTTG WBOXATNPR1 5 (-) TTGAC

WRKY71OS 5 (-) TGAC

U 的E2 結合使泛素鍵結到蛋白受質(substrate)上。參與在不同生理反應的受質常 鍵結不同種形式的Ub 或是 Ub 鏈。 表示為 Ub protein。 U

SF

UBQ10/UBQ11/UBQ14 延伸胺基酸為苯丙胺酸為第二群。Ub 表示為 ubiquitin coding sequence、S 為絲胺酸(serine)、F 為苯丙胺酸(phenylalanine)。

圖三. UBQ11、UBQ11 和 UBQ14 的基因表現

由GENEVESTIGATOR 網站所得之資料,在阿拉伯芥中的每個生長時期,都 以UBQ10 的基因表現量為最高。圖示 UBQ3(●)、UBQ4(●)、UBQ10(●)、

UBQ11(●)and UBQ14(●)。

A

Promoter region intron Ub 5’UTR

Promoter region intron Ub nos 5’UTR

LUC

nos LUC

LUC nos Promoter region intron

5’UTR

Promoter region 5’UTR

nos Promoter region LUC

GUS 35S promoter nos GUS 35S promoter nos

GUS 35S promoter nos GUS 35S promoter nos

GUS 35S promoter nos GUS 35S promoter nos

GUS 35S promoter nos GUS 35S promoter nos

圖四. 聚泛素基因的基因結構以及不同組合的調節序列質體構築構築

A. 聚泛素基因的共同結構次序是啟動子序列,5’端非轉譯區,唯一的內插 子,以及緊接在內插子後的Ub 編碼序列(coding sequence)。

B. 組合上游序列的不同區段,並接上 LUC 報導基因。在同一質體內亦含有 CaMV 35S 啟動子所驅動的 GUS 作為控制組。

Promoter region intron Ub (-2044 to +389)

pUB10-1

+1

pUB10-2 (-1948 to +389)

(-1849 to +389) pUB10-3

(-1747 to +389) pUB10-4

(-1434 to +389) pUB10-5

LUC LUC (-118 to +389)

pUB10-7(-731 to +389) pUB10-6

pUB10-8 pUB10-9

pUB10-10

(-2044 to +617) (-1948 to +617)

(-1849 to +617)

+84 +389 轉譯區以及內插子序列,pUB10-8 到 pUB10-10 為不同長度啟動子序列加上 5’端非轉譯區、內插子序列以及一個 Ub 編碼序列。

C. UBQ10 啟動子活性分析,計算 LUC/GUS 比值與標準誤差(standard error),

其中以GUS 活性為控制組。每次實驗均重複三次。

A B

C

Promoter region intron (-1046 to +426)

(-557 to +426)

Promoter region intron

UPE1:TTGGTTATTGCTTCACCGCCTTAGCTTTCTCGTGACCGACTCGTCCTCG

UBQ14 TGG TTGGTTATTGCTTCACCGCCTTAGCTTTCTCGTGACCGACTCGTCCTCG TCT UBQ10 TTA TTAGCTATTGCTTCACCGCCTTAGCTTTCTCGTGACCTAGTCGTCCTCG TCT UBQ11 TAA TTGGCTATTGCTTCCACGCCTTAGCTTTCTCGTGACCGACCGAGTCGTC CTC

5’ 3’

(-1962 to -1913)

(-2366 to -2317)

(-2034 to 1985)

圖八. UBQ10, UBQ11 和 UBQ14 啟動子調控序列 1(UPE1)之序列及其相似度和位置 A. MEME比對出的UPE1序列。

B. 使用Weblogo排出UPE1的相似度,字形越大代表越保守。

C. UPE1在UBQ10, UBQ11和UBQ14中的相對位置。

A

B

C

相關文件