• 沒有找到結果。

機械手臂安全性評估實驗結果

第六章 .實驗結果

6.3 機械手臂安全性評估實驗設置

6.3.1 機械手臂安全性評估實驗結果

機械手臂與障礙物的配置以及實驗情形如圖 6.21 所示,手腕點將會以不同 速度從(0,0,-522)移動到(450,-100-300),而途中放置一個裝滿水約 2kg 的寶特瓶做 為障礙物。經由多次實驗得到手腕點移動速度為 0.17m/s 時,障礙物在遭遇碰撞 後仍然可以安穩在原本位置上,而碰撞時所發生最大的力為 52.53mNt,而碰撞 力的實驗記錄結果如圖 6.23 所示,實驗過程的手腕點軌跡如圖 6.22 所示。圖 6.24 為手腕點以 0.24m/s 速度移動時所記錄的碰撞力,可以看到有圖上兩個突波,第 一個突波代表的是機械手臂與瓶身的第一次碰撞,第二個突波代表的是瓶身因為 遭遇外力撞擊重心不穩有晃動而在撞回機械手臂的時候。在手腕點以 0.24m/s 速

62

度移動時所記錄的碰撞力最高值有 104.34mNt,並且造成物體二次碰撞,可以看 出當速度到達 0.24m/s 已經會對環境中物體開始造成安全性的威脅。

圖 6.21 機械手臂安全性評估實驗過程

圖 6.22 手腕點移動軌跡

63

圖 6.23 手腕點速度 0.17m/s 記錄的外力

圖 6.24 手腕點速度 0.24m/s 記錄的外力

6.4 實驗討論

在本章第三節,機械手臂順應外力之實驗,以人類手臂對機械手臂施力,期 望機械手臂順應外力而產生三個圓圈的手腕點軌跡運動,由圖 6.3 可以看出機械 手臂手腕點的空間運動軌跡,而由圖 6.4 和圖 6.5 可以看出手腕點的 X、Y 和 Z 的座標的確有順應著 X 軸、Y 軸和 Z 軸的感測的外力在移動。

本章的第四節,機械手臂運行遭遇障礙物而重新移動實驗,其中規畫了三個 實驗情境,分別是(1)從起始點(0,0,-522)到(400,-100-100)、(2)從(300,100,-350)到 (300,-200,-350)和(3)從(300,-200,-300)到(300,100,-300)這三種情形,分別代表了機

64

械手臂縱向的移動與橫向的移動。而在機械手臂運動的過程中,隨機放置障礙物,

而由圖 6.7 和圖 6.8 與圖 6.12 和圖 6.13 與圖 6.17 和圖 6.18 可以看出機械手臂原 本的運動軌跡與使用重新移動策略後機械手臂重新移動的運動軌跡的不同,使用 本方法後可以藉由輕微碰撞而繞過障礙物,達到安全性與功能性的要求。最後經 由安全性評估實驗,測出在機械手臂手腕點速度 0.17m/s 時,本方法仍可以確保 環境中物體的安全。

65

66

7.2 未來展望

本論文目前安裝在力感測器上的器具為簡單的器具,並無手爪功能,未來可 在力感測器上安裝手爪,並且完成手爪與手爪預備抓取的負載的重力補償,已達 到實用方面的要求。本論文在感測器使用方面,由於僅使用力感測器作為回授,

對於外界資訊種類獲得有限,因此未來可加入電腦視覺部分,已達到主動避障與 被動避障同時進行,對於機械手臂的安全性與實用性必定可已有大幅的提升。

67

參考文獻

[1] D. Tsetserukou, R. Tadakuma, H. Kajimoto, N. Kawakami and S. Tachi,

“Intelligent Variable Joint Impedance Control and Development of a New Whole-Sensitive Anthropomorphic Robot Arm,” Proc. of IEEE International Symposium on Computational Intelligence in Robotics and Automation, Jacksonville, FL, USA, 2007, pp. 338-343.

[2] D. Tsetserukou, N. Kawakami and S. Tachi, “Vibration Damping Control ofRobot Arm Intended for Service Application in Human Environment,” Proc.

of IEEE-RAS International Conference on Humanoid Robots, Daejeon, Korea, 2008, pp. 441-446.

[3] K. A. Wyrobek, E. H. Berger, H. F. Machiel Van der Loos and J. K. Salisbury,

“Towards a Personal Robotics Development Platform: Rationale and Design of an Intrinsically Safe Personal Robot,” Proc. of IEEE International Conference on Robotics and Automation,Nice, France, 2008, pp. 2165-2170.

[4] A. Albu-Schaffer, S. Haddadin, Ch. Ott, A. Stemmer, T. Wimbock and G.

Hirzinger, “The DLR Lightweight Robot: Design and Control Concepts for Robots in Human Environments,” Industrial Robot: An International Journal, 2007, Vol. 34 , No. 5, pp. 376 – 385.

[5] A. De Luca, A. Albu-Schaffer, S. Haddadin and G. Hirzinger, “Collision Detection and Safe Reaction with the DLR-III Lightweight Manipulator Arm,”

Proc. of IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China, 2006, pp. 1623-1630.

[6] Jung-Jun Park, Byeong-Sang Kim, Jae-Bok Song and Hong-Seok Kim, “Safe Link Mechanism based on Passive Compliance for Safe Human-Robot Collision,” Proc. of IEEE International Conference on Robotics and Automation, Roma, 2007, pp. 1152-1157.

[7] Jung-Jun Park, Hwi-Su Kim and Jae-Bok Song, “Safe Robot Arm with Safe Joint Mechanism using Nonlinear Spring System for Collision Safety,” Proc. of IEEE International Conference on Robotics and Automation, Kobe, Japan, 2009, pp. 3371-3376.

[8] Jung-Jun Park, Yong-Ju Lee, Jae-Bok Song, Hong-Seok Kim and Jae-Bok Song,

“Safe Robot Arm with Safe Joint Mechanism using Nonlinear Spring System for Collision Safety,” Proc. of IEEE International Conference on Robotics and

68

Automation, Pasadena, CA , 2008, pp. 2177-2182.

[9] H. Iwata, S. Kobashi, T. Aono and S. Sugano, “Design of Anthropomorphic 4-DOF Tactile Interaction Manipulator with Passive Joints,” Proc. of IEEE/RSJ International Conference on Intelligent Robots and Systems, Edmonton, Canada, 2005, pp. 1785-1790.

[10] S. Kajikawa, “Variable Compliance Mechanism for Human-care Robot Arm,”

Proc. of IEEE Industrial Electronics Society (IECON), Taipei, Taiwan, 2007, pp.

2736-2741.

[11] H. Seki, Y. Kamiya and M. Hikizu, “SCARA Type Robot Arm with Mechanically Adjustable Compliant Joints,” Proc. of IEEE Conference on Emerging Technologies and Factory Automation, Prague, Czech Republic, 2006, pp.1175-1181.

[12] R. Paul and B. Shimano, “Compliance and Control,” Proc. of Joint Automation Control Conference, New York,1976, pp.694-699.

[13] M. T. Mason, “Compliance and Force Control for Computer Controlled Manipulators,” IEEE Transactions on Systems, Man, and Cybernetics, 1981, Vol.11, No. 6, pp. 418-432.

[14] M. H. Raibert and J. J. Craig, “Hybrid Position/Force Control of Manipulators,”

Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, Vol.103, pp. 275-282, 1981.

[15] N. Hogan, “Impedance Control: an Approach to Manipulation. Part I: Theory, Part II: Implementation, Part III: Application” Transaction of ASME, Journal of Dynamic Systems, Measurement, and Control, vol.107, pp. 1-23, 1985.

[16] H. Kazerooni, “Robust Compliant Motion:Impedance Control, ”Proc. of IEEE Conference on Robotics and Automation, Albuquerque, New Mexico, U.S., 1986, pp.185-188.

[17] R. J. Anderson and M. W. Spong, “Hybrid Impedance Control of Robotics Manipulators,” IEEE Transactions on Robotics and Automation, Vol.4, No.5, pp.

549-556, 1988.

[18] A. A. Goldenberg, “Implementation of Force and Impedance in Robot Manipulation,” Proc. of IEEE Conference on Robotics and Automation, Philadelphia, PA, USA, 1988, pp. 1626-1632.

[19] J-J E. Slotine and W. Li, “Adaptive Strategy in Constrained Manipulators,” Proc.

69

of IEEE Conference on Robotics and Automation, Raleigh, 1987, pp. 595-601.

[20] W. S. Lu and Q. H. Meng, “Impedance Control with Adaptation for Robotics Manipulators,” IEEE Transactions on Robotics and Automation, Vol. 7, No. 3, pp. 408-415, 1991.

[21] 林振暘, “基於馬達電流量測之行動輔助機器人順應性控制,” 國立交通大學 電機與控制工程學系碩士論文, 2008.

[22] 晉茂林, “機器人學,”五南圖書出版公司, 1998.

[23] 王衍翔, “擬人型雙手臂機器人之機電設計、運動規劃與合作,” 國立中興大 學電機工程學系碩士論文, 2009.

[24] R. P. Paul, “Robot Manipulators: Mathematics, Programming, and Control, the Computer Control of Robot Manipulators,” MIT Press, 1981.

相關文件