• 沒有找到結果。

第七章  結論與建議

第二節 建議

建議應用本研究所建立之環境降溫與熱舒適評估預測模型,針對過去之綠 建築案例進行評估,以量化綠建築對環境降溫與提升熱舒適上之量化效益,彰顯 我國綠建築政策在改善都市微氣候上之成效:立即可行建議

主辦機關:內政部建築研究所 協辦機關:財團法人台灣建築中心

建議二

本研究為了探討在熱季中最嚴苛時綠建築設計對基地內降溫與熱舒適提升 之效益,因此以幾近無風之狀態下進行探討。然而,都市風廊之創造以及基地內 建築群之配置以提升通風品質與風速,與戶外熱舒適之提升有密切關係。建議後 續可針對都市建築群之配置如何影響基地內通風以利降溫與提升熱舒適進行量 化之研究。

主辦機關:內政部建築研究所 協辦機關:無

附錄一:期初審查意見回覆表

附錄二:期中審查意見回覆表

24. 對於海綿城市對熱島之影響並要論述。 列。 Matzarakis 2008)為適用台灣本土 戶外之熱舒適範圍,適用於台灣各 地,且熱不舒適之起算溫度,各地 亦不宜相異,方可互為比較。

附錄三:期末審查意見回覆表 導致人體熱不舒適性,似與EEWH-EC 之P.22 之(4) 稍有牴觸?建議具體就鋪面材質、色調提出設計要點

附錄四:專家學者諮詢會議記錄 一、 時間:107 年 05 月 28 日(一)下午 4 時 00 分 二、 地點:內政部建築研究所13 樓會議室一 三、 主席:黃國倉 副教授

四、 出/列席者:陳海曙、王婉芝、黃恩浩、徐虎嘯、陳盈樺、賴怡廷、

陳世禎、王海涯

五、 主席致詞:(略) 六、 計畫簡報:(略) 七、 專家意見:

陳海曙教授

1. 本研究之量化效益,與其他相關研究也是有量化效益分析,有何不同,何 須再建立新的量化方式。

2. 本研究採用田口方法建立預測模型,是否需要以實測做修正以建立一個更 佳量化模型?

3. 以實例改善案例作為模型建立,再以模型反推原本之環境條件,作為量化 效益之評估方式。

徐虎嘯研究員

1. 本研究提及之綠覆率於各縣市之法規中訂定均不同,須清楚描述綠覆率之 定義方便日後執行

2. 能否驗證 CFD 之模擬與實地情況之趨勢相符合?建議與現地實測做比對

附錄五:27 個直交表模擬實驗案例

模擬案例4

模擬案例7

模擬案例10

模擬案例13

模擬案例16

模擬案例19

模擬案例22

模擬案例25

參考書目

1. Ali-Toudert, F. and H. Mayer (2007). "Effects of asymmetry, galleries, overhanging façades and vegetation on thermal comfort in urban street canyons."

Solar Energy 81(6): 742-754.

2. Bakarman, M. A. and J. D. Chang (2015). The Influence of Height/width Ratio on Urban Heat Island in Hot-arid Climates. Procedia Engineering.

3. Bowler, D. E., L. Buyung-Ali, T. M. Knight and A. S. Pullin (2010). "Urban greening to cool towns and cities: A systematic review of the empirical evidence."

Landscape and Urban Planning 97(3): 147-155.

4. Bruse, M. and H. Fleer (1998). "Simulating surface–plant–air interactions inside urban environments with a three dimensional numerical model." Environmental Modelling & Software 13(3–4): 373-384.

5. Cao, A., Q. Li and Q. Meng (2015). Effects of Orientation of Urban Roads on the Local Thermal Environment in Guangzhou City. Procedia Engineering.

6. Carnielo, E. and M. Zinzi (2013). "Optical and thermal characterisation of cool asphalts to mitigate urban temperatures and building cooling demand." Building and Environment 60: 56-65.

7. Chen, H., R. Ooka, H. Huang and T. Tsuchiya (2009). "Study on mitigation measures for outdoor thermal environment on present urban blocks in Tokyo using coupled simulation." Building and Environment 44(11): 2290-2299.

8. Coutts, A. M., E. C. White, N. J. Tapper, J. Beringer and S. J. Livesley (2016).

"Temperature and human thermal comfort effects of street trees across three contrasting street canyon environments." Theoretical and Applied Climatology 124(1-2): 55-68.

9. Fahmy, M. and S. Sharples (2009). "On the development of an urban passive thermal comfort system in Cairo, Egypt." Building and Environment 44(9): 1907-1916.

10. Fahmy, M., S. Sharples and M. Yahiya (2010). "LAI based trees selection for mid latitude urban developments: A microclimatic study in Cairo, Egypt." Building and Environment 45(2): 345-357.

11. Höppe, P. (1999). "The physiological equivalent temperature – a universal index for the biometeorological assessment of the thermal environment." International Journal of Biometeorology 43(2): 71-75.

12. Harlan, S. L. and D. M. Ruddell (2011). "Climate change and health in cities:

impacts of heat and air pollution and potential co-benefits from mitigation and adaptation." Current Opinion in Environmental Sustainability 3(3): 126-134.

13. Herrmann, J. and A. Matzarakis (2012). "Mean radiant temperature in idealised urban canyons-examples from Freiburg, Germany." International Journal of Biometeorology 56(1): 199-203.

14. Huang, K.-T. and Y.-J. Li (2017). "Impact of street canyon typology on building’s peak cooling energy demand: A parametric analysis using orthogonal experiment."

Energy and Buildings 154: 448-464.

15. Huang, K.-T., T.-P. Lin and H.-C. Lien (2015). "Investigating Thermal Comfort and User Behaviors in Outdoor Spaces: A Seasonal and Spatial Perspective."

Advances in Meteorology 2015.

16. Huttner, S. (2012). Further development and application of the 3D microclimate simulation ENVI-met, Johannes Gutenberg-Universität.

17. Jamei, E., P. Rajagopalan, M. Seyedmahmoudian and Y. Jamei (2016). "Review on the impact of urban geometry and pedestrian level greening on outdoor thermal comfort." Renewable and Sustainable Energy Reviews 54: 1002-1017.

18. JSBC (2010). "CASBEE for Heat Island (CASBEE-HI)." Institute for Building Environment and Energy Conservation (IBEC).

19. Konarska, J., B. Holmer, F. Lindberg and S. Thorsson (2016). "Influence of vegetation and building geometry on the spatial variations of air temperature and cooling rates in a high-latitude city." International Journal of Climatology 36(5):

2379-2395.

20. Lee, H., H. Mayer and L. Chen (2016). "Contribution of trees and grasslands to the mitigation of human heat stress in a residential district of Freiburg, Southwest Germany." Landscape and Urban Planning 148: 37-50.

21. Lin, T.-P., A. Matzarakis and R.-L. Hwang (2010). "Shading effect on long-term outdoor thermal comfort." Building and Environment 45(1): 213-221.

22. Lin, T.-P., K.-T. Tsai, C.-C. Liao and Y.-C. Huang (2013). "Effects of thermal comfort and adaptation on park attendance regarding different shading levels and activity types." Building and Environment 59(Supplement C): 599-611.

23. Mavrogianni, A., M. Davies, M. Batty, S. E. Belcher, S. I. Bohnenstengel, D.

Carruthers, Z. Chalabi, B. Croxford, C. Demanuele, S. Evans, R. Giridharan, J. N.

Hacker, I. Hamilton, C. Hogg, J. Hunt, M. Kolokotroni, C. Martin, J. Milner, I.

Rajapaksha, I. Ridley, J. P. Steadman, J. Stocker, P. Wilkinson and Z. Ye (2011).

"The comfort, energy and health implications of London’s urban heat island."

Building Services Engineering Research and Technology 32(1): 35-52.

24. Nyuk Hien, W., L. Chun-Qing and Y. Wei (2016). "Effect of Street Design on Outdoor Thermal Comfort in an Urban Street in Singapore." Journal of Urban Planning and Development 142(1).

25. Perini, K. and A. Magliocco (2014). "Effects of vegetation, urban density, building height, and atmospheric conditions on local temperatures and thermal comfort."

Urban Forestry & Urban Greening 13(3): 495-506.

26. Russo, A., F. J. Escobedo and S. Zerbe (2016). "Quantifying the local-scale ecosystem services provided by urban treed streetscapes in Bolzano, Italy." AIMS Environmental Science 3(1): 58-76.

27. Salata, F., I. Golasi, A. d. L. Vollaro and R. d. L. Vollaro (2015). "How high albedo and traditional buildings’ materials and vegetation affect the quality of urban microclimate. A case study." Energy and Buildings 99: 32-49.

28. Santamouris, M., N. Papanikolaou, I. Livada, I. Koronakis, C. Georgakis, A.

Argiriou and D. N. Assimakopoulos (2001). "On the impact of urban climate on the energy consumption of buildings." Solar Energy 70(3): 201-216.

29. Santamouris, M., A. Synnefa and T. Karlessi (2011). "Using advanced cool

31. Schrijvers, P. J. C., H. J. J. Jonker, S. R. de Roode and S. Kenjereš (2016). "The effect of using a high-albedo material on the Universal Temperature Climate Index within a street canyon." Urban Climate 17: 284-303.

32. Smith, C. and G. Levermore (2008). "Designing urban spaces and buildings to improve sustainability and quality of life in a warmer world." Energy Policy 36(12): 4558-4562.

33. Takebayashi, H. (2015). "Evaluation of wind environment in street canyon for use in urban calimate map." Journal of Environmental Engineering (Japan) 80(715):

795-801.

34. Taleb, D. and B. Abu-Hijleh (2013). "Urban heat islands: Potential effect of organic and structured urban configurations on temperature variations in Dubai, UAE." Renewable Energy 50: 747-762.

35. Taleb, H. and D. Taleb (2014). "Enhancing the thermal comfort on urban level in a desert area: Case study of Dubai, United Arab Emirates." Urban Forestry and Urban Greening 13(2): 253-260.

36. Taleghani, M., L. Kleerekoper, M. Tenpierik and A. van den Dobbelsteen (2015).

"Outdoor thermal comfort within five different urban forms in the Netherlands."

Building and Environment 83: 65-78.

37. Taleghani, M., D. J. Sailor, M. Tenpierik and A. van den Dobbelsteen (2014).

"Thermal assessment of heat mitigation strategies: The case of Portland State University, Oregon, USA." Building and Environment 73: 138-150.

38. United Nations. (2014). "World Urbanization Prospects."

https://esa.un.org/unpd/wup/publications/files/wup2014-highlights.pdf.

39. Wang, Q., J. Tenhunen, N. Q. Dinh, M. Reichstein, D. Otieno, A. Granier and K.

Pilegarrd (2005). "Evaluation of seasonal variation of MODIS derived leaf area index at two European deciduous broadleaf forest sites." Remote Sensing of Environment 96(3–4): 475-484.

40. Xuan, Y., G. Yang, Q. Li and A. Mochida (2016). "Outdoor thermal environment for different urban forms under summer conditions." Building Simulation 9(3):

281-296.

41. Yahia, M. W. and E. Johansson (2014). "Landscape interventions in improving thermal comfort in the hot dry city of Damascus, Syria-The example of residential spaces with detached buildings." Landscape and Urban Planning 125: 1-16.

42. 何明錦 and 黃國倉 (2013). 臺灣建築能源模擬解析用逐時標準氣象資料 TMY3 之建置與研究. 台北, 內政部建築研究所.

43. 林憲德, 林子平 and 蔡耀賢 (2014). "綠建築評估手冊-社區類." 內政部建 築研究所.

綠建築對都市熱島緩和及舒適度提升之量化效益評估研究 出版機關:內政部建築研究所

電話:(02)89127890

地址:新北市新店區北新路 3 段 200 號 13 樓 網址:http://www.abri.gov.tw

編者:王安強、黃國倉、曾毅振、陳世禎、李宜臻

相關文件