• 沒有找到結果。

對未來的研究方向有以下的建議:

1. 本文的觸媒層只考慮為介面層,實際上也是多孔性材質,內部的 傳輸情形可以加以分析研究。

2. 未來理論模式上可多考慮非等溫的情形以及擴展為全電池模 式,以求更接近實際操作的狀態。

參考文獻

1. International Energy Outlook 2005, U.S. Department of Energy &

Energy Information Administration, 2005.

2. Larminie, J. and Dicks, A., Fuel Cell Systems Explained, John Wiley

& Sons, New York, 2001.

3. Siegel, N.P., Ellis, M.W., Nelson, D.J. and Spakovsky, M.R. “Single domain PEMFCs model based on agglomerate catalyst geometry,” J.

Power Sources, Vol. 115, pp. 81-89, 2003.

4. Siegel, N.P., Ellis, M.W., Nelson, D.J. and Spakovsky, M.R.”A two-dimensional computational model of a PEMFCs with liquid water transport,” J. Power Sources, Vol. 128, pp. 173-184, 2004.

5. Bernardi, D. M., “Water-Balance Calculation for Solid - Polymer -Electrolyte Fuel Cells,” J. Electrochem. Soc., 137(11), pp. 3344-350, 1990.

6. Bernardi, D. M. and Verbrugge, M. W., “ Mathematical Model of a Gas diffusion Electrode Bonded to a Polymer Electrolyte,” AICHE Journal, Vol. 37, No. 8, pp. 1151-1163, 1991.

7. Bernardi, D. M. and Verbrugge, M. W., “ A Mathematical Model of Solid-Polymer-Electrolyte Fuel Cell,” J. Electrochem. Soc., Vol. 139, No. 9, pp. 2477-2490, 1992.

8. Singh, D., Lu, D. M. and Djilali, N., “ A Two-Dimensional Analysis of Mass Transport in Proton Exchange Membrane Fuel Cells,” Int. J.

Engineering Science, Vol. 37, No. 4, pp. 431-452, 1999.

9. Springer, T. E., Zawodzinski, T. A. and Gottesfeld, S., “ Polymer Electrolyte Fuel Cell Model,” J. Electrochem. Soc., Vol. 138, No.8, pp. 2334-2342, 1991.

10. Springer, T. E., Wilson, M. S. and Gottesfeld, S., “ Modeling and Experimental Diagnostics in Polymer Electrolyte Fuel Cells,” J.

Electrochem. Soc., Vol. 140, No. 12, pp. 3513-3526, 1993.

11. Nguyen, T. V. and White, R. E., “ A Water and Heat Management Model for Proton-Exchange-Membrane Fuel Cells,” J. Electrochem.

Soc., Vol. 140, No. 8, pp. 2178-2189, 1993.

12. Yi, J. S. and Nguyen, T. V., “ An Along-the-Channel Model for Proton Exchange Membrane Fuel Cells,” J. Electrochem. Soc., Vol.

145, No. 4, pp. 1149-1159, 1998.

13. Natarajan, N. and Nguyen, T. V., “ A Two-Dimensional, Two-Phase, Multicomponent, Transient Model for the Cathode of a Proton Exchange Membrane Fuel Cell Using Conventional Gas Distributors,” J. Electrochem. Soc., Vol. 148, No. 12, pp. 1324-1335, 2001.

14. Xie, G., Okada, T., “Water Transport Behavior in Nafion 117 Membranes”, J. Electrochem. Soc., Vol. 142(9), pp. 3057-3062, 1995.

15. Xie, G., Okada, T., “Pumping Effects in Water Movement Accompanying Cation Transport Across Nafion 117 Membranes”, J.

Electrochem. Soc., Vol. 41(9), pp. 1569-1571, 1996.

16. Okada, T., Xie, G. and Meeg, M., “Simulation for Water Management in Membranes for Polymer Electrolyte Fuel Cells”, J.

Electrochimica Acta, Vol. 43, pp. 2141-2155, 1998.

17. Okada, T., “Theory for Water Management in Membranes for Polymer Electrolyte Fuel Cells. Part 1. The Effect of Impurity Ions at the Anode Side on the Membrane Performances”, J. Electroanal.

Chem., Vol. 465, pp. 1-17, 1999.

18. Okada, T., “Theory for Water Management in Membranes for Polymer Electrolyte Fuel Cells. Part 2. The Effect of Impurity Ions at the Cathode Side on the Membrane Performances”, J. Electroanal.

Chem., Vol. 465, pp. 18-29, 1999.

19. Giorgi, L., Antolini, E., Pozio, A., and Passalacqua, E., “Influence of the PTFE content in the diffusion layer of low-Pt loading electrodes for polymer electrolyte fuel cells,” Electrochimica Acta, Vol. 43, pp.

3675-3680, 1998.

20. Jordan, L.R., Shukla, A.K., Behrsing, T., Avery, N.R., Muddle, B.C., and Forsyth, M., “Diffusion layer parameters influencing optimal fuel cell performance,” J. Power Sources, Vol. 86, pp. 250-254, 2000.

21. Jordan, L.R., Shukla, A.K., Behrsing, T., Avery, N.R., Muddle, B.C., and Forsyth, M., “Effect of diffusion-layer morphology on the performance of polymer electrolyte fuel cells operating at atmospheric pressure,” J. Applied Electrochemistry, Vol. 30, pp.

641-646, 2000.

22. Wang, C. Y., and Cheng, P., “A multiphase mixture model for multiphase, multicomponent transport in capillary porous media—I.

Model development,” Int. J. Heat Mass Transfer, Vol. 39, No. 17, pp.

3607-3618. 1996.

23. Um, S., Wang, C. Y. and Chen, K. S., “Computational Fluid Dynamics Modeling of Proton Exchange Membrane Fuel Cells,” J.

Electrochem. Soc., 147(12), pp. 4485-4493, 2000.

24. Wang, Z. H., Wang, C. Y., and Chen, K. S., “Two-Phase Flow and Transport in the Air Cathode of Proton Exchange Membrane Fuel Cells,” J. Power Sources, 94, pp. 40-50, 2001.

25. You, L., and Liu, H., “A Two-Phase Flow and Transport Model for the Cathode of PEM Fuel Cells,” Int. J. Heat Mass Transfer, 45, pp.2277-2287, 2002

26. Passalacqua, E., Lufrano, F., Squadrito, G., Patti, A., and Giorgi, L.,

“Influence of structure in low-Pt loading electrodes for polymerelectrolyte fuel cells,” Electrochimica Acta, Vol. 43, pp.

3665-3673, 1998.

27. Lim, C. and Wang, C.Y., “Effects of hydrophobic polymer content in GDL on power performance of a PEM fuel cell,” Electrochimica Acta, Vol. 49, pp. 4149-4156, 2004.

28. Pasaogullari, U., and Wang, C.Y., “Two-phase transport and the role of micro-porous layer in polymer electrolyte fuel cells,”

Electrochimica Acta, Vol. 49, pp. 4359-4369, 2004.

29. Pasaogullari, U., and Wang, C.Y., “Two-Phase Transport in Polymer Electrolyte Fuel Cells with Bilayer Cathode Gas Diffusion Media,” J.

Electrochemical Society, 152 (8) A1574-A1582, 2005.

30. Park, G.G., Sohn, Y.J., Yang, T. H., Yoon, Y.G., Lee, W.Y., and Kim, C.S., “Effect of PTFE contents in the gas diffusion media on the performance of PEMFC,” J. Power Sources, Vol. 131, pp.

182-187, 2004

31. Weber, A.Z., Newman, J., “Effects of Microporous Layers in Polymer Electrolyte Fuel Cells,” J. Electrochemical Society, 152 (4), A677-A688, 2005.

32. Zhan, Z., Xiao, J., Li, D., Pan, M. and Yuan, R., “Effects of porosity distribution variation on the liquid water flux through gas diffusion layers of PEM fuel cells,” J. Power Sources, in press, 2006.

33. Nam, J.H., Kaviany, M., “Effective diffusivity and water-saturation distribution in single- and two-layer PEMFC diffusion medium,”

International Journal of Heat and Mass Transfer, 46, 4595-4611, 2003.

34. Yoshikawa, Y., Matsuura, T., Kato, M., Hori, M., “Design of low-humidification PEMFC by using cell simulator and its power generation verification test,” J. Power Sources 158, 143–147, 2006.

35. Yan, W.M., Hsueh, C.Y., Soong, C.Y., Chen, F., Cheng, C.H., Mei, S.C., “Effects of fabrication processes and material parameters of GDL on cell performance of PEM fuel cell,” International Journal of Hydrogen Energy, in press, 2007.

36. Yu, J., Islam, M.N., Matsuura, T., Tamano, M., Hayashi, Y., and Hori, M., “Improving the Performance of a PEMFC with Ketjenblack EC-600JD Carbon Black as the Material of the Microporous Layer,”

Electrochemical and Solid-State Letters, 8(6), A320-A323, 2005.

37. Shi, J., Tian, J., Zhang, C., Shan, Z.,” A novel method for the preparation of a PEMFC water management layer,” J. Power Sources, 164, 284-286, 2007.

38. Wang, X.L., Zhang, H.M.,, Zhang, J.L., Xu, H.F., Tian, Z.Q., Chen, J., Zhong, H.X., Liang, Y.M., Yi, B.L.” Micro-porous layer with composite carbon black for PEM fuel cells,” Electrochimica Acta, 51, 4909-4915, 2006.

39. Incropera, F.P., DeWitt, D.P., Fundamentals of Heat and Mass Transfer, Wiley, New York, 1996.

相關文件