• 沒有找到結果。

第五章 結論與未來展望

5.2 未來展望

脊椎後方融合術是目前廣泛應用於治療脊椎相關疾病的手術方式,由於生物 力學的發展、先進醫療器材的開發及民眾對於生活品質的要求,脊椎後方融合術實 施數量與年俱增,其術後短長期併發症將嚴重影響臨床成效及增加額外醫療花費,

若能降低其併發症將可提升患者復原情形並增進此手術的長期成效。

本研究於試樣選擇方面,由於人體試樣昂貴且極難取得,本實驗使用豬隻屍 骨模型來進行實驗,豬隻脊椎雖與人類有相似的構成,但是由於人是雙足行走而 豬隻是四足行走,其脊椎受力行為與結構仍有不小的差異。但人類與豬隻的椎間 盤結構與組成相當類似,故本研究的成果仍然能對臨床應用上提供一些貢獻。於 測試方法上面,本研究主要進行人體最常見的軸向或前彎後仰方向的施力,但生 活中有會多方向的複合活動,可能會對研究成果造成影響。

本研究僅使用的體外屍骨實驗觀測其生物力學影響,無法模擬人體組織修復 及重建的現象,且本研究僅以生物力學觀點來進行討論,而力學測試變化是否能 反映在長期的臨床症狀也是一個值得探討的問題,故將來可能需要更多的實驗來 驗證本實驗的結果。

81

參考文獻

1. Roughley PJ. Biology of intervertebral disc aging and degeneration: involvement of the extracellular matrix. Spine 2004;29:2691-9.

2. Roberts S. Disc morphology in health and disease. Biochem Soc Trans 2002;30:864-9.

3. Allen M, VetMB P, Schoonmaker J, et al. Preclinical evaluation of a poly (vinyl alcohol) hydrogel implant as a replacement for the nucleus pulposus. Spine 2004;29:515.

4. Meakin JR, Hukins DW. Effect of removing the nucleus pulposus on the deformation of the annulus fibrosus during compression of the intervertebral disc. J Biomech 2000;33:575-80.

5. Wilke HJ, Neef P, Caimi M, et al. New in vivo measurements of pressures in the intervertebral disc in daily life. Spine (Phila Pa 1976) 1999;24:755-62.

6. Panjabi MM. Clinical spinal instability and low back pain. Journal of electromyography and kinesiology : official journal of the International Society of Electrophysiological Kinesiology 2003;13:371-9.

7. Panjabi MM. The stabilizing system of the spine. Part I. Function, dysfunction, adaptation, and enhancement. Journal of spinal disorders 1992;5:383-9; discussion 97.

8. Palepu V, Kodigudla M, Goel VK. Biomechanics of disc degeneration. Advances in orthopedics 2012;2012:726210.

9. Boucher HH. A method of spinal fusion. Journal of Bone & Joint Surgery, British Volume 1959;41:248-59.

82

10. Abumi K, Kaneda K. Pedicle screw fixation for nontraumatic lesions of the cervical spine. Spine 1997;22:1853.

11. Hadjipavlou AG, Nicodemus CL, Al-Hamdan FA, et al. Correlation of bone equivalent mineral density to pull-out resistance of triangulated pedicle screw construct.

Journal of spinal disorders 1997;10:12-9.

12. Roy-Camille R, Saillant G, Mazel C. Internal fixation of the lumbar spine with pedicle screw plating. Clinical Orthopaedics & Related Research 1986;203:7.

13. Roy-Camille R, Saillant G, Mazel C. Plating of thoracic, thoracolumbar, and lumbar injuries with pedicle screw plates. The Orthopedic clinics of North America 1986;17:147.

14. Yoshihara H. Rods in spinal surgery: a review of the literature. The spine journal : official journal of the North American Spine Society 2013;13:1350-8.

15. Schizas C, Kulik G, Kosmopoulos V. Disc degeneration: current surgical options.

European cells & materials 2010;20:306-15.

16. Wang JC, Mummaneni PV, Haid RW. Current treatment strategies for the painful lumbar motion segment: posterolateral fusion versus interbody fusion. Spine (Phila Pa 1976) 2005;30:S33-43.

17. Rajaee SS, Bae HW, Kanim LE, et al. Spinal fusion in the United States: analysis of trends from 1998 to 2008. Spine (Phila Pa 1976) 2012;37:67-76.

18. Deyo RA, Gray DT, Kreuter W, et al. United States trends in lumbar fusion surgery for degenerative conditions. Spine (Phila Pa 1976) 2005;30:1441-5; discussion 6-7.

19. Yoshihara H, Yoneoka D. National trends in the surgical treatment for lumbar

83

degenerative disc disease: US, 2000-2009. The spine journal : official journal of the North American Spine Society 2014.

20. Verla T, Adogwa O, Fatemi P, et al. Clinical implication of complications on patient perceived health status following spinal fusion surgery. Journal of Clinical Neuroscience 2014.

21. Goz V, Weinreb JH, McCarthy I, et al. Perioperative complications and mortality after spinal fusions: analysis of trends and risk factors. Spine (Phila Pa 1976) 2013;38:1970-6.

22. Proietti L, Scaramuzzo L, Schiro GR, et al. Complications in lumbar spine surgery:

A retrospective analysis. Indian journal of orthopaedics 2013;47:340-5.

23. Lad SP, Babu R, Baker AA, et al. Complications, reoperation rates, and health-care cost following surgical treatment of lumbar spondylolisthesis. The Journal of bone and joint surgery. American volume 2013;95:e162.

24. Davne SH, Myers DL. Complications of lumbar spinal fusion with transpedicular instrumentation. Spine 1992;17:S184.

25. McAfee P, Weiland DJ, Carlow JJ. Survivorship analysis of pedicle spinal instrumentation. Spine 1991;16:S428.

26. Okuyama K, Abe E, Suzuki T, et al. Influence of bone mineral density on pedicle screw fixation a study of pedicle screw fixation augmenting posterior lumbar interbody fusion in elderly patients. The Spine Journal 2001;1:402-7.

27. Zindrick M, Wiltse L, Widell E, et al. A biomechanical study of intrapeduncular

84

screw fixation in the lumbosacral spine. Clinical Orthopaedics & Related Research 1986;203:99.

28. Ghiselli G, Wang JC, Bhatia NN, et al. Adjacent segment degeneration in the lumbar spine. The Journal of bone and joint surgery. American volume 2004;86-a:1497-503.

29. Hilibrand AS, Robbins M. Adjacent segment degeneration and adjacent segment disease: the consequences of spinal fusion? The spine journal : official journal of the North American Spine Society 2004;4:190s-4s.

30. Chow DH, Luk KD, Evans JH, et al. Effects of short anterior lumbar interbody fusion on biomechanics of neighboring unfused segments. Spine (Phila Pa 1976) 1996;21:549-55.

31. Ha KY, Schendel MJ, Lewis JL, et al. Effect of immobilization and configuration on lumbar adjacent-segment biomechanics. Journal of spinal disorders 1993;6:99-105.

32. Esses SI, Doherty BJ, Crawford MJ, et al. Kinematic evaluation of lumbar fusion techniques. Spine (Phila Pa 1976) 1996;21:676-84.

33. Cunningham BW, Kotani Y, McNulty PS, et al. The effect of spinal destabilization and instrumentation on lumbar intradiscal pressure: an in vitro biomechanical analysis.

Spine (Phila Pa 1976) 1997;22:2655-63.

34. Cunningham BW, Sefter JC, Shono Y, et al. Static and cyclical biomechanical analysis of pedicle screw spinal constructs. Spine (Phila Pa 1976) 1993;18:1677-88.

35. Kim K, Park WM, Kim YH, et al. Stress analysis in a pedicle screw fixation system with flexible rods in the lumbar spine. Proceedings of the Institution of Mechanical

85

Engineers. Part H, Journal of engineering in medicine 2010;224:477-85.

36. Cripton PA, Jain GM, Wittenberg RH, et al. Load-sharing characteristics of stabilized lumbar spine segments. Spine (Phila Pa 1976) 2000;25:170-9.

37. Sengupta DK. Dynamic stabilization devices in the treatment of low back pain.

Orthop Clin North Am 2004;35:43-56.

38. Kaner T, Sasani M, Oktenoglu T, et al. Dynamic stabilization of the spine: a new classification system. Turkish neurosurgery 2010;20:205-15.

39. Gomleksiz C, Sasani M, Oktenoglu T, et al. A short history of posterior dynamic stabilization. Advances in orthopedics 2012;2012:629698.

40. Obernauer J, Kavakebi P, Quirbach S, et al. Pedicle-based non-fusion stabilization devices: a critical review and appraisal of current evidence. Advances and technical standards in neurosurgery 2014;41:131-42.

41. Athanasakopoulos M, Mavrogenis AF, Triantafyllopoulos G, et al. Posterior spinal fusion using pedicle screws. Orthopedics 2013;36:e951-7.

42. Ormond DR, Albert L, Jr., Das K. Polyetheretherketone (PEEK) rods in lumbar spine degenerative disease: a case series. Journal of spinal disorders & techniques 2012:In press.

43. Abode-Iyamah K, Kim SB, Grosland N, et al. Spinal motion and intradiscal pressure measurements before and after lumbar spine instrumentation with titanium or PEEK rods.

Journal of clinical neuroscience : official journal of the Neurosurgical Society of Australasia 2013:In press.

86

44. Videman T, Sarna S, Battie MC, et al. The long-term effects of physical loading and exercise lifestyles on back-related symptoms, disability, and spinal pathology among men.

Spine (Phila Pa 1976) 1995;20:699-709.

45. Wang JL, Wu TK, Lin TC, et al. Rest cannot always recover the dynamic properties of fatigue-loaded intervertebral disc. Spine (Phila Pa 1976) 2008;33:1863-9.

46. Schaeren S, Broger I, Jeanneret B. Minimum four-year follow-up of spinal stenosis with degenerative spondylolisthesis treated with decompression and dynamic stabilization. Spine (Phila Pa 1976) 2008;33:E636-42.

47. Schnake KJ, Schaeren S, Jeanneret B. Dynamic stabilization in addition to decompression for lumbar spinal stenosis with degenerative spondylolisthesis. Spine (Phila Pa 1976) 2006;31:442-9.

48. Schmoelz W, Huber JF, Nydegger T, et al. Dynamic stabilization of the lumbar spine and its effects on adjacent segments: an in vitro experiment. Journal of spinal disorders

& techniques 2003;16:418-23.

49. Johnell O, Kanis JA. An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporosis international : a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA 2006;17:1726-33.

50. Esses SI, Sachs BL, Dreyzin V. Complications associated with the technique of pedicle screw fixation. A selected survey of ABS members. Spine (Phila Pa 1976) 1993;18:2231-8; discussion 8-9.

87

51. Okuyama K, Abe E, Suzuki T, et al. Influence of bone mineral density on pedicle screw fixation: a study of pedicle screw fixation augmenting posterior lumbar interbody fusion in elderly patients. The spine journal : official journal of the North American Spine Society 2001;1:402-7.

52. Higashino K, Kim JH, Horton WC, et al. A biomechanical study of two different pedicle screw methods for fixation in osteoporotic and nonosteoporotic vertebrae.

Journal of surgical orthopaedic advances 2012;21:198-203.

53. Shea TM, Laun J, Gonzalez-Blohm SA, et al. Designs and techniques that improve the pullout strength of pedicle screws in osteoporotic vertebrae: current status. BioMed research international 2014;2014:748393.

54. Krenn MH, Piotrowski WP, Penzkofer R, et al. Influence of thread design on pedicle screw fixation. Laboratory investigation. Journal of neurosurgery. Spine 2008;9:90-5.

55. Patel PS, Shepherd DE, Hukins DW. The effect of screw insertion angle and thread type on the pullout strength of bone screws in normal and osteoporotic cancellous bone models. Medical engineering & physics 2010;32:822-8.

56. Coe JD, Warden KE, Herzig MA, et al. Influence of bone mineral density on the fixation of thoracolumbar implants. A comparative study of transpedicular screws, laminar hooks, and spinous process wires. Spine 1990;15:902.

57. Krag MH. Biomechanics of thoracolumbar spinal fixation: A review. Spine 1991;16:S84.

58. Krag M, Beynnon B, Pope MH, et al. An internal fixator for posterior application to

88

short segments of the thoracic, lumbar, or lumbosacral spine design and testing. Clinical Orthopaedics & Related Research 1986;203:75.

59. Yamagata M, Kitahara H, Minami S, et al. Mechanical stability of the pedicle screw fixation systems for the lumbar spine. Spine 1992;17:51.

60. Burval DJ, McLain RF, Milks R, et al. Primary pedicle screw augmentation in osteoporotic lumbar vertebrae: biomechanical analysis of pedicle fixation strength. Spine (Phila Pa 1976) 2007;32:1077-83.

61. Hirano T, Hasegawa K, Takahashi HE, et al. Structural characteristics of the pedicle and its role in screw stability. Spine (Phila Pa 1976) 1997;22:2504-9; discussion 10.

62. Weinstein JN, Rydevik BL, Rauschning W. Anatomic and technical considerations of pedicle screw fixation. Clinical orthopaedics and related research 1992:34-46.

63. Ricci WM, Tornetta P, 3rd, Petteys T, et al. A comparison of screw insertion torque and pullout strength. Journal of orthopaedic trauma 2010;24:374-8.

64. Shah AH, Behrents RG, Kim KB, et al. Effects of screw and host factors on insertion torque and pullout strength. The Angle orthodontist 2012;82:603-10.

65. Helgeson MD, Kang DG, Lehman RA, Jr., et al. Tapping insertional torque allows prediction for better pedicle screw fixation and optimal screw size selection. The spine journal : official journal of the North American Spine Society 2013;13:957-65.

66. Wilke HJ, Jungkunz B, Wenger K, et al. Spinal segment range of motion as a function of in vitro test conditions: effects of exposure period, accumulated cycles, angular-deformation rate, and moisture condition. The Anatomical record

1998;251:15-89

9.

67. Lill CA, Schneider E, Goldhahn J, et al. Mechanical performance of cylindrical and dual core pedicle screws in calf and human vertebrae. Archives of orthopaedic and trauma surgery 2006;126:686-94.

68. Krag MH, Weaver DL, Beynnon BD, et al. Morphometry of the thoracic and lumbar spine related to transpedicular screw placement for surgical spinal fixation. Spine (Phila Pa 1976) 1988;13:27-32.

69. Misenhimer GR, Peek RD, Wiltse LL, et al. Anatomic analysis of pedicle cortical and cancellous diameter as related to screw size. Spine (Phila Pa 1976) 1989;14:367-72.

70. Kothe R, O'Holleran JD, Liu W, et al. Internal architecture of the thoracic pedicle.

An anatomic study. Spine (Phila Pa 1976) 1996;21:264-70.

71. Panjabi MM, Takata K, Goel V, et al. Thoracic human vertebrae. Quantitative three-dimensional anatomy. Spine (Phila Pa 1976) 1991;16:888-901.

72. Koller H, Fierlbeck J, Auffarth A, et al. Impact of constrained dual-screw anchorage on holding strength and the resistance to cyclic loading in anterior spinal deformity surgery: a comparative biomechanical study. Spine (Phila Pa 1976) 2014;39:E390-8.

73. Hsu CC, Chao CK, Wang JL, et al. Increase of pullout strength of spinal pedicle screws with conical core: biomechanical tests and finite element analyses. Journal of orthopaedic research : official publication of the Orthopaedic Research Society 2005;23:788-94.

74. Tsai KJ, Murakami H, Horton WC, et al. Pedicle screw fixation strength: a

90

biomechanical comparison between 4.5-mm and 5.5-mm diameter screws in osteoporotic upper thoracic vertebrae. Journal of surgical orthopaedic advances 2009;18:23-7.

75. Kim YY, Choi WS, Rhyu KW. Assessment of pedicle screw pullout strength based on various screw designs and bone densities-an ex vivo biomechanical study. The spine journal : official journal of the North American Spine Society 2012;12:164-8.

76. Pare PE, Chappuis JL, Rampersaud R, et al. Biomechanical evaluation of a novel fenestrated pedicle screw augmented with bone cement in osteoporotic spines. Spine (Phila Pa 1976) 2011;36:E1210-4.

77. Wu Z, Nassar SA, Yang X. Pullout performance of self-tapping medical screws.

Journal of biomechanical engineering 2011;133:111002.

78. Saraf SK, Singh RP, Singh V, et al. Pullout strength of misplaced pedicle screws in the thoracic and lumbar vertebrae - A cadaveric study. Indian journal of orthopaedics 2013;47:238-43.

79. Koller H, Zenner J, Hitzl W, et al. The impact of a distal expansion mechanism added to a standard pedicle screw on pullout resistance. A biomechanical study. The spine journal : official journal of the North American Spine Society 2013;13:532-41.

80. Brasiliense LB, Lazaro BC, Reyes PM, et al. Characteristics of immediate and fatigue strength of a dual-threaded pedicle screw in cadaveric spines. The spine journal : official journal of the North American Spine Society 2013;13:947-56.

81. Yuksel KZ, Adams MS, Chamberlain RH, et al. Pullout resistance of thoracic extrapedicular screws used as a salvage procedure. The spine journal : official journal of

91

the North American Spine Society 2007;7:286-91.

82. Park P, Garton HJ, Gala VC, et al. Adjacent segment disease after lumbar or lumbosacral fusion: review of the literature. Spine 2004;29:1938-44.

83. Aota Y, Kumano K, Hirabayashi S. Postfusion instability at the adjacent segments after rigid pedicle screw fixation for degenerative lumbar spinal disorders. Journal of spinal disorders 1995;8:464-73.

84. Panjabi M, Malcolmson G, Teng E, et al. Hybrid testing of lumbar CHARITE discs versus fusions. Spine 2007;32:959-66; discussion 67.

85. Nohara H, Kanaya F. Biomechanical study of adjacent intervertebral motion after lumbar spinal fusion and flexible stabilization using polyethylene-terephthalate bands.

Journal of spinal disorders & techniques 2004;17:215-9.

86. Schmoelz W, Huber JF, Nydegger T, et al. Influence of a dynamic stabilisation system on load bearing of a bridged disc: an in vitro study of intradiscal pressure.

European Spine Journal 2006;15:1276-85.

87. Nachemson A. The load on lumbar disks in different positions of the body. Clinical Orthopaedics & Related Research 1966;45:107-22.

88. Abe E, Nickel T, Buttermann GR, et al. Lumbar intradiscal pressure after posterolateral fusion and pedicle screw fixation. Tohoku Journal of Experimental Medicine 1998;186:243-53.

89. Cunningham BW, Kotani Y, McNulty PS, et al. The effect of spinal destabilization and instrumentation on lumbar intradiscal pressure: an in vitro biomechanical analysis.

92

Spine 1997;22:2655-63.

90. Molz FJ, Partin JI, Kirkpatrick JS. The acute effects of posterior fusion instrumentation on kinematics and intradiscal pressure of the human lumbar spine.

Journal of spinal disorders & techniques 2003;16:171-9.

91. Weinhoffer SL, Guyer RD, Herbert M, et al. Intradiscal pressure measurements above an instrumented fusion. A cadaveric study. Spine 1995;20:526-31.

92. Kuo YW, Wang JL. Rheology of intervertebral disc: an ex vivo study on the effect of loading history, loading magnitude, fatigue loading, and disc degeneration. Spine (Phila Pa 1976) 2010;35:E743-52.

93. Pfirrmann CW, Metzdorf A, Zanetti M, et al. Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine (Phila Pa 1976) 2001;26:1873-8.

94. Zdeblick TA. A prospective, randomized study of lumbar fusion. Preliminary results.

Spine (Phila Pa 1976) 1993;18:983-91.

95. Ishihara H, Osada R, Kanamori M, et al. Minimum 10-year follow-up study of anterior lumbar interbody fusion for isthmic spondylolisthesis. Journal of spinal disorders 2001;14:91-9.

96. Miyakoshi N, Abe E, Shimada Y, et al. Outcome of one-level posterior lumbar interbody fusion for spondylolisthesis and postoperative intervertebral disc degeneration adjacent to the fusion. Spine (Phila Pa 1976) 2000;25:1837-42.

97. McMillan DW, Garbutt G, Adams MA. Effect of sustained loading on the water content of intervertebral discs: implications for disc metabolism. Annals of the rheumatic

93

diseases 1996;55:880-7.

98. Iatridis JC, MacLean JJ, Roughley PJ, et al. Effects of mechanical loading on intervertebral disc metabolism in vivo. The Journal of bone and joint surgery. American volume 2006;88 Suppl 2:41-6.

99. Stokes IA, Iatridis JC. Mechanical conditions that accelerate intervertebral disc degeneration: overload versus immobilization. Spine (Phila Pa 1976) 2004;29:2724-32.

100. Setton LA, Chen J. Cell mechanics and mechanobiology in the intervertebral disc.

Spine (Phila Pa 1976) 2004;29:2710-23.

101. Ahn YH, Chen WM, Lee KY, et al. Comparison of the load-sharing characteristics between pedicle-based dynamic and rigid rod devices. Biomedical materials (Bristol, England) 2008;3:044101.

102. Turner JL, Paller DJ, Murrell CB. The mechanical effect of commercially pure titanium and polyetheretherketone rods on spinal implants at the operative and adjacent levels. Spine (Phila Pa 1976) 2010;35:E1076-82.

103. Niu CC, Chen WJ, Chen LH, et al. Reduction-fixation spinal system in spondylolisthesis. American journal of orthopedics (Belle Mead, N.J.) 1996;25:418-24.

104. Katonis P, Christoforakis J, Kontakis G, et al. Complications and problems related to pedicle screw fixation of the spine. Clinical orthopaedics and related research 2003:86-94.

105. Kurtz SM, Lanman TH, Higgs G, et al. Retrieval analysis of PEEK rods for posterior fusion and motion preservation. European spine journal : official publication of the

94

European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society 2013;22:2752-9.

106. Alini M, Eisenstein SM, Ito K, et al. Are animal models useful for studying human disc disorders/degeneration? European spine journal : official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society 2008;17:2-19.

107. Lee CK. Accelerated degeneration of the segment adjacent to a lumbar fusion. Spine 1988;13:375-7.

108. Park P, Garton HJ, Gala VC, et al. Adjacent segment disease after lumbar or lumbosacral fusion: review of the literature. Spine (Phila Pa 1976) 2004;29:1938-44.

109. Chou WY, Hsu CJ, Chang WN, et al. Adjacent segment degeneration after lumbar spinal posterolateral fusion with instrumentation in elderly patients. Archives of orthopaedic and trauma surgery 2002;122:39-43.

110. Etebar S, Cahill DW. Risk factors for adjacent-segment failure following lumbar fixation with rigid instrumentation for degenerative instability. J Neurosurg 1999;90:163-9.

111. Hongo M, Gay RE, Zhao KD, et al. Junction kinematics between proximal mobile and distal fused lumbar segments: biomechanical analysis of pedicle and hook constructs.

The spine journal : official journal of the North American Spine Society 2009;9:846-53.

112. Untch C, Liu Q, Hart R. Segmental motion adjacent to an instrumented lumbar fusion: the effect of extension of fusion to the sacrum. Spine (Phila Pa 1976)

95

2004;29:2376-81.

113. Putzier M, Hoff E, Tohtz S, et al. Dynamic stabilization adjacent to single-level fusion: part II. No clinical benefit for asymptomatic, initially degenerated adjacent segments after 6 years follow-up. European spine journal : official publication of the European Spine Society, the European Spinal Deformity Society, and the European

113. Putzier M, Hoff E, Tohtz S, et al. Dynamic stabilization adjacent to single-level fusion: part II. No clinical benefit for asymptomatic, initially degenerated adjacent segments after 6 years follow-up. European spine journal : official publication of the European Spine Society, the European Spinal Deformity Society, and the European

相關文件