• 沒有找到結果。

第七章 結論與建議

第二節 建議

建議一

辦理本研究成果之推廣說明會:立即可行建議 主辦單位:內政部建築研究所

協辦單位:社團法人中華民國風工程學會、中華民國全國建築師公會 為使本計畫之研究成果能立即為建築區植栽防風規劃與設計之應用,

可以辦理本研究成果之推廣說明會。

建議二

針對常見綠建築植栽樹種進行特性分類:中長期建議 主辦單位:農委會林務局、林業試驗所

協辦單位:社團法人中華民國風工程學會、中華民國全國建築師公會 研究中將「台灣原生植物圖鑑」中列舉之喬木,依據照片外觀進行樹 冠密度了初步分類,以供排樹植栽減風設計規劃參酌之依據。建議辦理常 見植栽樹種特性的相關研究,以確認本研究樹種分類之正確性。

82

83

84

會發生不適強風的情形。

12 都 市 範圍 內因 有建 築物 影 響,穩定流場情形不多,如 何應用本研究成果?請說明。

排樹前因鄰近建築或地物之影響 確 有 可 能 造 成 不 穩 定 的 來 風 風 況。本研究將沿用本國現行風力規 範建議的準穩定(quasi-steady)分析 概念進行探討,其結果應已具實際 應用價值。

85

86

87

88

89

90

八、王安強副所長:

1.本案在單株樹及排樹之研究成果 具有學術價值。實務面上,因模擬 都 市 建 築 及 風 場 有 一 定 之 困 難 度,所內過往進行過廣告招牌及雨 遮等都市內構造物受風之相關研 究,是否能作為本案研究之參考?

所內過往在如招牌及雨遮等附屬建 物受風之相關研究上成果豐碩。異 於前述之研究對象,樹對風而言是 可穿透的,故其相應風的流動與行 為並不相同。依主席之建議,研究 中 將 參 酌 這 些 過 往 研 究 之 推 行 步 驟,從事系統化受風情況的分析。

91

92

93 canopy flows using plant-scale representation

(2) Turbulent kinetic energy budgets in a model canopy: comparisons between LES and wind-tunnel

依委員建議,於第二章與參考文獻 中增補此兩篇文章之引用。

94

95

96

附 錄 四 第 一 次 專 家 座 談 會 議 意 見 與 回 應

97

98

1.本研究目前以樹形來分析減風效 果,是否以該樹的面積與穿透性來 研究其減風效果。

對單株樹而言,樹的形狀、大小與 樹冠之穿透性是影響樹後減風效果 的主要因子。對排樹而言,樹與樹 的間隔也屬重要。本研究乃循此觀 點,逐步進行這些影響因之對行人 風場中地面風速的減風效果進行探 討。

黎益肇教授:

1.是否以樹冠密度來對減風效果做 直接的分析,未來可透過相對應的 樹冠密度來引用相同的率定參數 至不同的樹種進行 CFD 模擬,並 建置資料庫。

委員的建議與本研究進行的方向一 致。研究中 3 個選定樹種相應之樹 冠 枝 葉 密 度 分 別 為 80%( 台 灣 欒 樹 )70%( 瓊 崖 海 棠 ) 與 55%( 阿 勃 勒),藉由風洞試驗中的樹後風速剖 面率定而得之樹冠特性參數可以供 未來相關 CFD 模擬之重要參考與依 據。

99

100

附 錄 五 第 二 次 專 家 座 談 會 議 意 見 與 回 應

第二次專家座談會議 簽到單

101

102

103

104

參 考 文 獻

1. 行政院農委會,常見行道樹及景觀木,https://kmweb.coa.gov.tw/subject /lp.asp?CtNode=5598&CtUnit=3327&BaseDSD=7&mp=1&nowPage=1&

pagesize=20。

2. 科博館,10 種臺灣地區常見行道樹種,http://web2.nmns.edu.tw/botany / most/most8_01.php。

3. 鄧書麟、何坤益、陳財輝、王志斌、高銘發,台灣西海岸防風林造林

8. Schomaker, M.E., Zarnoch, S.J., Bechtold, W.A., Latelle, D. J., Burkman, W.G. and Cox, S.M. (2007), “Crown-condition classification: A Guide to data collection and Aanalysis,” United States Department of Agriculture Forest Service, Southern Research Station General, Technical Report SRS–102.

9. Song, C. and Yuan, M. (1988), “A weakly compressible flow model and rapid convergence method,” Journal of Fluids Engineering, ASME, Vol.

110, No. 4, pp.441-455.

10. Finnigan, J. (2000), “Turbulence in plant canopies,” Annual Review Fluid Mechanics, Vol. 32, pp. 519-571.

11. Raupach, M.R., Antonia, R. A. and Rajagopalan, S. (1991), “Rough-wall turbulent boundary layers,” Applied Mechanics Review, Vol. 44, pp. 1-25.

12. Mihailovic, D.T., Lalic, B. Rajkovic, B. and Arsenic, I. (1999), “A

105

roughness sublayer wind profile above non-uniform surface,”

Boundary-Layer Meteorology, Vol. 93, No. 3, pp. 425–451.

13. Raupach, M.R., Coppin, P.A. and Legg, B.J. (1986), “Experiments on scalar dispersion within a model plant canopy. Part I: The turbulence structure,” Boundary-Layer Meteorol, Vol. 35, pp. 21-52.

14. Massman, W. (1987), “A comparative study of some mathematical models of the mean wind structure and aerodynamic drag of plant canopies,”

Boundary-Layer Meteorology, Vol. 40, pp. 179-197.

15. Novak, M.D., Warland J.S., Orchaansky, A.L., Ketler, R. and Green, R.

(2000), “Wind tunnel and field measurements of turbulent flow in forests.

Part I: Uniformly thinned stands,” Boundary-Layer Meteorology, Vol. 95, pp. 457-495.

16. Boldes, U., Colman, J. and Maranon D.L.J. (2001), “Field study of the flow behind single and double row herbaceous windbreaks,” Journal of Wind Engineering and Industrial Aerodynamics, Vol. 89, pp. 665-687.

17. Flesch, T. K. and Wilson, J.D. (1999), “Wind and remnant tree sway in forest cutblocks. I. Measured winds in experimental cutblocks,”

Agricultural and Forest Meteorology, Vol. 93, pp. 229-242.

18. Flesch, T. K. and Wilson, J. D. (1999), “Wind and remnant tree sway in forest cutblocks. II. Relating measured tree sway to wind statistics,”

Agricultural and Forest Meteorology, Vol. 93, pp. 243-258.

19. Wilson, J. D. and Flesch, T. K. (1999), “Wind and remnant tree sway in forest cutblocks. III. A windflow model to diagnose spatial variation,”

Agricultural and Forest Meteorology, Vol. 93, pp. 243-258.

20. Raynor, G.S. (1971), “Wind and temperature structure in a coniferous forest and a contiguous field,” Forest Science, Vol. 17, pp. 351-363.

21. Su, H.B., Shaw, R.H., U, K.T.P., Moeng, C.H. and Sullivan, P.P. (1998),

“Turbulent statistics of neutrally stratified flow within and above a sparse

106

forest from large-eddy simulation and field observations,”

Boundary-Layer Meteorology, Vol. 88, pp. 363-397.

22. Patton, E.G. and Davis, K.J. (2001), “Decaying scalars emitted by a forest canopy: A numerical study,” Boundary-Layer Meteorology, Vol. 100, pp.

91-129.

23. Watanabe, T. (2004), “Large eddy simulation of coherent turbulence structures associated with scalar ramps over plant canopies,”

Boundary-Layer Meteorology, Vol. 112, pp. 307-341.

24. Yue, W., Parlange, M.B., Meneveau, C., Zhu, W. and Katz, J. (2007),

“Large-eddy simulation of plant canopy flows using plant-scale representation,” Boundary-Layer Meteorology, Vol. 124, pp. 183-203.

25. Yue, W., Meneveau, C., Parlange, M.B., Zhu, W., Kang, H.S. and Katz, J.

(2007), “Turbulent kinetic energy budgets in a model canopy: comparisons between LES and wind-tunnel experiments ,” Environmental Fluid Mechanics, Vol. 8, pp. 73-95.

26. Yamaguchi, A., Enoki, K. and Ishihara, T. (2009), “A generalized canopy model for the wind prediction in the forest and the urban area” The 7th Asia-Pacific Conference on Wind Engineering, T2-A5, Taipei, Taiwan.

27. Shaw, R. H., and Schumann, U. (1992), “Large-eddy simulation of turbulent flow above and within a forest.” Boundary-Layer Meteorology, Vol. 61, pp. 47–64.

28. Yamada, T.(1982), “A numerical model study of turbulent airflow in and above a forest canopy”, Journal of the Meteorological Society of Japan, Vol. 61 (1), pp. 439–454.

29. Uno, I., Ueda, H. and Wakamatsu, S.(1989), “Numerical modeling of the nocturnal urban boundary layer”, Boundary Layer Meteorology, Vol. 49, pp. 77–98.

30. Svensson, U. and Haggkvist, K.(1990), “A two-equation turbulence model

107

for canopy flows”, Journal of Wind Engineering and Industrial Aerodynamics, Vol. 35, pp. 201–211..

31. Green, S.R. (1992), “Modelling turbulent air flow in a stand of widely-spaced trees”, PHOENICS. Journal of Computational Fluid Dynamics Application, Vol. 5, pp. 294–312.

32. Hiraoka, H.(1993), “Modelling of turbulent flows within plant/urban canopies”, Journal of Wind Engineering and Industrial Aerodynamics, Vol.

46/47, pp. 173–182.

33. Liu, J., Chen, J.M., Black, T.A. and Novak, M. D. (1996), “E–e modelling of turbulent airflow downwind of a model forest edge”, Boundary-Layer Meteorology, Vol. 77, pp. 21–44.

34. Sládek, I., Bodnár, T. and Kozel, K. (2007), “On a numerical study of atmospheric 2D and 3D-flows over a complex topography with forest including pollution dispersion,” Journal of Wind Engineering and Industrial Aerodynamic, Vol. 95, pp. 1424-1444.

35. Mochida, A., Tabata, A., Iwata, T. and Yoshino, H. (2008), “Examining tree canopy models for CFD prediction of wind environment at pedestrian level”, Journal of Wind Engineering and Industrial Aerodynamic, Vol. 96, pp. 1667-1677.

36. Fang, F.M., Liang, T.C., Chung, C.Y. and Li, Y.C. (2015), “On the simulation of flow around discrete coniferous trees,” Journal of the Chinese Institute of Engineers, Vol. 38, No. 5, pp. 665-674.

37. Fang, F.M., Li, Y.C. and Chung, C.Y. (2016), “Numerical simulation of flow around broad-leaf trees,” Journal of Applied Science and Engineering, Vol. 19(4), pp. 429-438.

38. Hunt, J.C.R., Poulton, E.C. and Mumford, J.C. (1976), “The effects of wind on people: new criteria based on wind tunnel experiments”, Building Environment, Vol. 11, pp.15-38.

108

39. Penwarden, A.D. (1973), “Acceptable wind speeds in towns”, Building Science, Vol. 8, pp.259-267.

40. Apperley, L.W. and Vickery, B.J. (1974), “The prediction and evaluation of the ground level wind environment,” Proceedings of the Fifth Australian Conference on Hydraulics and Fluid Mechanics, Christchurch, New Zealand.

41. Germano, U., Piomelli, P. and Cabot, W.H. (1991), “A dynamic subgrid-scale eddy viscosity model,” Physics of Fluids, Vol. A(3), pp.

1760-1765.

42. MacCormack, R. (1969), “The effect of viscosity in hyper-velocity impact cratering,” AIAA paper No. 69-354, American Institute of Aeronautics and Astronautics, Washington D.C.

43. Crank, J. and Nicolson, P. (1947), “A practical method for numerical evaluation of solutions of partial differential equations of the heat conduction type,” Proceedings of the Cambridge Philosophical Society, Vol. 43, pp. 50–64.

44. Lawson T.V. and Penwarden A.D. (1975), “The effects of wind on people in the vicinity of buildings,” Proceedings 4th International Conference on Wind Effects on Buildings and Structures, CambridgeUniversity Press, Heathrow, pp. 605–622.

109

植栽降低都市環境強風之效果評估與設計原則研究 出版機關:內政部建築研究所

電話:(02)89127890

地址:新北市新店區北新路 3 段 200 號 13 樓 網址:http://www.abri.gov.tw

編者:陳建忠、方富民、鍾政洋、張人傑、李冠儒 出版年月:108 年 12 月

版次:第 1 版

ISBN:978-986-5448-40-0

相關文件