• 沒有找到結果。

我們提出的意圖辨識及控制方法可以有效幫助銀髮族在移動上更加安全省 力,然而目前所設計的模組,在意圖辨識系統的穩定度及透過意圖控制i-go移動 上仍有改進的空間,茲討論如下:

1. 意圖辨識握把的調整:目前所設計的握把尺寸長度是120mm,不過根據我們 實驗後發現,手掌如此大的人屬於少數,對大部份的使用者來說120mm還是 太長了,比較適合大部份使用者的長度目前認定是100mm,且握把機構可改 良製作成對其骨幹軸心可旋轉,如此在辨識意圖上可以獲得更明確的數值。

2. 力感應器的種類:目前使用的力感應器量測範圍為0lb~25lb,但經過我們的 實驗,一般常見的意圖,其大小僅在0lb~5lb之間,因此我們用的力感應器在 解析度上會比較差,然而Tekscan公司較小一級的感測器範圍為0lb~1lb,這 樣又太小,如果能找到適合範圍的感應器對意圖辨識會有更好的效果。

3. 濾波電路的設計:由於i-go系統結構越來越複雜,許多訊號間不免會產生干 擾,會使力感應器經過A/D轉換後的數值產生誤差,儘管可以用軟體補償的 方式降低誤差量,但是若能從硬體上著手加強,會使系統運作更順暢、對意 圖的辨識也能更精確。

4. 意圖辨識演算法:目前的意圖判斷主要是針對轉彎、前進、緊急煞車等意圖,

希望未來能加入跌倒意圖的判定,讓銀髮族在即將跌倒的時候能提供煞車 力,防止其跌倒。

未來期待將 i-go 及本論文提出的方法廣泛運用在醫院及安養中心,取代輪椅,

參考文獻

[1] D. Chugo, W. Mastuoka, S. Jia, and K. Takase, “The Wheel Control of a Robotic Walker for Standing and Walking Assistance with Stability,” IEEE International Symposium on Robot and Human Interactive Communication, pp. 297-302, 2008.

[2] O. Chuy, Y. Hirata, and K. Kosuge, “A New Control Approach for a Robotic Walking Support System in Adapting User Characteristics,” IEEE Transactions on Systems, Man, and Cybernetics Part C, vol. 36, no. 6, pp. 725-733, 2006.

[3] Y. Hirata, A. Hara, and K. Kosuge, “Motion Control of Passive Intelligent Walker Using Servo Brakes,” IEEE Transactions on Robotics, vol. 23, no. 5, pp.

981-990, 2007.

[4] D. J. Heever, K. Schreve, and C. Scheffer, “Tactile Sensing Using Force Sensing Resistors and a Super-Resolution Algorithm,”IEEE Sensors Journal, vol. 9, no.

1, pp. 29-35, 2009.

[5] S. Dubowsky, F. Genot, S. Godding, H. Kozono, A. Skwersky, H. Yu, and L. S.

Yu, “PAMM - A Robotic Aid to the Elderly for Mobility Assistance and Monitoring: A “Helping-Hand” for the Elderly,” IEEE International Conference on Robotics and Automation, pp. 570-576, 2000.

[6] M. Spenko, H. Yu, and S. Dubowsky, “Robotic Personal Aids for Mobility and Monitoring for the Elderly,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 14, no. 3, pp. 344-351, 2006.

[7] A. M. Sabatini, V. Genovese, and E. Pacchierotti, “A Mobility Aid for the Support to Walking and Object Transportation of People with Motor

System, pp. 1349-1354, 2002.

[8] A. Morris, R. Donamukkala, A. Kapuria, A. Steinfeld, J. T. Matthews, J.

Dunbar-Jacob, and S. Thrun, “A Robotic Walker That Provides Guidance,” IEEE International Conference on Robotics and Automation , pp. 25-30, 2003.

[9] D. R. Losada, F. Matia, A. Jimenez, R. Galan, and G. Lacey, “Guido, the Robotic SmartWalker for the Frail Visually Impaired,” First International Congress on Domotics, Robotics and Remote Assistance for All, pp. 155-169, 2005.

[10] O. Chuy, Y. Hirata, and K. Kosuge, “A New Control Approach for a Robotic Walking Support System in Adapting User Characteristics,” IEEE Transactions on Systems, Man, and Cybernetics Part C, vol. 36, no. 6, pp. 725-733, 2006.

[11] M. Goller, T. Kerscher, M. Ziegenmeyer, A. Ronnau, J.M. Zollner, and R.

Dillmann, “Haptic Control for the Interactive Behavior Operated Shopping Trolley InBOT,” Artificial Intelligence and Simulation of Behaviour Convention, 2009.

[12] Y. Hirata, A. Hara, and K. Kosuge, “Motion Control of Passive Intelligent Walker Using Servo Brakes,” IEEE Transactions on Robotics, vol. 23, no. 5, pp.

981-990, 2007.

[13] T. Hirotomi, Y. Hosomi, and H. Yano, “Brake Control Assist on a Four-Castered Walker for Old People,” International Conference on Computers Helping People with Special Needs, pp. 1269-1276, 2008.

267-288, 1996.

[16] N. Nejatbakhsh and K. Kosuge, “User-Environment Based Navigation Algorithm for an Omnidirectional Passive Walking Aid System,” IEEE International Conference on Rehabilitation Robotics, pp.178-181, 2005.

[17] O. Y. Chuy, Y. Hirata, Z. Wang, and K. Kosuge, “A Control Approach Based on Passive Behavior to Enhance User Interaction,” IEEE Transactions on Robotics, vol. 23, no. 5, pp. 899-908, 2007.

[18] A. Zhu and S. X. Yang, “Neurofuzzy-Based Approach to Mobile Robot Navigation in Unknown Environments,” IEEE Transactions on Systems, Man, and Cybernetics—Part C: Applications and Reviews, vol. 37, no. 4, pp. 610-621, 2007.

[19] J. S. R. Jang, “ANFIS: Adaptive-Network-Based Fuzzy Inference System,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 23, no. 3, pp. 665-685, 1993.

[20] T. Takagi and M. Sugeno, “Fuzzy Identification of Systems and its Applications to Modeling and Control,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 1, no. 1, pp. 116-132, 1985.

[21] M. Sugeno and G. T. Kang, “Structure Identification of Fuzzy Model,” Fuzzy Sets and Systems, vol. 1, no. 1, pp. 15-33, 1988.

[22] Lord Corporation,http://www.lord.com/ [Accessed: May. 9, 2010]

[23] Texas Instruments Corporation, http://www.ti.com/ [Accessed: May. 9, 2010]

[24] Microchip Corporation,http://www.microchip.com/ [Accessed: May. 9, 2010]

[25] Tekscan Corporation,http://www.tekscan.com/ [Accessed: May. 9, 2010]

[26] 王進德、蕭大全 編譯,類神經網路與模糊控制理論入門,全華科技圖書,

民國九十四年九月。

國九十七年四月。

[28] 周鵬程 著,類神經網路入門─活用 Matlab,全華科技圖書,民國九十七年 十月。

[29] 曾百由 著,微處理器原理與應用─組合語言與 PIC18 微控制器,五南圖書,

民國九十五年十月。

[30] 林容益 著,DSP 數位化機電控制─TMS320 F2812 系統,全華科技圖書,民 國九十七年十月。

[31] 游勝雄,基於環境感測之行動輔具設計,國立交通大學電機與控制工程所碩 士論文,2009。

[32] 許育誌,適應性類神經模糊系統於二足機器人 ZMP 之應用,國立中央大學 光機電工程研究所碩士論文,2007。

相關文件