• 沒有找到結果。

[1] V. Kumar, W. Lu, R. Schwindt, A. Kuliev, G. Simin, J. Yang, M.

Asif Khan, and Ilesanmi Adesida, “AlGaN/GaN HEMTs on SiC With fT of Over 120 GHz,” IEEE Electron Device Lett., vol. 23, pp.

455–457, Aug. 2002.

[2] W. Lu, S. Member, V. Kumar, E. L. Piner, and I. Adesida, “DC, RF, and Microwave Noise Performance of AlGaN–GaN Field Effect Transistors Dependence of Aluminum Concentration,” IEEE Trans.

Electron Devices, vol. 50, pp. 1069–1074, Apr. 2003.

[3] Y.-F. Wu, B. P. Keller, S. Keller, N. X. Nguyen, M. Le, C. Nguyen and T. J. Jenkins, “Short Channel AlGaN/GaN MODFET’s with 50-GHz and 1.7-W/mm Output-Power at 10 GHz,” IEEE Electron Device Lett., vol. 18, no. 9, pp. 438–440, Sep. 1997.

[4] J. P. Ibbetson, P. T. Fini, K. D. Ness, S. P. DenBaars, J. S. Speck, and U. K. Mishra, “Polarization effects, surface states, and the source of electrons in AlGaN/GaN heterostructure field effect transistors,” Appl.

Phys. Lett., vol. 77, pp. 250–252, Jul. 2000.

[5] K. Roy, S. Mukhopadhyay, and H. Mahmoodi-Meimand, “Leakage current mechanisms and leakage reduction techniques in deep-submicrometer CMOS circuits,” Proc. IEEE., vol. 91, no. 2, pp.

305-327, Feb. 2003.

[6] R. Vetury, N. Q. Zhang, S. Keller, and U. K. Mishra, “The Impact of Surface States on the DC and RF Characteristics of AlGaN/GaN

HFETs,” IEEE Trans. Electron Devices, vol. 48, no. 3, pp. 560-566, Mar. 2001.

[7] C. S. Lee, Y. H. Liao, B. Y. Chou, H. Y. Liu, and W. C. Hsu,

“Composite HfO2/Al2O3-dielectric AlGaAs/InGaAs MOS-HEMTs by using RF sputtering/ozone water oxidation,” Superlattices Microstruct., vol.72,pp.194-203, Mar. 2014.

[8] H. Y. Liu, C. S. Lee, W. C. Hsu, L. Y. Tseng, B. Y. Chou, C. S. Ho, and C. L. Wu, "Investigations of AlGaN/AlN/GaN MOS-HEMTs on Si Substrate by Ozone Water Oxidation Method," IEEE Trans.

Electron Devices, vol.60, no. 7,pp.2231~2237, Jul. 2013.

[9] S. Yagi a, M. Shimizu, M. Inada, Y. Yamamoto, G. Piao, H.

Okumura, Y. Yano, N. Akutsu, and H. Ohashi, “High breakdown voltage AlGaN/GaN MIS–HEMT with SiN and TiO2 gate insulator,”

Solid-State Electron., vol. 50, pp. 1057–1061, Apr. 2006.

[10] H. Y. Liu, C. S. Lee, F. C. Liao, W. C. Hsu, B. Y. Chou, J. H. Tsai, and H. Y. Lee, "Comparative Studies on AlGaN/GaN MOS-HEMTs with Stacked La2O3/Al2O3 Dielectric Structures," ECS J. Solid State Sci. Technol., vol.3, no. 8, pp.N115-N119, Aug. 2014.

[11] P. Kordos, G. Heidelberger, J. Bernát, A. Fox, M. Marso, and H. Lüth,

“High-power SiO2 /AlGaN/GaN metal-oxide-semiconductor heterostructure field-effect transistors,” Appl. Phys. Lett., vol. 87, pp.

143501-3, Sep. 2005.

[12] B. Luo, J. W. Johnson, J. Kim, R. M. Mehandru, F. Ren, B. P. Gila, A.

H. Onstine, C. R. Abernathy, S. J. Pearton, A. G. Baca, R. D. Briggs,

R. J. Shul, C. Monier, and J. Han, “Influence of MgO and Sc 2 O 3 passivation on AlGaN/GaN high-electron-mobility transistors,” Appl.

Phys. Lett., vol. 80, no. 9, pp. 1661-1663, Mar. 2002

[13] P. Kordos, D. Gregusova, R. Stoklas, S. Gazi, and J. Novak,

“Transport properties of AlGaN/GaN metal-oxide-semiconductor heterostructure field-effect transistors with Al2O3 of different thickness,” Solid-State Electron., vol. 52, no. 6, pp. 973-979, Jun.

2008.

[14] S. Arulkumaran, T. Egawa, H. Ishikawa, T. Jimbo, and M. Umeno,

“Investigations of SiO2/n-GaN and Si3N4/n-GaN insulator-semiconductor interfaces with low interface state density,”

Appl. Phys. Lett., vol. 73, no. 6, pp. 809-811, Aug. 1998.

[15] Y. Yue, Y. Hao, J. Zhang, J. Ni, W. Mao, Q. Feng, and L. Liu,

“AlGaN/GaN MOS-HEMT With HfO2 Dielectric and Al2O3

Interfacial Passivation Layer Grown by Atomic Layer Deposition,”

IEEE Electron Device Lett., vol. 29, no. 8, pp. 838–840, Aug. 2008.

[16] L. Pang, Y. Lian, D. S. Kim, J. H. Lee, and K. Kim, “AlGaN/GaN MOSHEMT With High-Quality Gate–SiO2 Achieved by Room-Temperature Radio Frequency Magnetron Sputtering,” IEEE Trans. Electron Devices, vol. 59, no. 10, pp. 2650–2655, Oct. 2012.

[17] B. Y. Chou, C. S. Lee, C. L. Yang, W. C. Hsu, H. Y. Liu, M. H.

Chiang, W. C. Sun, S. Y. Wei, S. M. Yu, "TiO2-Dielectric AlGaN/GaN/Si Metal-Oxide-Semiconductor High Electron Mobility Transistors by Using Non-Vacuum Ultrasonic Spray Pyrolysis

Deposition," IEEE Electron Devices Letters, vol.35, no. 11, pp.1091-1094, Nov. 2014.

[18] J. Kim, R. Mehandru, B. Luo, R. Ren, B. P. Gila, A. H. Onstine, C. R.

Abernathy, S. J. Pearton, and Y. Irokawa, “Characteristics of MgO/GaN gate-controlled metal-oxide-semiconductor diodes,” Appl.

Phys. Lett., vol. 80, no. 24, pp. 4555-4557, Jun. 2002.

[19] E. A. Paisley, T. C. Shelton, S. Mita, R. Collazo, H. M. Christen, Z.

Sitar, M. D. Biegalski, and J. P. Maria, “Surfactant assisted growth of MgO films on GaN,” Appl. Phys. Lett., vol. 101. no. 9. pp.

092904-1-4, Aug. 2012.

[20] K. T. Lee, C. F. Huang, J. Gong, and C. T. Lee, “High-Performance 1-mu m GaN n-MOSFET With MgO/MgO-TiO2 Stacked Gate Dielectrics,” IEEE Electron Device Lett., vol. 32. no. 3, pp. 306-308, Mar. 2011.

[21] M. Gladysiewicz, R. Kudrawiec, J. Misiewicz, G. Cywinski, M.

Siekacz, P. Wolny, and C. Skierbiszewski, “The surface boundary conditions in GaN/AlGaN/GaN transistor heterostructures,” Appl.

Phys. Lett., vol. 98, no. 23 pp. 231902-1-3, Jun. 2011

[22] O. Ambacher J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M.

Murphy, W. J. Schaff, and L. F. Eastman, “Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures,” J. Appl. Phys., vol.

85, no. 6, pp. 3222–3233, Mar. 1999.

[23] X. Z. Dang, R. J. Welty, D. Qiao, P. M. Asbeck, S. S. Lau, E. T. Yu, K.

S. Boutros and J. M. Redwing, “Fabrication and characterisation of enhanced barrier AlGaN/GaN HFET,” Electron. Lett., vol. 35, no. 7, pp. 602-603, Apr, 1999

[24] P. Waltereit, S. Müller, K. Bellmann, C. Buchheim, R. Goldhahn, K.

Köhler,L. Kirste, M. Baeumler, M. Dammann, W. Bronner, R. Quay, and O. Ambacher, “Impact of GaN cap thickness on optical, electrical, and device properties in AlGaN/GaN high electron mobility transistor structures,” J. Appl. Phys., vol. 106, no. 2, pp. 023535-1-7, Jul. 2009.

[25] X. L. Wang, C. M. Wang, G. X. Hu, J. X. Wang, T. S. Chen, G. Jiao, J.

P. Li, Y. P. Zeng and J. M. Li, “Improved DC and RF performance of AlGaN/GaN HEMTs grown by MOCVD on sapphire substrates,”

Solid-State Electronics, vol. 49, pp. 1387–1390, Jun. 2005.

[26] B. Luo, J. W. Johnson, B. P. Gila, A. Onstine, C. R. Abernathy, F. Ren, S. J. Pearton, A. G. Baca, A. M. Dabiran, A. M. Wowchack, P. P.

Chow, “Surface passivation of AlGaN/GaN HEMTs using MBE-grown MgO or Sc2O3,” Solid-State Electronics, vol. 46, pp.

467–476, 2002.

[27] D. Ducatteau, A. Minko, V. Hoël, E. Morvan, E. Delos, B. Grimbert, H. Lahreche, P. Bove, C. Gaquière, J. C. De Jaeger, and S. Delage,

“Output Power Density of 5.1/mm at 18 GHz With an AlGaN/GaN HEMT on Si Substrate,” IEEE Electron Device Lett., vol. 27. no. 1, pp. 7-9, Jan. 2006.

[28] W. Saito, M. Kuraguchi, Y. Takada, K. Tsuda, I. Omura, and Tsuneo Ogura, “High breakdown voltage undoped AlGaN-GaN power

HEMT on sapphire substrate and its demonstration for DC-DC converter application,” IEEE Trans. Electron Devices, vol. 51, no. 11, pp. 1913-1917, Nov, 2004

[29] S. T. Sheppard, K. Doverspike, W. L. Pribble, S. T. Allen, J. W.

Palmour, L. T. Kehias, and T. J. Jenkins, “High-Power Microwave GaN/AlGaN HEMT’s on Semi-Insulating Silicon Carbide Substrates,” IEEE Electron Device Lett., vol. 20, no. 4, pp. 161–163, Apr. 1999.

[30] S. Nakamura, M. Senoh, S. I. Nagahama, N. Iwasa, T. Yamada, T.

Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M.

Sano, and K. Chocho, “Continuous-wave operation of InGaN/GaN/AlGaN-based laser diodes grown on GaN substrates,

” Appl. Phys. Lett. vol. 72, no. 16, pp. 2014-2016, Apr. 1998.

[31] R. Gaska, A. Osinsky, J. W. Yang, and M. S. Shur, “Self-Heating in High-Power AlGaN-GaN HFET’s,” vol. 19, no. 3, pp. 89-91, Mar.

1998.

[32] R. Behtash, H. Tobler, M. Neuburger, A. Schurr, H. Leier,Y. Cordier, E Semond, F. Natali and J. Massies, “AIGaN/GaN HEMTs on Si(111) with6.6 W/mm output power density,” Electron. Lett., 2003.

[33] z. x. qin, z. z. chen, y. z. tong, x. m. ding, x. d. hu, t. j. yu, g. y. zhang,

“Study of Ti/Au, Ti/Al/Au, and Ti/Al/Ni/Au ohmic contacts to n-GaN,” App. Phys., vol. 78, pp. 729–731, Apr. 2004.

[34] Z. Z. Chen, Z. X. Qin, C. Y. Hu, X. D. Hu, T. J. Yu, Y. Z. Tong, X. M.

Ding, G. Y. Zhang, “Ohmic contact formation of Ti/Al/Ni/Au to

n-GaN by two-step annealing method,”Mater. Sci. Eng., B, vol. 111, pp. 36–39, Mar. 2004.

[35] [40] N. Chaturvedi, U. Zeimer, J. Wurfl and G. Trankle, “Mechanism of ohmic contact formation in AlGaN/GaN high electron mobility transistors,” Semicond. Sci. Technol, vol. 21, pp. 175–179, Nov. 2005.

[36] J. Kim, B. Gila, R. Mehandru, J. W. Johnson, J. H. Shin, K. P. Lee, B.

Luo, A. Onstine, C. R. Abernathy, S. J. Pearton, and F. Rena,

“Electrical Characterization of GaN Metal Oxide Semiconductor Diodes Using MgO as the Gate Oxide,” vol. 149, no. 8, pp.

G482-G484, Aug. 2002.

[37] P. J. Cumpson, “Angle-resolved XPS and AES: depth-resolution limits and a general comparison of properties of depth-profile reconstruction methods,” J. Electron Spectrosc. Relat. Phenom., vol.

73, no. 1, pp. 25-52, May. 1995.

[38] E. W. Wong, P. E. Sheehan, C. M. Lieber, “Nanobeam Mechanics:

Elasticity, Strength, and Toughness of Nanorods and Nanotubes,”

Science, vol. 277, no. 5334, pp. 1971-1975, Sep. 1997.

[39] Charles Kittel, “Introduction to Solid State Physics 8th Edition,” John Wiley & Son, 2005.

Figures

(a)

(b)

Figure 2-1 (a) The polarizations in GaN HEMT structure. (b) How these polarizations affect the concentration of 2DEG in AlGaN/GaN HEMT.

Figure 2-2 The comparisons of bandgaps energy and lattice constant of various binary semiconductors.

Gate Dimension: 1 × 100 µm2

Figure 3-1 The cross-sectional GaN/ AlGaN/GaN structure of conventional HEMT.

Gate Dimension: 1 × 100 µm2

Figure 3-2 The cross-sectional GaN/ AlGaN/GaN structure of MgO MOS-HEMT.

Step 2

 Mesa Isolation

 Mesa Photolithography

 Evaporate Ni and Lift-off

 Dry Etching by ICP/RIE

 Ni Remove by HNO3

 Evaporate Ti/Al/Au and Lift-off

 Annealing by RTA

 S/D Ohmic contact

Step 4

 Gate Photolithography

 Evaporate Ni/Au and Lift-off

 Gate Schottky Contact

Si substrate

Step 1-3 Step 6

 Gate Oxide Deposition by USPD

 S/D Photolithography

 MgO Remove by H3PO4

Step 7

 Gate Photolithography

 Evaporate Ni/Au and Lift-off

 Gate Schottky Contact Figure 3-3 A Conventional HEMT device of fabrication process.

Figure 3-4 A MOS-HEMT device of fabrication process.

Figure 3-5 Schematic diagram of the ultrasonic spray pyrolysis technology.

HEAT

350C

Reactive gas

Ultrasonic Atomizer Exhaust

Sample

Hot plate heater

Chamber

H2O

H2O

Precursor solution

Gas flux controller

Figure 4-1 Structure of XPS measurement system.

46 48 50 52 54

Intensity (arb. unit)

Binding Energy (eV) Mg 2p

Figure 4-2 X-ray Photoelectron Spectrometer spectra of Mg.

526 528 530 532 534

Intensity (arb. unit)

Binding Energy (eV) O 1s

Figure 4-3 X-ray Photoelectron Spectrometer spectra of O.

Figure 4-4 he depth profile of devices.

Figure 4-5 TEM analysis of MgO film.

Figure 4-6 Structure of atomic force microscopy measurement system.

Figure 4-7 AFM analysis of two dimension MgO film.

Figure 4-8 AFM analysis of three dimension MgO film.

Figure 4-9 Summary of USPD treatment thickness optimization transfer characteristics for MOS-HEMT.

Figure 4-10 Current-Voltage characteristics of the conventional HEMT at room temperature

Figure 4-11 Current-Voltage characteristics of the MgO MOS-HEMT at room temperature.

Figure 4-12 Extrinsic transconductance (gm) and the drain leakage current (IDS) of the conventional HEMT at room temperature.

Figure 4-13 Extrinsic transconductance (gm) and the drain leakage current (IDS) of the MOS-HEMT at room temperature.

-6 -5 -4 -3 -2 -1 0 1 2

0 5 10 15 20

Conventional HEMT MOS-HEMT

@VDS = 7 V

Gate-Source Voltage (V) Squrt I D

Figure 4-14 The threshold voltage (Vth) characteristics of all devices.

Figure 4-15 Two-terminal off state gate-drain breakdown voltage (BVGD) characteristics of all devices.

Figure 4-16 Two-terminal off state gate-drain turn-on voltage (Von) characteristics of all devices.

Figure 4-17 Three-terminal off-state breakdown voltage (BVoff) characteristics of all devices.

Figure 4-18 Temperature-dependent DC characteristics of the conventional HEMT from 300 K to 450 K.

Figure 4-19 Temperature-dependent DC characteristics of the MOS-HEMT from 300 K to 450 K.

Figure 4-20 Extrinsic transconductance and saturation drain current density of the conventional HEMT from 300 K to 450 K.

Figure 4-21Extrinsic transconductance and saturation drain current density of the MOS-HEMT from 300 K to 450 K.

Figure 4-22 Temperature-dependent two-terminal breakdown characteristics of the conventional HEMT from 300 K to 450 K.

Figure 4-23 Temperature-dependent two-terminal breakdown characteristics of the MOS-HEMT from 300 K to 450 K.

Figure 4-24 Capacitance voltage characteristics of all devices.

Figure 4-25 Hysteresis of metal-semiconductor (M-S) Schottky diode.

-6 -5 -4 -3 -2 -1 0

0 4 8 12 16

MOS Diode @ 1M Hz

Voltage (V)

Capaticance (pF)

Figure 4-26 Hysteresis of metal-oxide-semiconductor (M-O-S) diode.

Figure 4-27 Capacitance-voltage characteristics of MOS diode, the inset shows the calculated Dit-V characteristics.

Figure 4-28 fT and fmax characteristics of all devices.

-20 -15 -10 -5 0 5 10

Figure 4-29 The power-added-efficiency (P. A. E.), output power (Pout), associated gain (Ga) characteristics at 2.4 GHz for conventional

Figure 4-30 The power-added-efficiency (P. A. E.), output power (Pout), associated gain (Ga) characteristics at 2.4 GHz for MOS-HEMT.

-20 -15 -10 -5 0 5 10

Figure 4-31 The power-added-efficiency (P. A. E.), output power (Pout), associated gain (Ga) characteristics at 5.8 GHz for conventional

Figure 4-32 The power-added-efficiency (P. A. E.), output power (Pout), associated gain (Ga) characteristics at 5.8 GHz for MOS-HEMT.

Figuer 4-33 The minimum noise figure (NFmin) and associated gain (Ga) characteristics versus frequencies of all devices.

Figure 4-34 Low frequency noise characteristics versus frequency of all devices.

Figure 4-35 The CW and pulse characteristics of conventional HEMT.

Figure 4-36 The CW and pulse characteristics of MOS-HEMT.

相關文件