• 沒有找到結果。

第二章 文獻回顧

三 研究方法

5.2 建議

由模槽試驗結果顯示,大型植物包括浮水性挺水性及沉水性植 物,植物提供遮蔽陽光效應或競爭吸收營養鹽等機制,可提高污染處 理效率及控制藻類生長。校園生態池及人工濕地表面流系統,缺乏大 型植物或植物生物質量過少,導致系統藻類滋生影響水質處理效率,

一般操作良好之自然淨水系統,可有效降低目標污染物,包括懸浮固 體、有機物、營養鹽及大腸桿菌群濃度,而校園生態池及列車式人工 濕地之入流水源皆屬廢水二級處理水,為自然淨水系統本身處理之目 標污染物,可將部份節省之廢污水操作費(動力曝氣),強化植栽植種 面積與植物收割管理部份,即可有效解決藻類生長及魚群死亡等問 題。人工濕地工法常見問題如蚊蟲、臭味、藻類過度生長導致水質外 觀不佳,皆與操作條件有關,近年來高雄縣政府環境保護局推動礫間 接觸氧化法,似地下流式人工濕地工法,雖改善上述蚊蟲、臭味及藻 類等相關問題但仍有污染負荷較低,系統易阻塞之缺點,對此改善方 式因而設置動力供氧系統,藉由好氧微生物處理目標污染物如BOD 及NH

3

-N,另外還可設計不同好厭氧階段,用以處理目標污染物質,

而自然淨水系統不外乎利用天然之植物及微生物群去除污染物,因此 大型植物為自然淨水系統中不可或缺之角色,做好植物收割管理方為 理想操作之自然淨水系統。

參考資料

An, Y.J., Kampbell, D.H., Breidenbach, G.P. (2002) Escherichia coli and total coliforms in water and sediments at lake marinas.

Environmental Pollution, 120, 771-778.

Alvarez, J.A., Becares, E. (2006) Seasonal decomposition of Typha latifolia in a free-water surface constructed wetland. Ecological Engineering, 28, 99-105.

Aslam, M.M., Malik, M., Baig, M.A. (2007) Treatment performances of compost-based and gravel-based vertical flow wetlands operated identicaly for refinery wastewater treatment in Pakistan, Ecological Engineering, 30, 34-42.

Bavor, H.J., Roser, D.J., Smalls, I.C. (1989) Performance of solid-matrix wetland systems viewed as fixed film bioreactors. Constructed Wetlands for Wastewater Treatment Municipal, USA.

Bartram, J., Burch, M., Falconer, I., Jones, G. (1999) Situation assessment,

planning and management, In: World Health Organization, editor.

Toxic cyanobacteria in water. Monitoring and Management, LONDON.

Bojcevska, H., Tonderski, K. (2007) Impact of loads, season, and plant species on the performance of a tropical constructed wetland polishing effluent from sugar factory stabilization ponds. Ecological Engineering, 29, 66-76.

Brix, H. (1997) Do Macrophytes play a role in constructed treatment wetland?. Water Science Technology, 35. 11-17.

Campbell, C.S., Ogden, M.H. (2005) Constructed Wetlands in the Sustainable Landscape, John Wiley & Sons Lnc, Chichester, New York.

Calheiros, C.S.C., Rangel, A.O.S.S., Castro, P.M.L. (2007) Constructed wetland systems vegetated with different plants applied to the treatment of tannery wastewater. Water research, 41, 1790-1798.

Chen, X.C., Kong, H.N., He, S.B., Wu, D.Y., Li, C.J., Huang, X.C. (2009) Reducing harmful algae in raw water by light-shading. Process Biochemistry, 44, 357-360.

Chung, A.K.C., Wu, Y., Tam, N.F.Y. (2008) Nitrogen and phosphate mass balance in a sub-surface flow constructed wetland for treating

municipal wastewater. Ecological Engineering, 32, 81-89.

Davis, K., Anderson, M.A., Yates, M.V. (2005) Distribution of indicator bacteria in Canyon Lake California. Water Research, 39, 1277-1288.

Dierberg, F.E., DeBusk, T.A. (2008) Particulate phosphorus

transformations in south Florida stormwater treatment areas used for Everglades protection. Ecological Engineering, 34, 100-115.

Fleming-Singer M.S., Horne A.J. (2006) Balancing wildlife needs and nitrate removal in constructed wetlands: The case of the Irvine Ranch Water District’s San Joaquin Wildlife Sanctuary. Ecological

Engineering, 26, 147-166.

Gagnon, V., Chazarenc, F., Comeau, Y., Brisson, J. (2007) Influence of macrophytes species on microbial density and activity in constructed wetlands. Water Science Technology, 56, 249-54.

Garcia, M., Soto, F., Juan, M. (2008) A comparison of bacterial removal efficiencies in constructed wetlands and algae-based systems.

Ecological Engineering, 32, 238-243.

Gaiser, E. (2008) Periphyton as an indicator of restoration in the FloridaEverglades. Ecological indicators, 38, 312-325.

Gersberg, R.M., Gearhart, R.A., Ives, M. (1989). Pathogens removal in Constructed Wetlands Wastewater Treatment; Municipal, Industrial and Agricultural. Lewis Publishers, Chelsea.

Gustavo, G., Henry-Silva, F.M., Camargo, M. (2008) Growth of free-floating aquatic macrophytes in different concentrations of nutrients. Hydrobiologia. 610, 153-160.

Healy, M.G., Rodgers, M., Mulqueen, J. (2006) Treatment of dairy

wastewater using constructed wetlands. Bioresource Technology, 36, 1656-1663.

Hadad, H.R., Maine, M.A. (2007) Phosphorous amount in floating and rooted macrophytes growing in wetlands from the Middle Paran’a River floodplain (Argentina). Ecological engineering, 31, 251-258.

Hansson, L.A., Annadotte, H., Bergman, E. (1998) Minireview:

Biomanipulation as an application of food chain theory: constraints, ‐ synthesis, and recommendations for temperate lakes. Ecosystems, 1, 558-574.

Hong, Y., Hu, H.Y., Li, F.M. (2008) Growth and physiological responses of freshwater green alga Selenastrum capricornutum to

allelochemical ethyl 2-methyl acetoacetate (EMA) under different initial algal densities. Pesticide Biochemistry and Physiology, 90,

203-212.

Kaseva, M.E. (2004) Performance of a subsurface flow constructed wetland in polishing pre-treated wastewater-a tropical case study.

Water Research, 38, 681-687.

Kadlec, R.H., Knight, R.L. (1996) Treatment Wetlands, CRC Press, USA.

Kadam, A., Oza, P.G.., Dutta, N.S., Shankar, H. (2008) Municipal wastewater treatment using novel constructed soil. Chemosphere, 71, 975-981.

Karim, M.R., Glenn, E.P., Gerba, C.P. (2008) Pathogen removal in wetlands. International Water Association, 21, 71-85.

Katsenovich, Y.A., Hummel, B.A., Ravinet, A.J., Miller, J.F. (2009) Performance evaluation of constructed wetlands in a tropical region.

Ecological Engineering, 35, 1529-1537.

Kasprzak, P. Padisa, J., Koschel, R. (2008) Chlorophyll a concentration across a trophic gradient of lakes:An estimator of phytoplankton biomass. Limnologica, 38, 327-338.

Kayomb, S., Mbwette, T.S.A., Mayo, A.W., Katima, J.H.Y. (2000) Modelling diurnal variation of dissolved oxygen in waste stabilization ponds. Ecological Modelling, 127, 21-31.

Kim, Y., Kim, W. (2000) Roles of water hyacinths and their roots for reducing algal concentration in the effluent form waste stabilization ponds. Water Research, 34, 3285-3294.

Kim, Y., Giokas, D.L., Lee, J., Paraskevas, P.A. (2006) Potential of natural treatment systems for the reclamation of domestic sewage in irrigated agriculture. Desalination, 189, 229-242

Lewitus, A.J., Brock, L.M., Burke, M.K. (2008) Lagoonal stormwater detention ponds as promoters of harmful algal blooms and

eutrophication along the South Carolina coast. Harmful Algae, 8,

60-65.

Li, L., Li, Y., Biswas, D.K. (2008) Potential of constructed wetlands in treating the eutrophic water: Evidence from Taihu Lake of China.

Bioresource Technology, 99, 1656-1663.

Lin, Y.F., Jing S.R., Lee, D.Y. (2003) The potential use of constructed wetlands in a recirculating aquaculture system for shrimp culture.

Environmental Pollution, 123, 107-113.

Mandi, L., Ouazzani, N., Bouhoum, K., Boussaid, A. (1993) Wastewater treatment by stabilization ponds with and without macrophytes under arid climate. Water Science and Technology, 28, 177-181.

Maiga, Y., Denyigba, K., Wethe, J. (2009) Sunlight inactivation of Escherichia coli in waste stabilization microcosms in a sahelian region (Ouagadougou, Burkina Faso). Journal of Photochemistry and Photobiology B: Biology, 94, 113-119.

McCormick, P.V., Shuford, R.E., Chimney, M.J. (2006) Periphyton as a potential phosphorus sink in the Everglades Nutrient Removal Project. Ecological Engineering, 27, 279-289.

Mnaya, B., Mwangomo, E., Wolanski, E. (2006) The influence of wetlands, decaying organic matter, and stirring by wildlife on the dissolved oxygen concentration in eutrophicated water holes in the Seronera River, Serengeti National Park, Tanzania. Wetlands

Ecology and Management, 14, 421-425.

Molleda, P., Blanco, I., Ansola G. (2008) Removal of wastewater pathogen indicators in a constructed wetland in Leon. Spain.

Ecological Engineering, 33, 252-257.

Moreiral, J.F., Cabral, A.R., Silvac, S.A. (2009) Causal model to describe the variation of faecal coliform concentrations in a pilot-scale test consisting of ponds aligned in series. Ecological Engineering, 35, 791-799.

Park, N., Kim, J.H., Cho, J. (2008) Organic matter, anion, and metal wastewater treatment in Damyang surface-flow constructed wetlands in Korea. Ecological Engineering, 32, 68-71.

Polomski, R., Taylor, M.D., Bielenberg, D.G. (2008) Nitrogen and

Phosphorus Remediation by Three Floating Aquatic Macrophytes in Greenhouse-Based Laboratory-Scale Subsurface Constructed

Wetlands. Water Air Soil Pollutant, 197, 1-14.

Shanthala, M., Hosmani, S.P., Hosetti, B.B. (2007) Diversity of phytoplanktons in a waste stabilization pond at Shimoga Town, Karnataka State, India. Environ Monit Assess, 135, 383-395.

Sigee, D.C. (2005) Freshwater Microbiology, John Wiley & Sons Ltd, England.

Sun, G., Austin, D. (2007) Completely autotrophic nitrogen-removal over nitrite in lab-scale constructed wetlands:Evidence from a mass balance study. Chemosphere, 68, 1120-1128.

Tanaka, N., Yutani, K., Aye, T. (2007) Effect of broken dead culms of Phragmites australis on radial oxygen loss in relation to radiation and temperature. Hydrobiologia, 583, 165-72.

Tuszynska, A., Obarska P.H. (2008) Dependence between quality and removal effectiveness of organic matter in hybrid constructed wetlands. Bioresource Technology, 99, 6010-6016.

Vymazal, J. (2006) Removal of nutrients in various types of constructed wetlands. Science of the Total Environment, 380, 48-65.

WieXner, A., Kappelmeyer, U., Kuschk, P. (2005) Influence of the redox condition dynamics on the removal efficiency of a laboratory-scale constructed wetland. Water Research, 39, 248-256.

Winward, G.P., Avery, L.M., Stephenson, T. (2008) A study of the microbial quality of grey water and an evaluation of treatment technologies for reuse. Water Research, 42, 483-491.

Williams, J., Bahgat, M., May, E., Ford, M., Butler, J. (1999)

Mineralisation and pathogen removal in gravel bed hydroponic constructed wetlands for wastewater treatment. Water Science and Technology, 32, 49-58.

Yeh, T.Y., Wu, C.H. (2009) Pollutants Removal within Hybrid

Constructed Wetland System in Tropical Regions. Water Science and Technology, 59, 223-240.

Yi, Q., Hur, C., Kim, Y. (2008) Modeling nitrogen removal in water hyacinth ponds receiving effluent from waste stabilization ponds.

Ecological Engineering, 35, 75-84.

Zhou, S., Hosomi, M. (2008) Nitrogen transformations and balance in a constructed wetland for nutrient-polluted river water treatment using forage rice in Japan. Ecological Engineering, 32, 147-155.

Ziqiang, T., Binghui, Z., Meizhen, L., Zhenyu, Z. (2009) Phragmites australis and Typha orientalis in removal of pollutant in Taihu Lake, China. Journal of Environmental Sciences, 21, 440-446.

附錄

人工濕地概況圖:

人工濕地坐落於高雄大學北方,其校園列車式人工濕地共可細分 成五個階段,分別為氧化塘、表面流一、階梯瀑氣、表面流二及地下 流部份,如下列各圖所示:1.氧化塘:如圖 6.1 所示,氧化塘所在位 置為校園變電所旁,其長30m×寬 6.6m×高 1m,水深 0.8m,氧化塘 階段可將校園污水暫時儲存於此,圖6.2 為入流點,由於氧化塘階段 無植栽,無大型植物遮蔽效應,因此藻類在此階段生長快速,藻類於 白天行光合作用時會增加水中溶氧,有利於好氧性微生物分解有機物 質,但藻類過度滋生將造成水中懸浮固體量提升,圖6.3 為氧化塘出 流口水質情形。

圖6.1 人工濕地氧化塘原圖

圖 6.2 氧化塘入流處原圖 圖 6.3 氧化塘出流原圖

人工濕地第二階段為表面流一,如圖6.4 所示,表面流一階段銜 接氧化塘階段,藉由氧化塘設置之風車系統將氧化塘之水體抽取至表 面流一,表面流一之長約40m×寬 6.6m×高 1m,水深 0.6m,表面流

一階段植栽挺水性植物蘆葦(Phragmites),而蘆葦為一年生草本植

物,因此有時植體有季節性乾枯死亡之現象,圖6.5 為表面流一出流 口之水質情形。

圖6.4 表面流一原圖

圖6.5 表面流一出流原圖 圖 6.6 表面流一水質原圖

階梯瀑氣階段銜接表面流一入流,如圖6.7 所示,主要藉由高低

程差曝氣,以提升水體之溶氧,階梯曝氣階段生長空心菜,而階梯曝 氣階段就類似於一個生態小池塘,部份魚群生長於此處情形。

圖6.7 階梯曝氣原圖

人工濕地第四階段為表面流二,如圖6.8 所示,其表面流二長約 40m×寬 5m×高 1m,水深 0.5m,表面流二位於理學院旁,表面流二 植栽前半段為挺水性植物香蒲(Typha),此階段為列車式人工濕地植栽

植物最為密集位置如圖6.9 所示,而表面流二後半段為植栽蘆葦 (Phragmites),後半段蘆葦照片如圖 6.10 所示,而在表面流二末端出 流處則無植栽大型植物如圖6.11 所示。

圖6.8 表面流二原圖 圖 6.9 表面流二(香蒲)原圖

圖6.10 表面流二(蘆葦)原圖 圖 6.11 表面流二出流原圖

地下流為列車式人工濕地最後階段,地下流長約25m×寬 5m×高 1m,水深 0.5m,地下流階段填充些許土壤及礫石,正上方植栽觀賞 性花卉如圖6.12 所示,然而地下流出流位置現生長佈滿許多植物圖 6.13,列車式人工濕地經氧化塘、表面流及地下流後水最後流至校園

東池,位於理工大樓二後方。

圖 6.12 地下流原圖 圖 6.13 地下流出流處原圖

人工濕地氧化塘及表面流階段水質情形,如圖6.14 所示,由左至 右分別為氧化塘、表面流一入流、出流,表面流二入流、出流,其中 氧化塘水質為最濁綠情形,而表面流二入流水質外觀則較為清澈情 形。

圖 6.14 人工濕地氧化塘及表面流水質原圖

校園漫地流系統概況圖:

校園生態池實場照片如圖6.15 所示,校園生態池與列車式人工濕 地皆入流水皆屬廢水二級處理水源,A-F 點為漫地流及生態池區域,

其 A 處為漫地流入流處位於校園花海及校園變電所旁,各採樣定義 為河道中木橋下,水流經河道B、C、D、E 最後流至生態池 F 處。

漫地流入流-A 處 漫地流入流-B 處

漫地流入流-C 處 漫地流入流-D 處

漫地流入流-E 處 漫地流入流-F 處 圖 6.15 各採樣點照片

自然淨水系統中校園生態池缺乏大型性植物控制藻類生長,藻類 生長影響水質外觀,於漫地流河道B 至 E 處有藻類過度生長情形,

圖6.16 為藻類嚴重滋生照片。

圖6.16 藻類嚴重滋生之水質照

自然淨水系統主要藉由天然微生物及植物處理污染物,植物存在 於自然淨水系統中系扮演相當重要之角色,除可提升污染物去除效率 外且可控制過度藻類生長情形,圖6.17 為植物生長良好之自然淨水 系統現場照(包含以前校內列車式人工濕地實照圖)。

圖 6.17 密集植物生長情形圖

溶氧 初始濃度 布袋蓮 水芙蓉 蘆葦 香蒲 黑布 硫酸銅 控制組

初始濃度

布袋蓮 0.2545821

水芙蓉 0.0021790 0.03002

蘆葦 0.0003044 0.01905 0.99306

香蒲 0.0004383 0.02567 0.72880 0.62989 黑布 0.0000001 0.00090 0.00008 0.00001 1.3E-05

硫酸銅 0.4025318 0.26352 0.00222 0.00031 4.5E-04 7.0E-08

控制組 0.0002104 0.00083 0.00231 0.00155 1.4E-03 4.4E-05 0.00021

過去FWS-1 過去FWS-2

溫度 初始濃度 布袋蓮 水芙蓉 蘆葦 香蒲 黑布 硫酸銅 控制組 初始濃度

布袋蓮 0.0108

水芙蓉 0.0171 0.024896

蘆葦 0.4018 0.001377 0.002773

香蒲 0.2681 0.000101 0.000252 0.5725

黑布 0.4445 0.000008 0.000015 0.0145 0.00072

硫酸銅 0.0911 0.000034 0.000051 0.0033 0.00057 0.0139

控制組 0.3834 0.000001 0.000003 0.0098 0.00023 0.467605 1.380E-02

濁度 初始濃度 布袋蓮 水芙蓉 蘆葦 香蒲 黑布 硫酸銅 控制組

控制組 0.0049 0.0036 0.0004 0.0032 0.004 0.000056 2.1E-04

SS 初始濃度 布袋蓮 水芙蓉 蘆葦 香蒲 黑布 硫酸銅 控制組

意見回覆

口試委員 董正鈦 老師:

1. 內文引用之作者不需逗號 回覆:已於文內修正P39、P40

2. 藻類名稱字體需統一,統一成斜體或正楷體 回覆:已於文內修正P40

3. P88 中 A.B.C…文中敘述方式統一 回覆:修正於P88

4. 圖片改成彩色較為清晰

回覆:實場及藻種鑑定照片,包括P1、P49、P50、P56、P76、P87、

P93、P96、P108、P109、P110、P111、P112、P114、P115 及 P116 於 定稿後印刷成彩色圖片

5. 植物控制藻類生長除遮蔽效應機制外,是否有其他機制,且藻類 生長控制議題建議給後續研究之延續

回覆:植物控制藻類生長,蒐集近幾年來相關之文獻,瞭解除植物體 遮蔽效應,還包括競爭吸收營養鹽及分泌排它物質兩機制,其中競爭

回覆:植物控制藻類生長,蒐集近幾年來相關之文獻,瞭解除植物體 遮蔽效應,還包括競爭吸收營養鹽及分泌排它物質兩機制,其中競爭