• 沒有找到結果。

第五章 結論與建議

第二節 建議

根據本研究之整個研究過程及結論,提出以下建議,期盼能提供教師教學與後續研 究者一些參考。

一、對教學與教材設計上的建議

本研究結果顯示針對「熱膨脹」概念所設計之雙重情境學習事件,使95%的學生概 念改變成功,且透過概念改變歷程腦波資料之研究,可探知學生在概念改變歷程中的認 知處理狀況,但所設計之靜態圖片加文字與動態影片加聲音兩種不同表徵之呈現上,在 概念改變歷程腦波資料上則無顯著差異。換言之,本研究以科學教科書使用頻率最高的 圖文並呈及多媒體教學上常用的影片呈現方式所設計之學習事件,均可讓學生從中擷取 所需訊息,並在科學概念改變上同樣達到其成效,但究其關鍵乃在於以學生先備概念為 出發點,在製造學生認知之不和諧中,鼓勵其發展新的論點,而非僅止於學習事件之呈 現,而以概念改變歷程腦波資料來看,單純學習事件之呈現,學生之大腦運作是較不活 躍的。因此教科書之編寫或教師之教學上,在關注表徵之形式或表徵之呈現方式之餘,

若能在提供訊息或建立概念前後,更加著力於如何促使學生產生認知不和諧及協助學生

連結新舊訊息以產生新的論點,應更有利於學生之概念建構或概念改變。

而面對難以改變的科學概念,本研究所採用之雙重情境學習模式最關鍵之處即為情 境學習事件之設計,教師需先明瞭學生所進行學習之科學概念的先備信念,及這些科學 概念的性質,再藉由挑戰學生有關這些科學概念的知識論和本體論,造成與學生先備知 識的不一致或不和諧,並提供必要的心智支持,讓學生重新建構更多這些概念的科學觀 點,才能夠對概念改變過程有所助益。換言之,教師更需思量整個科學概念抽象、微觀 與動態過程之特性,在教學設計上設法讓抽象成為具體,讓不可見變為可見,協助學生 得以觀察概念發生之過程,並謹慎且適當選擇衝突事件或教學方法,協助學生由起始點 開始進行情境學習活動,循序漸進的經驗其所缺乏的心智架構,並據以建構特定的科學 概念,也才有可能幫助學生在短時間內發生概念改變。

二、對未來研究的建議

本研究結果顯示針對「熱膨脹」概念所設計之雙重情境學習事件,使 95%的學生 概念改變成功,且透過概念改變歷程腦波資料之研究與分析,可探知學生在概念改變 歷程中的認知處理狀況,顯示將腦電圖應用於科學教育上概念改變歷程之研究確然可 行,也期望未來能有更多相關研究投入,以能更明瞭學生在科學概念改變過程中的大 腦運作模式。

但由於本研究受限於人力與時間,在取樣與分析上均有未臻完善之處,僅以以下 幾點建議,期待後續之研究能加以參酌,讓科學教育相關研究亦能結合認知神經科學、

認知心理學之研究,以進一步瞭解學生在建構科學概念及概念改變歷程中如何進行訊 息處理,進而協助學生之科學學習。

(一) 本研究所施測之受詴者僅侷限於新竹市三所高中之二十位高一學生,且概念改 變內容設計僅針對「熱膨脹」概念,建議未來研究者可更擴大施測對象及針對 不同的科學課程進行設計,以期明瞭學生在科學學習中之認知歷程是否有其通 則性。

(二) 本研究並未進行追蹤研究,未來若能考量增加受詴者之追蹤測,或許能對概念 改變之歷程及其成效,以及長期記憶之運作模式有更進一步的瞭解。

(三) 本研究概括性的分析了大腦各頻率腦波功率強度變化、同調性及拓樸圖,並分 別著力於分析其與科學概念改變歷程間的關係,但未能進行更詳盡之交叉比 對,而這當中或許能提供更多不同的訊息,可更充分探討科學學習與大腦認知 處理模式之相關性。

(四) 本研究以概念改變理論為主軸,採用貼近學生科學學習方式進行施測,未來或 可將腦電圖之研究應用於更多科學學習層面,如結合學生之科學實作、科學讀 寫等,以期對學生的科學學習提供不同角度之思維。

參考文獻

許良榮、邱月玲(2003)。不同的科學圖文配置對學生閱讀學習的影響-以「月相改變」

為例。台中師院學報,第17期,283-310頁。

Ainsworth, S. E. (1999). The functions of multiple representations. Computers and Education, 33(2/3), 131–152.

Andreassi, J. L. (2000). Psychophysiology: Human behavior and physiological response, 4th ed. New Jersey: Lawrence Erlbaum Associates Publishers.

Anglin, G. J., & Stevens, J. T. (1987). Prose-relevant pictures and recall from science text.

ERIC Document Reproduction Service No. ED285524.

Ametller, J., & Pintó, R. (2002). Students’ reading of innovative images of energy at secondary school level. International Journal of Science Education, 24(3), 285-312.

Baddeley, A. (2000). The episodic buffer: a new component of working memory? Trends in

Cognitive Sciences, 4(11), 417-423.

Baddeley, A. (2001). Is working memory still working? American Psychologist, 56(11), 851-864.

Baddeley, A. (2003). Working memory and language: An overview. Journal of

Communication Disorders, 36(3), 189-208.

Barbe, W. B., & Milone, M. N., Jr. (1980). Modality. Instructor, 89(6), 44-47.

Başar, E., Başar-Eroglu, C., Karakaş, S., & Schȕ rmann, M. (2001). Gamma, alpha, delta, and theta oscillations govern cognitive processes. International Journal of Psychophysiology,

39,241-248.

Behrendt, H., & Dahncke, H. (2001). Research in science education-past, present, and future.

Kluwer Academic Publishers.

Brick, J. P., & Lawson, A. E. (1999). The persistence of the candle-and-cylinder

misconception. Journal of Chemical Education, 76(7), 914-916.

Butcher, K. R. (2006). Learning from text with diagrams: promoting mental model development and inference generation. Journal of Educational Psychology, 98(1), 182-197.

Carney, R. N., & Levin, J. R. (2002). Pictorial illustrations still improve students' learning from text. Educational Psychology Review, 14, 5-25.

Chang, H. Y., Chiu, M. H. (2004). Assessing science learning via two types of instructional representations, The Annual Meeting of National Association for Research in Science Teaching (NARST), Vancouver, British Columbia.

Chi, M.T.H., Slotta, J.D., & deLeeuw, N. (1994). From things to processes: A theory of conceptual change for learning science concepts. Learning and instruction, 4, 27-43.

Clement, J. (1993). Using bridging analogies and anchoring intuitions to deal with students’

preconceptions in physics. Journal of Research in Science Teaching, 30, 1241–1257.

Cooper, N. R., Croft, R. J., Dominey, S. J. J., Burgess, A. P., & Gruzelier, J. H. (2003).

Paradox lost? Exploring the role of alpha oscillations during externally vs. internally directed attention and the implications for idling and inhibition hypotheses. International

Journal of Psychophysiology, 47(1), 65-74.

Copolo, C., & Hounshell, P. (1995). Using three-dimensional models to teach molecular structures in high school chemistry. Journal of Science Education and Technology, 4(4), 295-305.

Driver, R., & Easley, J. (1978). Pupils and paradigms: A review of literature related to concept development in adolescent science students.

Duit, R. (1991). Students' conceptual framework: consequences for learning science. In Glynn, S. M., Yeany, R. H., & Britton, B. K. (Eds.), The Psychology of Learning Science. New Jersey: Lawrence Erlbaum Associates Publishers.

Fang, C. H., McWherter, C., & Gilbert, G. L. (1998). A simple determination of percent

oxygen in air. Journal of Chemical Education, 75(1), 58-59.

Gardner, H., & Hatch, T. (1989). Educational implications of the theory of multiple intelligences. Educational Researcher, 18(8), 4-10.

Gevin, A., & Smith, M. E. (2000). Neurophysiologycal measures of working memory and individual differences in cognitive ability and cognitive style. Cerebral Cortex, 10, 830-839.

Gerě, I., & Jaušcvec, N. (1999). Multimedia: Differences in cognitive processes observed with EEG. Educational Technology Research and Development, 47(3), 5-14.

Gerě, I., & Jaušcvec, N. (2001). Differences in EEG power and coherence measures related to the type of presentation: text versus multimedia. Journal of Educational Computing

Research, 25(2), 177-195.

Gilbert, J. K. (1999). On the explanation of change in science and cognition. Science &

Education, 8(5), 543-557.

Glynn, S. M., Yeany, R. H., & Britton, B. K. (1991). The psychology of learning science:

Lawrence Erlbaum Associates.

Grabner, R. H., Stern, E., & Neubauer, A. C. (2003). When intelligence loses its impact:

neural efficiency during reasoning in a familiar area. International Journal of

Psychophysiology, 49(2), 89-98.

Grimley, M. (2007). Learning from multimedia materials: The relative impact of individual differences. Educational Psychology, 27(4), 465 - 485.

Haarmann, H. J., & Cameron, K. A. (2005). Active maintenance of sentence meaning in working memory: Evidence from EEG coherences. International Journal of

Psychophysiology, 57, 115-128.

Haier, R. J., Siegel, B., Tang, C., Abel, L., & Buchsbaum, M. S. (1992). Intelligence and changes in regional cerebral glucose metabolic rate following learning. Intelligence, 16, 415-426.

Haier, R. J., White, N. S., & Alkire, M. T. (2003). Individual differences in general

intelligence correlate with brain function during nonreasoning tasks. Intelligence, 31(5), 429-441.

Hannus, M., & Hyönä, J. (1999). Utilization of illustrations during learning of science textbook passages among low- and high-ability children. Contemporary Educational

Psychology, 24(2), 95-123.

Henderson, J. M., & Hollingworth, A. (1999). High-level scene perception. Annual Review of

Psychology, 50, 243-71.

Hughes, A., Wilkens, T., Wildemuth, B. M., & Marchionni, G. (2003). Text or pictures? An eyetracking study of how people view digital video surrogates. Image and Video Retrieval, Proceedings Lecture Notes in Computer Science. Retrieved form http://www.open-video.org/papers/hughes_civr_2003.pdf

Jaušcvec, N., & Jaušcvec, K. (2000). EEG activity during the performance of complex mental problems. International Journal of Psychophysiology, 36(1), 73-88.

Jaušcvec, N., & Jaušcvec, K. (2004). Differences in induced brain activity during the performance of learning and working-memory tasks related to intelligence. Brain and

Cognition, 54, 65-74.

Jensen, O., Gelfund, J., kouniors, J., & Lisman, P. E. (2002). Oscillations in the alpha band (9-12 Hz) increase with memory load during retention in a short-term memory task.

Cereb. Cortex, 12, 877-882.

Jin, S-H., Kwon, Y-J., Jeong, J-U., Kwon, S-W., & Shin, D-H. (2006). Differences in brain information transmission between gifted and normal children during scientific

hypothesis generation. Brain and Cognition, 62, 191-197.

Kaakinen, J. K., & Hyönä, J. (2005). Perspective effects on expository text comprehension:

Evidence from think-aloud protocols, eyetracking, and recall. Discourse Processes,

40(3), 239 - 257.

Keller, B. A. (1998). Student preferences for representations of functions, Int. J. Math. EDUC.

SCI. TECHNOL., 29(1), 1-17.

Klein, P. D. (2003). Rethinking the multiplicity of cognitive resources and curricular

representations: Alternatives to " learning styles " and " multiple intelligences ". Journal

of Curriculum Studies, 35(1), 45-81.

Klimesch, W. (1999). EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Research Reviews, 29, 169-195.

Klimesch, W., Doppelmayr, M., Pachinger, T., & Ripper, B. (1997). Brain oscillations and human memory: EEG correlates in the upper alpha and theta band. Neuroscience Letters,

238(1-2), 9-12.

Klimesch, W., Sauseng, P., & Hanslmayr, S. (2007). EEG alpha oscillations: The inhibition-timing hypothesis. Brain Research Reviews, 53, 63-88.

Kuhn, T. S. (1970). The structure of scientific revolutions. Chicago, IL:. The University of Chicago Press.

Kwon, Y.-J., & Lawson, A. E. (2000). Linking brain growth with the development of scientific reasoning ability and conceptual change during adolescence. Journal of

Research in Science Teaching, 37(1), 44-62.

Levin, J. R., Anglin, G. J., & Carney, R. N. (1987). On empirically validating functions of pictures in prose. In D. M. Willows & H. A. Houghton (Eds), Illustrations, graphs and diagrams: Psychological theory and educational practice. New York: Springer-Verlag.

Lewalter, D. (2003). Cognitive Strategies for Learning from Static and Dynamic Visuals.

Learning and Instruction, 13(2), 177-189.

Lowe, R. K. (2003). Animation and learning: selective processing of information in dynamic graphics. Learning and Instruction, 13(2), 157-176.

Mayer, R. E. (1997). Multimedia learning: Are we asking the right questions? Educational

Psychologist, 32(1), 1 - 19.

Mayer, R. E. (2001). Multimedia Learning. Cambridge, United Kingdom: Cambridge University Press.

Mayer, R. E. (2003). The promise of multimedia learning: Using the same instructional design methods across different media. Learning and Instruction, 13(2), 125-139.

Mayer, R. E., & Gallini, J. K. (1990). When is an illustration worth ten thousand words?

Journal of Educational Psychology, 82, 715-726.

Mayer, R. E., & Sims. V. K. (1994). For whom is a picture worth a thousand words?

Extensions of a dual-coding theory of multimedia learning. Journal of Educational

Psychology, 86, 389-401.

Weiss, S., & Rappelsberger, P. (2000). Long-range EEG synchronization during word encoding correlates with successful memory performance. Cognitive Brain Research,

9(3), 299-312.

Mintzes, J. J., Wandersee, J. H. & Novak, J. D. (1998). Teaching science for understanding: A human constructivist view. Educational Psychology Series (Academic Press). San Diego:

CA Elsevier.

Molle, M., Marshall, L., Fehm, H. L., & Born, J. (2002). EEG theta synchronization

conjoined with alpha desynchronization indicate intentional encoding. European Journal

of Neuroscience, 15(5), 923-928.

Moreno, R., & Mayer, R. E. (1999). Cognitive principles of multimedia learning: the role of modality and contiguity. Journal of Educational Psychology, 91, 724-733.

Osborne, R. (1980). Some aspects of the students' view of the world. Research in Science

Education, 10(1), 11-18.

Osborne, R., & Gilbert, J. (1979). Investigating student understanding of basic physics concepts using an interview-about-instances technique. Research in Science Education,

9(1), 85-93.

Paas, F., & Van Merriënboer, J. (1994). Instructional control of cognitive load in the training

of complex cognitive tasks. Educational Psychology Review, 6(4), 351-371.

Paivio, A.(1986). Mental Representation: A Dual Coding Approach. New York: Oxford University Press.

Papousek, I., & Schulter, G. (2004). Manipulation of frontal brain asymmetry by cognitive tasks. Brain and Cognition, 54(1), 43-51.

Park, O.-C., & Hopkins, R. (1992). Instructional conditions for using dynamic visual displays:

a review. Instructional Science, 21(6), 427-449.

Park, O.-C., & Gittelman, S. S. (1995). Dynamic characteristics of mental models and dynamic visual displays. Instructional Science, 23(5), 303-320.

Peckham, D. G. (1993). A new use for the candle and tumbler myth. Journal of Chemical

Education, 70(12), 1008-1009.

Perner, J. (1991). Understanding the representational mind. Cambridge, MA: MIT Press.

Posner, G.J., Strike, K.A., Hewson, P.W., & Gertzog, W.A. (1982). Accommodation of a scientific conception: Toward a theory of conceptual change. Science Education, 66, 211–227.

Pozzer, L. L., & Roth, W.-M. (2003). Prevalence, function, and structure of photographs in high school biology textbooks. Journal of Research in Science Teaching, 40(10), 1089-1114.

Prain, V., & Waldrip, B. (2006). An exploratory study of teachers' and students' use of multi-modal representations of concepts in primary science. International Journal of

Science Education, 28(15), 1843-1866.

Quyen, M. L. V., Martinerie, J., Adam, C., & Varela, F. J. (1999). Nonlinear analyses of interictal EEG map the brain interdependences in human focal epilepsy. Physica D:

Nonlinear Phenomena, 127(3-4), 250-266.

Rayner, K. (1998). Eye movements in reading and information processing: 20 years of research. Psychological Bulletin, 124(3), 372-422.

Rehder, B., & Hoffman, A. (2005). Eyetracking and selective attention in category learning.

Cognitive Psychology, 51(1), 1-41.

Roberts, J. W. (2002). Beyond learning by doing: The brain compatible approach. Journal of

Experiential Education, 25(2), 281-285.

Rosen, V. M., & Engle, R. W. (1998). Working memory capacity and suppression. Journal of

Memory and Language, 39(3), 418-436.

Schnotz, W., & Bannert, M. (2003). Construction and Interference in Learning from Multiple Representation. Learning and Instruction, 13(2), 141-156.

Schnotz, W., & Lowe, R. (2003). External and internal representations in multimedia learning.

Learning and Instruction, 13(2), 117-123.

Schnotz, W., Vosniadou, S., & Carretero, M. (1999). New perspectives on conceptual change.

Amsterdam: Pergamon Press.

Seufert, T. (2003). Supporting coherence formation in learning from multiple representations.

Learning and Instruction, 13(2), 227-237.

Seward, T. V., & Sewards, M. A. (1999). Alpha-band oscillations in visual cortex: part of the nural correlate of visual awareness? Journal of Research in Science Teaching, 32, 35-45.

She, H. C. (2002). Concepts of a higher hierarchical level require more dual situated learning events for conceptual change: a study of air pressure and buoyancy. International

Journal of Science Education, 24, 981-996.

She, H. C. (2003). DSLM instructional approach to conceptual change involving thermal expansion. Research in Science and Technological Education, 21(1), 43-54.

She, H. C. (2004a). Facilitating changes in ninth grade students’ understanding of dissolution and diffusion through DSLM instruction. Research in Science Education, 34(4),

503-525.

She, H. C. (2004b). Fostering radical conceptual change through dual-situated learning model.

Journal of Research in Science Teaching, 41(2), 142-164.

She, H. C. (2005). Enhancing eighth grade students' learning of buoyancy: The interaction of teachers' instructional approach and students' learning preference styles. International

Journal of Science and Mathematics Education, 3(4), 609-624.

Sinatra, G. M., & Pintrich, P. R. (2002). Intentional conceptual change. NJ: Lawrence Erlbaum Associates.

Slykhuis, D., Wiebe, E., & Annetta, L. (2005). Eye-tracking students' attention to PowerPoint photographs in a science education setting. Journal of Science Education and

Technology, 14(5), 509-520.

Stern, E., Aprea, C., & Ebner, H. G. (2003). Improving cross-content transfer in text

processing by means of active graphical representation. Learning and Instruction, 13(2), 191-203.

Sternberg, R. J. (2003). Cognitive psychology (3rd Edition). Belmont, CA:

Thomson/Wadsworth.

Sweller, J. (1988). “ Cognitive load during problem solving: effects on learning”, Cognitive

Science, 12, 257-285.

Sweller, J., & Chandler, P. (1994). Why some material is difficult to learn. Cognition and

Instruction, 12(3), 185 - 233.

Sweller, J., van Merrienboer, J., & Paas, F. (1998). Cognitive architecture and instructional design. Educational Psychology Review, 10(3), 251-296.

Tai, R. H., Loehr, J. F., & Brigham, F. J. (2006). An exploration of the use of eye-gaze tracking to study problem-solving on standardized science assessments. International

Journal of Research & Method in Education, 29(2), 185-208.

Thagard, P. (1992). Conceptual revolutions. Princeton, NJ:Princeton University Press.

Treagust, D. F., Chittleborough, G., Mamiala, T. L. (2002). Students’ understanding of the role of scientific models in learning science, International Journal of Science Education,

24(4), 357-368.

Tsui, C., & Treagust, D. (2003). Learning genetics with multiple representations: A three dimensional analysis of conceptual change. The National Association for Research in Science Teaching, Philadelphia, PA, March 23-26.

Tsui, C., & Treagust, D. (2004). Conceptual change in learning genetics: An ontological perspective. Research in Science and Technological Education, 22(2ov), 185-202.

Wallace, C. (2004). An illumination of the roles of hands-on activities, discussion, text

reading, and writing in constructing biology knowledge in seventh grade. School Science

and Mathematics, 104(2), 70-78.

Ward, L. M. (2003). Synchronous neural oscillations and cognitive processes. Trends in

Cognitive Sciences, 7(12), 553-559.

Weiss, S., & Rappelsberger, P. (1996). EEG coherence within the 13-18 Hz band as a

Weiss, S., & Rappelsberger, P. (1996). EEG coherence within the 13-18 Hz band as a