• 沒有找到結果。

第五章 結論以及未來展望

5.2 未來展望

本研究所表達的是利用目前現有的P3HT:PCBM 材料來製作高效率的 透明有機太陽能電池,以及其延伸應用探討。但同樣的也因為P3HT:PCBM 這層材料的透光性不佳,將來若是發展出新的材料其吸收光譜能夠不涵蓋 可見光的光譜,同時又具有很好的紅外光或是紫外光的吸收率,不僅效率 能夠兼顧,同時也能達到最佳的透光性,增加透明太陽能元件應用在建築 物表面的效應,達到最大的空間應用。而且對於堆疊結構仍然有可以改進 的空間,若是具有和 P3HT:PCBM 有不同的吸收光譜,如下圖 5-1 所示,

利用不同的吸收光譜達到涵蓋所有太陽能光譜的能力,如此可以增加不同 光譜的吸收應用,對於堆疊結構元件來說也有很好的效率提昇。

5- 1 P3HT/PCBM 高分子薄膜的吸收光譜與太陽放射光譜的比較圖

雖然就目前高分子有機太陽能電池之光電轉換效率來說,已經可以達 到相當好的光電轉換效率,但由於P3HT能帶寬為 1.9eV,主要主吸收在 600 nm光譜以下,而就太陽光譜來看,由圖 5-1 所示,有相當大的部份是在大 於600 nm波長的能量分佈,因此,開發出新的低能帶寬高分子材料,且能

階與acceptor相匹配,擁有高的載子遷移率是未來該領域的趨勢。在 2006 年 ,C. J. Brabec 等 人 在 Advanced Materials 期 刊 發 表 了 一 篇 , 利 用 Voc =(1/ )(e EDonorHOMOEPCBMLUMO) 0.3− V [51]公式推知在固定Acceptor 為PCBM時,當降低donor材料的HOMO能階,可以得到最大的開路電壓 值,此外利用固定donor的HOMO能階為-5.7eV去估計光電轉換效率極限,

當donor的LUMO能階降低時,能帶寬(Eg)也隨之降低,且在能帶寬小於 1.8eV時,可使高分子光伏電池光電轉換效率高達 10%(圖 5-2)。相信在未 來更有機會達到實際運用的光電轉換效率。另一方面,在追求高轉換效率 的同時,材料本身的耐熱性、耐久性及穩定性勢必也將成為未來有機太陽 能電池符合商品實際應用上所必須面對的問題。最後,希望本研究內容所 提出的透明電極論點對國內外學術界與相關產業將有所貢獻,並且在未來 發展結合上述兩個提升轉換效率的方法,期許有機太陽能電池能夠在日常 生活中更普及化與更廣泛地應用。

5- 2 預測光電轉換效率與donor的LUMO能階關係,圖中顯示HOMO能 階固定在 5.7eV時,當LUMO能階降低至能帶寬小於 1.8eV,高分子光伏 電池轉換效率可達10 %[51]

第六章 參考文獻

1 M. A. Green, K. Emery, D. L. King, Y. Hishikawa, W. Warta, SHORT COMMUNICATION Solar cell efficiency tables (version 28). Progress in Photovoltaics: Research and Applications, 2006. 14(5): p. 455-461.

2 J. M. Nunzi, Organic photovoltaic materials and devices. Comptes Rendus Physique, 2002. 3(4): p. 523.

3 F. C. Krebs, H. Spanggard, T. Kjar, M. Biancardo and J. Alstrup, Large area plastic solar cell modules. Materials Science and Engineering: B, 2007. 138(2):

p. 106.

4 H. Spanggaard and F. C. Krebs, A brief history of the development of organic and polymeric photovoltaics. Solar Energy Materials and Solar Cells, 2004.

83(2-3): p. 125.

5 C. W. Tang, Two-layer organic photovoltaic cell. Applied Physics Letters, 1986. 48(2): p. 183.

6 N. S. Sariciftci, L. Smilowitz, A. J. Heeger and F. Wudl, Semiconducting polymers (as donors) and buckminsterfullerene (as acceptor): photoinduced electron transfer and heterojunction devices. Synthetic Metals, 1993. 59(3): p.

333.

7 G. Yu, K. Pakbaz and A. J. Heeger, Semiconducting polymer diodes: Large size, low cost photodetectors with excellent visible-ultraviolet sensitivity. Applied Physics Letters, 1994. 64(25): p. 3422.

8 G. Yu, J. Gao, J. C. Hummelen, F. Wudl and A. J. Heeger, Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal

Donor-Acceptor Heterojunctions. Science, 1995. 270(5243): p. 1789-1791.

9 C. J. Brabec, N. S. Sariciftci and J. C. Hummelen, Plastic Solar Cells.

Advanced Functional Materials, 2001. 11(1): p. 15-26.

10 G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery and Y. Yang, High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat Mater, 2005. 4(11): p. 864.

11 W. Ma, C. Yang, X. Gong, K. Lee, and A. J. Heeger, Thermally Stable, Efficient Polymer Solar Cells with Nanoscale Control of the Interpenetrating Network Morphology. Advanced Functional Materials, 2005. 15(10): p.

1617-1622.

12 C. J. Ko, Y. K. Lin, C. W. Chu and F. C. Chen, Modified buffer layers for polymer photovoltaic devices. Applied Physics Letters, 2007. 90(6): p.

063509.

13 Siemens, from http://www.siemens.com/.

14 A. Moliton and J. M. Nunzi, How to model the behaviour of organic photovoltaic cells. Polymer International, 2006. 55(6): p. 583-600.

15 J. J. M. Halls, K. Pichler, R. H. Friend, S. C. Moratti and A. B. Holmes, Exciton diffusion and dissociation in a poly(p-phenylenevinylene)/C60

heterojunction photovoltaic cell. Applied Physics Letters, 1996. 68(22): p.

3120.

16 S. M. Sze, SEMICONDUCTOR DEVICES Physics and Technology 2nd Edition. 2002: p. 108.

17 C. J. Brabec, A. Cravino, D. Meissner, N. S. Sariciftci, T. Fromherz, M. T.

Rispens, L. Sanchez and J. C. Hummelen, Origin of the Open Circuit Voltage of Plastic Solar Cells. Advanced Functional Materials, 2001. 11(5): p.

374-380.

18 B. P. Rand, J. Genoe, P. Heremans and J. Poortmans, Solar cells utilizing small molecular weight organic semiconductors. Progress in Photovoltaics:

Research and Applications, 2007. 15(8): p. 659-676.

19 A. K.Ghosh and T. Feng, Merocynanine organic solar cells. Journal of Applied Physics, 1978. 49(12): p. 5982.

20 G. Yu, C. Zhang and A. J. Heeger, Dual-function semiconducting polymer devices: Light-emitting and photodetecting diodes. Applied Physics Letters, 1994. 64(12): p. 1540.

21 N. S. Sariciftci, L. Smilowitz, A. J. Heeger and F. Wudl, Photoinduced Electron Transfer from a Conducting Polymer to Buckminsterfullerene.

Science, 1992. 258(5087): p. 1474-1476.

22 A. Hadipour, B. de Boer and P. W. M. Blom, Organic Tandem and

Multi-Junction Solar Cells. Advanced Functional Materials, 2008. 18(2): p.

169-181.

23 A. Yakimov and S. R. Forrest, High photovoltage multiple-heterojunction organic solar cells incorporating interfacial metallic nanoclusters. Applied Physics Letters, 2002. 80(9): p. 1667.

24 B. P. Rand, P. Peumans and S. R. Forrest, Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters. Journal of Applied Physics, 2004. 96(12): p. 7519.

25 G. Gu, V. Bulovic, P. E. Burrows, S. R. Forrest and M. E. Thompson, Transparent organic light emitting devices. Applied Physics Letters, 1996.

68(19): p. 2606.

26 R. B. Pode, C. J. Lee, D. G. Moon and J. I. Han, Transparent conducting metal electrode for top emission organic light-emitting devices: Ca-Ag double layer.

Applied Physics Letters, 2004. 84(23): p. 4614.

27 T. F. Guo, F. S. Yang, Z. J. Tsai, G. W. Feng, T. C. Wen, S. N. Hsieh, C. T.

Chung and C. I. Wu, High-brightness top-emissive polymer light-emitting diodes utilizing organic oxide/Al/Ag composite cathode. Applied Physics Letters, 2006. 89(5): p. 051103.

28 C. W. Chen, P. Y. Hsieh, H. H.Chiang, C. L. Lin, H. M. Wu and C. C. Wu, Top-emitting organic light-emitting devices using surface-modified Ag anode.

Applied Physics Letters, 2003. 83(25): p. 5127.

29 M. Hiramoto, M. Suezaki and M. Yokoyama, Effect of Thin Gold

Interstitial-layer on the Photovoltaic Properties of Tandem Organic Solar Cell.

Chemistry Letters, 1990. 19(3): p. 327.

30 P. Peumans, A. Yakimov and S. R. Forrest, Small molecular weight organic thin-film photodetectors and solar cells. Journal of Applied Physics, 2003.

93(7): p. 3693.

31 R. F. Bailey-Salzman, B. P. Rand. and S. R. Forrest, Semitransparent organic photovoltaic cells. Applied Physics Letters, 2006. 88(23): p. 233502.

32 L. S. Hung, C. W. Tang, M. G. Mason, P. Raychaudhuri and J. Madathil, Application of an ultrathin LiF/Al bilayer in organic surface-emitting diodes.

Applied Physics Letters, 2001. 78(4): p. 544.

33 K. C. Liu, C. W. Teng, Y. H. Lu, J. H. Lee and L. C. Chen, Improving the Performance of Transparent PLEDs with LiF/Ag/ITO Cathode. Electrochem, Solid-State Lett., 2007. 10(10): p. J120-J122.

34 G. M. Ng, E. L. Kietzke, T. Kietzke, L. W. Tan, P. K. Liew and F. Zhu, Optical enhancement in semitransparent polymer photovoltaic cells. Applied Physics Letters, 2007. 90(10): p. 103505.

35 KONARKA, from http://www.konarka.com.

36 H. C. Starck, from http://www.hcstarck.de.

37 T. Chen, X. Wu and R. D. Rieke, Regiocontrolled Synthesis of

Poly(3-alkylthiophenes) Mediated by Rieke Zinc: Their Characterization and Solid-State Properties. J. Am. Chem. Soc., 1995. 117(1): p. 233-244.

38 PerkinElmer, from http://www.perkinelmer.com/.

39 V. Shrotriya, G. Li, Y. Yao, T. Moriarty, K. Emery and Y. Yang, Accurate Measurement and Characterization of Organic Solar Cells. Advanced Functional Materials, 2006. 16(15): p. 2016-2023.

40 Intermational Electrotechnical Commission, Geneva, Switzerland,

Photovoltaic devices Part 1: Measurement of Photovoltaic Current-Voltage Characteristics Standard IEC 60904-1.

41 V. Shrotriya, Y. Yao, G. Li and Y. Yang, Effect of self-organization in

polymer/fullerene bulk heterojunctions on solar cell performance. Applied Physics Letters, 2006. 89(6): p. 063505.

42 G. Li, Y. Yao, H. Yang, V. Shrotriya, G. Yang and Y. Yang, "Solvent Annealing"

Effect in Polymer Solar Cells Based on Poly(3-hexylthiophene) and Methanofullerenes. Advanced Functional Materials, 2007. 17(10): p.

1636-1644.

43 G. Li, V. Shrotriya, Y. Yao and Y. Yang, Investigation of annealing effects and film thickness dependence of polymer solar cells based on

poly(3-hexylthiophene). Journal of Applied Physics, 2005. 98(4): p. 043704.

44 J. Kido and T. Matsumoto, Bright organic electroluminescent devices having a metal-doped electron-injecting layer. Applied Physics Letters, 1998. 73(20): p.

2866.

45 H. Heil, J. Steiger, S. Karg, M. Gastel, H. Ortner, H. von Seggern and M.

Stossel, Mechanisms of injection enhancement in organic light-emitting diodes through an Al/LiF electrode. Journal of Applied Physics, 2001. 89(1): p. 420.

46 C. S. Kee, K. Kim and H. Lim, Optical resonant transmission in

metal-dielectric multilayers. Journal of Optics A: Pure and Applied Optics, 2004. 6(1): p. 22.

47 V. Shrotriya, E. H. Wu, G. Li, Y. Yao and Y. Yang, Efficient light harvesting in multiple-device stacked structure for polymer solar cells. Applied Physics Letters, 2006. 88(6): p. 064104.

48 D. R. Cunningham and J. A. Stuller, Circuit Analysis. p. 17-22.

49 K. Kawano, N. Ito, T. Nishimori and J. Sakai, Open circuit voltage of stacked bulk heterojunction organic solar cells. Applied Physics Letters, 2006. 88(7):

p. 073514.

50 I. Riedel, V. Dyakonov, J. Parisi, L. Lutsen, D. Vanderzande and J. C.

Hummelen. Current-voltage characteristics of polymer-fullerene solar cells. in Photovoltaic Specialists Conference, 2002. Conference Record of the

Twenty-Ninth IEEE. 2002.

51 M. C. Scharber, D. M. lbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger and C. J. Brabec, Design Rules for Donors in Bulk-Heterojunction Solar Cells-towards 10% Energy-Conversion Efficiency. Advanced Materials, 2006.

18(6): p. 789-794.

相關文件