• 沒有找到結果。

第五章 結論與建議

第二節 建議與未來研究方向

本研究對於診斷工具、月相盈虧成因課程、課程的實行與未來研究方向提出 以下建議與檢討:

一、對於診斷工具之建議

月相盈虧成因診斷測驗 1. 測驗時間增加

學生在回答過程中需要長時間思考問題內容,並且將自己的想法作有調理的 陳述,規劃的一節課(45 分鐘)並不敷使用,造成學生在作答時間壓力下無法詳細 的陳述本身的想法,尤其第9 與 10 題屬於月相盈虧成因與現象的應用題,回收 的學生樣本不少是空白的答案。若可以改為60 分鐘的回答時間更佳。

2. 測驗內容增加月相盈虧成因應用題

診斷測驗中只有第八題請學生從月相形狀說明形成原因,但因日地月為三維 空間的立體模型,若可以採用空間描述的題型,並且增加一至二題解釋部份月相 形狀,相信更可以偵測學生的概念類型。

二、月相盈虧成因的設計 (一)異例動畫

學生在看過異例動畫會產生概念改變,本課程中僅針對迷思概念類型為月食 模式設計異例動畫,如能針對位置模式、混合模式設計異例動畫,也許能增進學

生的學習月相盈虧成因的概念改變;建議未來進行異例動畫教學時安排一個小測 驗,決定學生是否有需要觀看其他的動畫,如此學生不易錯失概念改變的機會。

(二)以三維空間動畫取代二維空間電腦模擬動畫

研究結果顯示高、中與低空間能力學生皆獲得學習的助益,而月相盈虧成因 概念和地球、太陽與月球三維空間的相對位置有關,課程中的動畫是以二維的圖 片組合而成,若能引入三度空間立體模擬動畫,相信對於學生學習月相盈虧成因 概念更有助益。

三、課程的實行 (一)延長課程進行時間

學生在學習過程中需要花時間吸收所學到的新知識,本研究進行電腦模擬教 學的時間僅兩堂課共90 分鐘,若能將軟體內容長時間建置於網站或者提供光碟 讓學生帶回去使用,應可以提高學生的學習成效。

(二)教學方式

本研究僅採學生操作課程,教師只在最後指導學生整理月相盈虧成因概念,

學生最後用整理出的概念解釋情境題,若能詳細描述月相盈虧成因再由學生用充 足的時間回答情境內容,相信可以獲得更好的學習效果。

二、未來研究方向

(一)增加樣本數,探討國中不同年級概念類型

本研究受限於樣本數,僅採用國二兩個班的學生,建議未來可以增加樣本 數,或者增加一年級與三年級的學生樣本,進一步探討國中階段的迷思概念類型。

(二)進行延宕測驗

學生雖然在課程結束後可以達到概念改變,但有可能在之後回復到先前的迷

思概念。建議未來可以加入延宕測驗,以追蹤學生長時間的概念改變情形。

(三)比較學生中心與教師中心差異

本研究僅讓學生獨自操作,教師協助課程最後討論,若能比較完全以教師為 主的教學以及學生中心的教學的差異,進一步探討不同教學法對國中學生學習月 相盈虧成因概念的成效差異,期能對於本課程落實於教學實務時提出具體的教學 情境營造相關建議。

參考文獻 一、中文部分

丁凡(譯)(1998)。因才施教:開啟多元智慧,破除學習困難的迷思。臺北市:

遠流。(Thomas Armstrong, 1987)

王克先(1987)。學習心理學。台北市:五南圖書。

育研究學刊, 2, 219-230。

陳政瑜(1994)。由球體透視概念探討學生學習月相成因之困難。國立台灣師範

裘維鈺(1995)。國小學童植物概念及其相關迷思概念之研究。未出版碩士論文,

中師範學院初等教育研究集刊,1, 91-104。

蘇育任(1999)。職前及在職國民小學教師的天氣概念及其相關迷思概念之探究。

科學教育學刊,7(2), 157-176。

二、英文部分

Abimbola, I. O. (1988). The problem of terminology in the study of student conceptions in science. Science Education, 72, 175-184.

Ahrens, C. D. (1992). Meteorology Today (5th ed.). New York: West Publish Company.

Anderson, B. (1986). Pupils Explanations of some Aspects of Chemical Reaction.

Science Education, 70(5), 549-563.

Atwood, R. K., & Atwood V. A. (1996). Preservice elementary teachers’ conception of the cause of season. Journal of Research in Science Teaching, 33(5), 553-563.

Ausubel, D. P. (1968). Education psychology: a cognitive view. New York: Holt, Rinehart & Winston.

Bar, V., & Galili, I. (1994). Stages of childrens' view about evaporation. International Journal of Science Education, 16(2), 157-174.

Bar, V., & Travis, A. S. (1991). Children’s views concerning phase changes. Journal of Research in Science Teaching, 28(4), 363-382.

Barrass, R. (1984). Some misconceptions and misunderstandings perpetuated by teachers and textbooks of biology. Journal of Biological Education, 18(3), 201-206.

Baxter, J. (1989). Children’s understanding of familiar astronomical events.

International Journal of Science Education, 11(special issue), 503-513.

Bishop, J. E. (1978). Developing students’ spatial ability. The Science Teacher, 20-23.

Bliss, J., Ogborn, J., & Whitelock, D. (1989). Secondary school pupils’ commonsense theories of motion. International Journal of Science Education, 11(3),

261-272.

Bonham, L.A. (1988). Learning style use: In need of perspective. Lifelong learning:

an omnibus of practice and research, 11(5), 14-19.

Boujaoude, S. B. (1989). A study of conceptual change in junior high school science students during instruction about the concept of burning. UMI Document NO 8903612.

Brown. D. E. & Clement. J. (1989). Overcoming misconceptions via analogical reasoning: Abstract transfer versus explanatory model construction.

Instructional Science, 18, 237-261.

Brumby, M. N. (1982). Students’ perceptions of the concept of life. Science Education, 66(4), 613-622.

Canas, A. J., Ford, K. M., Novak, J. D., Hayes, P., Reichherzer, T. R., & Suri, N.

(2001). Online concept maps: enhancing collaborative learning by using technology with concept maps. The science teacher, 68(4), 2001.

Chi, M. T. H. (1992). Conceptual change within and across ontological categories:

Implications for learning and discovery in sciences. In R. Giere (Ed.), Cognitive models of science: Minnesota studies in the philosophy of science.

Minneapolis: University of Minnesota Press, 129-186.

Chi, M. T. H., Slotta, J. D., & Leeuw, N. (1994). From things to process: A theory of conceptual change for learning science concept. Learning and Instruction, 4, 27-43.

Chinn , C.A., & Brewer ,W.F. (1993). The role of anomalous data in knowledge acquisition: A theoretical framework and implications for science instruction.

Review of educational research, Journal of Research in Science Teaching,

63(1), 1-49.

Chinn , C.A., & Brewer ,W.F. (1998). An empirical test of a taxonomy of responses to anomalous data in science. Journal of Research in Science Teaching, 35(6), 623-654.

Chou, H.W., & Wang, Y.F. (1999). Effects of learning style and training method on computer attitude and performance in world wide web page design training.

Journal of Educational Computing Research, 21(3), 323-342.

Clark, C. M. & Peterson, P. L. (1986). Teachers' thought processes. In M. C. Wittrock (Ed.), Handbook of research on teaching (pp. 255-296). New York:

Macmillan.

Clement, J. (1993). Using bridging analogies and anchoring intuitions to deal with students’ preconceptions in physics. Journal of Research in Science Teaching, 30(10), 1241-1257.

Clement, J., Brown., D., Zietsman., A. (1989). Not all preconceptions are

misconceptions: Finding “anchoring conceptions” for grounding instruction on students’ intuition. International Journal of Science Education, 11, 554-565.

Crews, W. E. (1990). Development of a paper-and-pencil instrument to elicit student concepts concerning the earth as a planet. Paper presented at the Annual Meeting of the National Association for Research in Science Teaching. (ERIC Document Reproduction Service No. ED324 191)

Dagher, Z. R. (1995). Review of studies on the effectiveness of instructional analogies in science education. Science Education, 79(3), 295-312.

Davidson, G.V., Savenye, W.C., & Orr, K.B. (1992). How do learning styles relate to performance in a computer applications course? Journal of Research on Computing in Education, 24(3), 348-358.

Driver, R. (1981). Pupil’s alternative frameworks in science. European Journal of

science Education, 3, 93-101.

Driver, R.(1985). Beyond appearances:the conservation of matter under physical and chemical transformation. In R. Driver(Ed.), Children’s Ideas in Science. Open University Press: Milton Keynes.

Driver, R. (1989). Students’ conception and the learning of science. International Journal of Science Education, 11, 481-490.

Driver, R., & Easley, J. (1978). Pupils and paradigms: A review of literature related to concept development in adolescent science students. Studies in Education, 5, 61-84.

Driver, R., & Oldham, V. (1986). A constructivist approach to curriculum development in science. Studies in Science Education, 13, 105-122.

Driver, R., Guesne, E., & Tiberghien, A. (Eds) (1985). Children's ideas in science.

Milton Keynes: Open University Press.

de Jong, T., & van Joolingen, W. R. (1998). Scientific discovery learning with

computer simulation of conceptual domains. Review of Educational Research, 68(2), 179-201.

Duchastel, P. (1991). Instructional strategies for simulation-based learning. Journal of Educational Technology System, 19(3), 265-276.

Dunn, R., & Dunn, K. (1999). The complete guide to the learning styles in service system. Boston: Allyn & Bacon.

Dunn, R.,& Dunn, K. (1993). Teaching secondary students through their individualized learning styles. Reston, VA: Reston Pub-lishing Co.

Duit, R.(1991). On the role of analogies and metaphor in learning science. Science Education. 75(6), 649-672.

Duit, R., & Treagust, D. F. (1995). Students’ conceptions and constructivist teaching approaches. In B. J. Fraser & H. J. Walberg (Eds.), Improving science

education. Chicago: The National Society for the Study of Education.

Eryilmaz, A. (2002). Effects of conceptual assignments and conceptual change discussions on students' misconceptions and achievement regarding force and motion. Journal of Research in Science Teaching, 39(10), 1001-1015.

Faryniarz, J. V., & Lockwood, L. G.. (1992). Effectiveness of microcomputer simulation in stimulating environmental problem solving by community college students. Journal of Research in Science Teaching, 29(5), 453-470.

Garnett, P. J, Garnett, P. J., & Hackling, D. (1995). Students’ alternative conceptions in chemistry: A review of research and implications for teaching and learning.

Studies in Science Education, 25, 69-95.

Gentner, D. (1998). Analogy. In W. Bechtel & G. Graham (Eds.), A Companion to Cognitive Science, (pp. 107-113). Oxford: Blackwell.

Gilbert, J. K.,Osborne, R. J., & Fensham, P. J. (1982). Children’s science and its consequences for teaching. Science Education, 66(4), 623-633.

Gilbert, J. K., & Swift, D. J. (1985). Towards a Lakatosian analysis of the Piagetian and alternative conception research programs. Science Education, 69, 681-696.

Gorsky, P. and Finegold, M. (1992) Using computer simulations to restructure students’ conception of force. Journal of Computers in Mathematics and Science Teaching, 11,163–178.

Hameed, H., Hackling, M. W., & Garnett, P. J. (1993). Facilitating conceptual change in chemical equilibrium using a CAI strategy. International Journal of Science Education, 15(2), 221-230.

Hashweh, M. (1986). Toward and explanation of conceptual change. European Journal of Science Education, 8(3), 229-249.

Harlen(2001). Taking childrens’ idea seriously- influence and trends. Primary Science

review,67,14-17.

Hart, R. A., and Moore, G. T., 1973. The development of spatial cognition: A Review.

In Downs, R. M., and Stea, D., editors, Image and Environment: Cognitive Mapping and Spatial Behavior. Chicago, Aldine Publishing Company, pp.

246-295.

Haslam, F., & Treagust, D. F. (1987). Diagnosing secondary students’ misconceptions of photosynthesis and respiration in plants using a two-tier multiple choice instrument. Journal of Biological Education, 21(3), 203-211.

Head, J. (1986). Research into ‘alternative framework’: Promise and problems.

Research in Science & Technological Education, 4(2), 203-211.

Hewson, P. W. (1981). A conceptual change approach to learning science. European Journal of Science Education, 3, 383-396.

Hewson, M. G., & Hewson, P. W. (1983). Effect of instruction using students’ prior knowledge and conceptual change strategies on science learning. Journal of Research in Science Education, 20(8), 731-743.

Hewson, P. W., & Thorley, N. (1989). The conditions of conceptual change in the classroom. International Journal of Science Education, 11(5), 541-553.

Hoadley, C. M., & Linn, M. C. (2000). Teaching science through online, peer discussion: Speakeasy in the knowledge integration environment.

International Journal of Science Education, 22(8), 839-857.

Hsu, Ying-Shao (in press). Learning about seasons in a technologically enhanced environment: The impact of teacher-guided and student-centered instructional approaches on the process of students' conceptual change. Science Education.

Hynd, C. R., McWhorter, J. Y., Phares, V. L., & Suttles, C. W. (1994). The role of instructional variables in conceptual change in high school physics topics.

Journal of Research in Science Teaching, 31(4), 933-946.

Jones, M. F., Carter, G., & Rua, M. (2000). Exploring the development of conceptual ecologies: Communities of concepts related to convection and heat. Journal of Research in Science Teaching, 37(2), 139-159.

Karplus, R., & Thier, H. (1967). A New Look at Elementary School Science, New Trends in Curriculum and Instruction Series. Chicago, IL: Rand McNally.

Kelly, P. R. (1998). Transfer of learning from a computer simulation as compared to a laboratory activity. Journal of Education Technology Systems, 26(4), 345-351.

Klausmeier (1974), H. J.,Ghatala, E. S.,& Frayer, D. A. Conceptual learning and development. New York:Academic Press.

Kuhn, T.S. (1996). The structure of scientific revolutions. University of Chicago Press.

Lakatos, I. (1970). Falsification and the methodology of scientific research

programmers. In I. Lakatos & A. Musgrave( Eds.), Criticism and the growth and the knowledge( pp. 91-195). Cambridge: Cambridge University Press.

Lewis, E. L., & Linn, M. C. (1994). Heat energy and temperature concepts of adolescents, adults, and experts: Implications for curricular improvements.

Journal of Research in Science Teaching, 31(6), 657~677.

Linn, M. C., & Swiney, K. (1981). Individual differences in formal thought: Role of expectations and aptitudes. Journal of Education Psychology, 73, 274-286.

Lord, T. R. (1985). Enhancing the visual-spatial aptitude of students. Journal of Research in Science Teaching, 22(5), 395-405.

Macnab, W., & Johnstone, A. H. (1990). Spatial skills which contribute to

competence in the biological sciences. Journal of Biological Education, 24(1), 37-41.

Markham, K. M., Mintzes, J. J., & Jones, M. G. (1994). The concept map as a

research and evaluation tool: Further evidence of validity. Journal of Research

in Science Teaching, 31(1), 91-101.

Martini, M. (1986). An analysis of the relationships between and among

computer-assisted instruction, learning style, perceptual preferences, attitudes, and the science achievement of 7th grade students in a suburban N.Y. school district. (Doctoral dissertation, St. John’s University, 1986). Dissertation Abstracts International, 47, 877-03A.

McDermott L. C. (1990). Research and computer-based instruction: Opportunity for interaction. American Journal of Physics, 58(5), 452–462.

McGee, M. G. (1979). Human spatial abilities: Psychometric studies and

environmental ,genetic hormonal ,and neurological influences. Psychological Bulletin, 86, 889-918.

Millar, R. (1989). Constructive criticisms. International Journal of Science Education, 1, 587-596.

Mintzes, J. J., Wandersee, J. H., & Novak, J. D. (2000). Assessing science

understanding:: A human constructivist view. San Diego, London: Academic press.

Novak, J. (1988). Learning science and the science of learning. Studies in Science Education, 15, 77-101.

Novak, J. (1990). Concept mapping: A useful tool for science education. Journal of Research in Science Teaching, 27(10), 937-949.

Novak, J., & Gowin, D. (1984). Learning how to learn. Cambridge: Cambridge University Press.

Nurrenbern, S., & Pickering, M.(1987). Concept Learning vs. Problem Solving: Is There a Difference? Journal of Chemical Education, 64(6), 508-510.

Nussbaum, J. (1979). Children’s conceptions of the earth as a cosmic body: A cross age study. Science Education, 63(1), 83-93.

Nussbaum, J., & Novak, J. (1976). An assessment of children’s concepts of the earth utilizing structured interviews. Science Education, 60, 535-550.

Odom, A. L., & Barrow, L. H. (1995). Development and application of a two-tier diagnostic test measuring college biology students’ understanding of diffusion and osmosis after a course of instruction. Journal of Research in Science Teaching, 32(1), 45-61.

Orion, N., Ben-Chaim, D., & Kali, Y. (1994). Relationship between earth science education and spatial visualization. Paper presented at NARST conference, Anaheim.

Osborne, R. (1983). Towards modifying children’s ideas about ideas about electric current. Research in Science & Technological Education, 1(1), 73-82.

Osborne, R.J. & Cosgrove, M.M. (1983). Children's conceptions of the changes of states of water. Journal of Research in Science Teaching, 20(9), 825-835.

Osborne, R., &Freyberg, P. (1985). Learning in science: The implications of children’s Science. Auckland: Heinemann.

Osborne, R. J., & Gilbert, J. K. (1980). A method for investigating concept understanding in science. European Journal of Science Education, 2(3), 311-321.

Pallrand, G. J., & Seeber, F. (1984). Spatial ability and achievement in introductory physics. Journal of Research in Science Teaching, 22(5), 507-516.

Peterson, R. F., Treagust, D. F., & Garnett, P. (1989). Development and application of a diagnostic instrument to evaluate grade-11 and -12 students’ concepts of covalent bonding and structure following a course of instruction. Journal of Research in Science Teaching, 26(4), 301-314.

Philips, W. C. (1991). Earth science misconceptions. Science Teacher, 58, 21-23.

Posner, G. J., Strike, K. A., Hewson, P. W., & Gertzog, W. A. (1982).

Accommodation of a scientific conception: Toward a theory of conceptual change. Science Education, 66(2), 211-227.

Piaget, J.(1970).Genetic Epistemology. New York: Columbia University press.

Rastovac, J., & Slavsky, D. B. (1986). The Use of paradoxes as an instructional strategy. Journal of College Science Teaching, 16(2), 113-118.

Renzulli, J., & Smith, L. H. (1979). Developing individual educational

programs(IEPs) for the gifted. Mansfield Center, CT: Creative Learning Press.

Rivers, R. H., & Vockell, E. (1987). Computer simulation to stimulate scientific problem solving. Journal of Research in Science Teaching, 24(5), 403-415.

Ross, B., & Munby, H. (1991). Concept mapping and misconceptions: A study of high-school students' understanding of acids and bases. International Journal of Science Education, 13(1), 11-23.

Sanger, M. J. (2000). Using particulate drawing to determine and improve students’

conceptions of pure substances and mixture. Journal of Chemical Education, 77(6), 762-766.

Schneps, M. J. (1987). The Private Universe. Wolbacti Image Processing Laboratory, by Harvard University and Smithsonian Institution, MCML XXXIX: President and Fellows of Havard College.

Sharp, J. G. (1996). Children’s astronomical beliefs: A preliminary study of year 6 children in south-west England. International Journal of Science Education, 18(6), 685-712.

Siemankowski, F., & MacKnight, F. (1971). Spatial cognition: Success Prognosticator in college science courses. Journal of College Science Teaching, 1, 56-59.

Stavridou, H., & Solomonidou, C. (1998). Conceptual reorganization and the construction of the chemical reaction concept. International Journal of Science Education, 20(2), 205-221.

Stevens, J. (1996). Applied multivariate statistics for the social science (3rd ed.).

Mahwah, NJ: Lawrence Erlbaum Associates.

Tan, K. C. D., Goh, N. K., Chia, L. S., & Treagust, D. F. (2002). Development and application of a two-tier multiple choice diagnostic instrument to assess high school students’ understanding of inorganic chemistry qualitative analysis.

Journal of Research in Science Teaching, 39(4), 283-301.

Tao, P-K., & Gunstone, R. (1999a). Conceptual change in science through collaborative learning at the computer. International Journal of Science Education, 21(1), 39-57.

Tao, P-K., & Gunstone, R. (1999b). The process on conceptual change in force and motion during computer-supported physics instruction. Journal of Research in Science Teaching, 36(7), 859-882.

Tao, P-K., & Gunstone, R. (1999b). The process on conceptual change in force and motion during computer-supported physics instruction. Journal of Research in Science Teaching, 36(7), 859-882.

相關文件