• 沒有找到結果。

結論

在文檔中 中 華 大 學 (頁 41-53)

附錄 附錄 附錄 附錄

1) 完整檢索數據

完整檢索數據完整檢索數據完整檢索數據

在PSB資料庫中完整的檢索數據如表十一所示,在ESB資料庫中完整的檢索數 據如表十二所示,在SHREC-W資料庫中完整的檢索數據如表十三所示,在NIST資 料庫中完整的檢索數據如表十四所示。

表十一、在PSB資料庫中完整的檢索效能表,Recall (%)Re、DCG(%)和Query Time(s)。 Method 執行執行 執行執行

次數次數次數 次數

Re (NL=Ti)

Re (NL=2Ti)

Re (NL=3Ti)

Re (NL=4Ti)

DCG (kmax=907)

Query Time(s)

ART-ED[42] 42.32 52.29 58.15 62.13 71.83 0.1953

SGD[42] 26.39 34.10 40.06 44.41 58.65 0.0064

PPD[41] 34.04 43.92 49.89 54.43 65.62 0.0114

3D-ART[35] 35.89 45.11 49.78 53.10 66.68 0.0114

GD2[26] 28.66 38.03 43.72 48.21 61.34 0.0151

BD[25] 26.72 34.00 38.95 42.69 58.70 0.0163

FCBaseline 45.04 56.10 61.71 65.62 74.08 0.2353

FCBC 41.77 52.86 59.00 63.57 71.77 0.2871

FCIRP 43.12 55.43 61.95 66.23 73.72 0.2899

DMDFFRW 46.49 57.68 62.78 66.57 74.87 0.4256

DMDFAQPM

1 45.04 56.10 61.71 65.62 74.08 0.4690 2 47.69 59.14 64.63 68.22 75.71 0.4706 3 48.48 59.98 65.46 69.07 76.14 0.4723 4 48.96 60.13 65.85 69.34 76.29 0.4741 5 49.26 60.29 65.79 69.61 76.38 0.4751 6 49.21 60.34 65.90 69.74 76.40 0.4761 7 49.50 60.68 65.93 69.51 76.51 0.4764 8 49.19 60.48 65.80 69.58 76.36 0.4777 9 49.30 60.80 66.08 69.55 76.41 0.4795 10 49.34 60.61 65.91 69.65 76.28 0.4792

DMDFAQPM-FRW

1 46.49 57.68 62.78 66.57 74.87 0.4693 2 48.56 60.33 65.48 69.16 76.31 0.4708 3 49.23 60.98 66.46 69.99 76.62 0.4734 4 49.74 61.06 66.58 70.16 76.69 0.4749 5 49.94 60.99 66.49 70.51 76.83 0.4768 6 49.86 61.26 66.73 70.50 76.78 0.4765 7 50.01 61.37 66.77 70.54 76.88 0.4795 8 49.97 61.23 66.78 70.46 76.75 0.4802 9 50.05 61.48 66.96 70.30 76.70 0.4816 10 50.04 61.49 66.98 70.46 76.65 0.4818

表十二、在ESB資料庫中完整的檢索效能表,Recall (%)Re、DCG(%)和Query Time(s)。 Method 執行執行 執行執行

次數次數次數 次數

Re (NL=Ti)

Re (NL=2Ti)

Re (NL=3Ti)

Re (NL=4Ti)

DCG (kmax=907)

Query Time(s)

ART-ED[42] 41.55 54.90 63.01 68.15 76.23 0.1873

SGD[42] 31.95 42.49 49.55 55.65 69.80 0.0064

PPD[41] 36.43 46.84 54.22 59.72 72.98 0.0113

3D-ART[35] 41.30 54.82 61.35 65.98 75.86 0.0110

GD2[26] 35.36 45.97 52.50 57.32 71.87 0.0152

BD[25] 38.52 49.24 56.36 61.35 73.98 0.0162

FCBaseline 47.73 61.72 68.95 73.88 80.19 0.2254

FCBC 45.01 59.12 67.20 72.23 78.61 0.2730

FCIRP 45.96 59.96 67.88 73.30 79.26 0.2728

DMDFFRW 48.07 61.89 69.12 74.09 80.37 0.3866

DMDFAQPM

1 47.73 61.72 68.95 73.88 80.19 0.4227 2 48.64 62.53 69.89 74.53 80.54 0.4315 3 48.98 62.62 70.09 74.55 80.61 0.4341 4 49.03 62.97 70.34 74.92 80.66 0.4371 5 49.18 62.76 70.37 74.78 80.67 0.4380 6 49.15 63.04 70.56 75.00 80.58 0.4407 7 49.08 62.91 70.44 74.96 80.53 0.4416 8 49.03 63.05 70.45 74.97 80.52 0.4416 9 48.91 63.00 70.35 74.89 80.46 0.4424 10 48.80 63.06 70.41 75.09 80.42 0.4421

DMDFAQPM-FRW

1 48.07 61.89 69.12 74.09 80.37 0.4269 2 48.89 62.80 70.01 74.78 80.62 0.4349 3 49.30 62.76 70.30 74.76 80.71 0.4367 4 49.24 63.12 70.58 75.10 80.74 0.4407 5 49.49 63.01 70.59 74.90 80.72 0.4416 6 49.42 63.14 70.66 75.07 80.69 0.4442 7 49.30 62.97 70.67 75.09 80.61 0.4454 8 49.31 63.10 70.60 75.03 80.58 0.4458 9 49.27 63.25 70.46 75.09 80.52 0.4470 10 49.11 63.19 70.51 75.07 80.47 0.4478

表十三、在SHREC-W資料庫中完整的檢索效能表,Recall (%)Re、DCG(%)和Query Time(s)。

Method 執行執行 執行執行 次數 次數次數 次數

Re (NL=Ti)

Re (NL=2Ti)

Re (NL=3Ti)

Re (NL=4Ti)

DCG (kmax=907)

Query Time(s)

ART-ED[42] 46.64 59.40 68.33 74.55 80.37 0.0860

SGD[42] 36.03 52.06 61.24 67.78 72.46 0.0030

PPD[41] 42.05 56.24 65.84 71.94 77.67 0.0051

3D-ART[35] 43.38 55.24 62.09 67.17 78.00 0.0050

GD2[26] 42.21 56.87 65.81 71.80 77.13 0.0070

BD[25] 57.80 71.91 78.35 82.89 85.42 0.0071

FCBaseline 60.75 73.65 80.14 84.26 87.17 0.1036

FCBC 56.23 70.24 77.51 82.65 84.95 0.1146

FCIRP 56.91 72.30 79.05 83.84 85.92 0.1150

DMDFFRW 60.73 73.82 80.10 84.41 87.27 0.2237

DMDFAQPM

1 60.75 73.65 80.14 84.26 87.17 0.2597 2 63.68 76.06 81.46 85.39 88.53 0.2679 3 64.94 76.72 82.05 85.64 89.04 0.2655 4 65.38 77.20 82.32 85.84 89.18 0.2672 5 65.46 77.30 82.71 86.09 89.18 0.2689 6 66.11 77.36 82.80 86.19 89.23 0.2700 7 65.76 77.41 83.04 86.09 89.19 0.2711 8 65.94 77.67 82.77 86.23 89.18 0.2715 9 65.83 77.74 83.10 86.30 89.24 0.2727 10 65.94 77.90 82.90 86.26 89.21 0.2730

DMDFAQPM-FRW

1 60.73 73.82 80.10 84.41 87.27 0.2653 2 63.95 76.31 81.62 85.39 88.57 0.2669 3 65.11 76.82 82.06 85.75 89.06 0.2701 4 65.68 77.31 82.41 86.05 89.24 0.2720 5 65.64 77.49 82.75 86.16 89.23 0.2739 6 66.20 77.64 82.95 86.39 89.26 0.2748 7 66.03 77.65 83.02 86.14 89.26 0.2759 8 66.15 77.89 82.92 86.39 89.26 0.2765 9 66.03 78.06 83.17 86.36 89.30 0.2773 10 66.20 78.09 83.07 86.44 89.26 0.2775

表十四、在NIST資料庫中完整的檢索效能表,Recall (%)Re、DCG(%)和Query Time(s)。

Method 執行執行 執行執行 次數 次數次數 次數

Re (NL=Ti)

Re (NL=2Ti)

Re (NL=3Ti)

Re (NL=4Ti)

DCG (kmax=907)

Query Time(s)

ART-ED[42] 43.84 56.23 63.45 68.51 76.73 0.1721

SGD[42] 18.81 26.69 32.83 37.99 56.39 0.0056

PPD[41] 39.02 53.06 60.59 65.92 73.72 0.0096

3D-ART[35] 40.03 52.01 58.44 62.63 73.97 0.0097

GD2[26] 31.73 42.89 49.78 55.06 67.78 0.0138

BD[25] 23.79 31.24 36.42 40.75 60.51 0.0138

FCBaseline 48.20 60.59 67.09 71.95 79.68 0.2061

FCBC 45.09 58.79 66.67 71.88 77.44 0.2462

FCIRP 45.89 60.16 67.92 73.04 79.13 0.2434

DMDFFRW 49.96 62.48 69.14 73.83 80.78 0.3475

DMDFAQPM

1 48.20 60.59 67.09 71.95 79.68 0.3859 2 52.40 64.24 70.71 75.06 82.03 0.3849 3 53.83 65.71 72.01 75.88 82.79 0.3861 4 54.29 66.20 72.45 76.49 83.05 0.3861 5 54.60 66.61 72.80 76.77 83.19 0.3875 6 54.67 66.69 73.09 76.78 83.22 0.3881 7 54.74 66.82 73.14 77.10 83.25 0.3891 8 54.68 66.96 73.12 77.04 83.21 0.3898 9 54.76 66.91 73.19 77.17 83.21 0.3899 10 54.61 67.11 73.06 77.01 83.18 0.3906

DMDFAQPM-FRW

1 49.96 62.48 69.14 73.83 80.78 0.3869 2 54.08 65.95 72.39 76.43 82.88 0.3854 3 55.31 67.25 73.43 77.17 83.48 0.3864 4 55.71 67.76 73.74 77.69 83.70 0.3865 5 55.93 67.98 74.11 77.98 83.80 0.3884 6 56.09 67.85 74.19 78.02 83.75 0.3890 7 55.99 68.21 74.34 78.23 83.78 0.3894 8 55.97 68.27 74.28 78.10 83.74 0.3899 9 56.13 68.30 74.33 78.19 83.76 0.3907 10 55.88 68.35 74.28 78.18 83.75 0.3913

2) 加權特徵整合

加權特徵整合加權特徵整合加權特徵整合(Feature Re-weighting,,,,FRW)

為了提高檢索的正確性,我們調整了各個特徵向量的權重值,計算各特徵距離的 加權總和,以此測量兩個3D模型的距離。在本論文,每個特徵的權重是利用先前所 選出相關模型和不相關模型的相關值來計算。

根據選出相關模型和不相關模型的相關值,第m個特徵的權重定義如下:

=

=

=

IRev Rev

1 1

) ( ) ( )

( ) (

N

j

j j

m N

i

i i m

m B r Rev r B ir Revir

ω (34)

Rev(ri)是第i個相關模型的相關值,Rev(irj)是第j個非相關模型的相關值,Bm(ri)和Bm(irj) 分別是判斷相關和非相關模型是否在Lm(在第m個特徵的檢索結果裡,排名前Q名的模 型)的布林函數,設定如下:



 ∈

= 0, otherwise ,

) 1

( m

m

L r r

B (35)

因此,如果Lm包含許多的相關模型,而且在檢索結果中名列前茅,那麼第m個特徵將 會取得很大的權重值,然後將使用加權距離來找出最相似的模型。

在PSB資料庫FRW(-)與動態多重特徵調整的檢索效能表如表十五所示,在ESB

資料庫 FRW(-)與動態多重特徵調整的檢索效能表如表十六所示,在 SHREC-W資料

庫FRW(-)與動態多重特徵調整的檢索效能表如表十七所示,在 NIST資料庫FRW(-)

與動態多重特徵調整的檢索效能表如表十八所示。

表十五、在PSB資料庫中FRW(-)與動態多重特徵調整的檢索效能表,Recall (%)Re、 DCG(%)和Query Time(s)。

Method 執行執行執行執行 次數次數 次數次數

Re (NL=Ti)

Re (NL=2Ti)

Re (NL=3Ti)

Re (NL=4Ti)

DCG (kmax=907)

Query Time(s)

DMDFFRW(-) 46.31 57.54 62.75 66.43 74.83 0.4745

DMDFAQPM-FRW(-)

1 46.31 57.54 62.75 66.43 74.83 0.5258 2 48.46 60.22 65.45 69.07 76.27 0.5306 3 49.03 60.92 66.45 69.91 76.57 0.5332 4 49.61 60.99 66.58 70.12 76.64 0.5355 5 49.93 61.01 66.41 70.42 76.81 0.5368 6 49.78 61.28 66.64 70.50 76.76 0.5379 7 49.92 61.34 66.65 70.49 76.82 0.5389 8 49.90 61.23 66.68 70.35 76.70 0.5401 9 50.09 61.44 66.82 70.35 76.68 0.5419 10 49.97 61.41 66.88 70.35 76.61 0.5421

表十六、在ESB資料庫中FRW(-)與動態多重特徵調整的檢索效能表,Recall (%)Re、 DCG(%)和Query Time(s)。

Method 執行執行 執行執行 次數次數次數 次數

Re (NL=Ti)

Re (NL=2Ti)

Re (NL=3Ti)

Re (NL=4Ti)

DCG (kmax=907)

Query Time(s)

DMDFFRW 48.15 61.89 69.06 74.14 80.37 0.4281

DMDFAQPM-FRW

1 48.15 61.89 69.06 74.14 80.37 0.4748 2 48.84 62.71 70.06 74.70 80.62 0.4822 3 49.25 62.75 70.27 74.74 80.71 0.4865 4 49.22 63.07 70.53 75.00 80.72 0.4897 5 49.43 63.04 70.61 74.87 80.71 0.4905 6 49.38 63.13 70.67 75.08 80.69 0.4939 7 49.25 63.03 70.70 75.05 80.61 0.4959 8 49.26 63.09 70.58 74.99 80.58 0.4979 9 49.25 63.19 70.48 75.04 80.51 0.4980 10 49.10 63.13 70.53 75.12 80.48 0.4987 表十七、在SHREC-W資料庫中FRW(-)與動態多重特徵調整的檢索效能表,Recall (%)Re、DCG(%)和Query Time(s)。

Method 執行執行 執行執行 次數次數次數 次數

Re (NL=Ti)

Re (NL=2Ti)

Re (NL=3Ti)

Re (NL=4Ti)

DCG (kmax=907)

Query Time(s)

DMDFFRW 60.66 73.80 80.09 84.40 87.24 0.2631

DMDFAQPM-FRW

1 60.66 73.80 80.09 84.40 87.24 0.2992 2 63.89 76.26 81.72 85.40 88.57 0.3039 3 65.11 76.80 82.10 85.73 89.05 0.3086 4 65.56 77.27 82.39 86.03 89.23 0.3111 5 65.59 77.46 82.70 86.16 89.22 0.3135 6 66.19 77.60 82.92 86.39 89.25 0.3150 7 65.94 77.59 83.01 86.17 89.24 0.3163 8 66.10 77.89 82.91 86.33 89.25 0.3168 9 66.08 78.02 83.09 86.35 89.29 0.3173 10 66.20 78.05 83.04 86.36 89.25 0.3186 表十八、在NIST資料庫中FRW(-)與動態多重特徵調整的檢索效能表,Recall (%)Re、 DCG(%)和Query Time(s)。

Method 執行執行 執行執行 次數 次數次數 次數

Re (NL=Ti)

Re (NL=2Ti)

Re (NL=3Ti)

Re (NL=4Ti)

DCG (kmax=907)

Query Time(s)

DMDFFRW 49.75 62.29 69.01 73.65 80.68 0.3913

DMDFAQPM-FRW

1 49.75 62.29 69.01 73.65 80.68 0.4316 2 53.90 65.84 72.28 76.36 82.83 0.4322 3 55.18 67.14 73.33 77.14 83.44 0.4339 4 55.59 67.69 73.68 77.68 83.67 0.4379 5 55.81 67.87 74.03 77.91 83.78 0.4363 6 55.93 67.81 74.14 77.99 83.75 0.4371 7 55.98 68.03 74.30 78.19 83.77 0.4378 8 55.88 68.18 74.24 78.08 83.72 0.4388 9 56.06 68.24 74.24 78.24 83.73 0.4399 10 55.79 68.26 74.28 78.16 83.74 0.4405

3) 錯誤率

錯誤率錯誤率錯誤率

為了證明我們的自動相關不相關模型選擇機制是有效的,在本章節我們將計算其

錯誤率(Error Rate,ER),而在這邊我們將計算兩種錯誤率,第一種是選擇相關模型的

錯誤率(ERiRev),計算被選為相關模型卻與查詢模型不同類別的機率,可由以下公式 定義:

i i i

N ER NS

Rev Rev

Rev =1− (36)

NRevi 表示以第 i 個查詢模型自動選出的相關模型之數量,NSRevi 表示以第 i 個查詢模 型選出的相關模型中與查詢模型同類別的模型個數。第二種是選擇非相關模型的錯誤 率(ERIRevi ),計算被選為非相關模型卻與查詢模型相同類別的機率,可由以下公式定 義:

i i i

N ER NS

IRev IRev

IRev = (37)

NIRevi 表示以第i個查詢模型自動選出的非相關模型之數量,NSiIRev表示以第i個查詢 模型選出的非相關模型中與查詢模型同類別的模型個數。整體平均的相關模型錯誤率 (ERRev)和非相關模型錯誤率(ERIRev)定義如下:

=

=

×

= s s

N

i i N

i

i i

N ER N

ER

1 Rev 1

Rev Rev

Rev (38)

以及

=

=

×

= s

s

N

i i N

i

i i

N ER N

ER

1 IRev 1

IRev IRev

IRev (39)

如表十九所示,我們將計算出四個資料庫中平均的相關與非相關模型錯誤率。

表十九、在四個資料庫中,相關與非相關模型的平均錯誤率。

資料庫 資料庫 資料庫

資料庫 ERRev (%) ERIRev(%)

PSB 26.80 3.56

ESB 15.46 9.29

SHREC-W 8.36 5.49

NIST 14.68 4.19

參考文獻 參考文獻 參考文獻 參考文獻

[1] J.J. Rocchio Jr., “Relevance feedback in information retrieval, in: G. Salton (Ed.) ,”

The SMART System, Prentice Hall Inc., Englewood Cliffs, NJ, pp. 313–323, 1971.

[2] Y. Rui, T. Huang, and S. Mehrotra, “Content-based image retrieval with relevance feedback in MARS,” In Proceedings of IEEE International Conference on Image Processing ’97. Santa Barbara, CA, October 1997.

[3] K. Porkaew and K. Chakrabarti, “Query refinement for multimedia similarity retrieval in MARS,” In Proceedings of the 7th ACM Multimedia Conference,. Orlando, Florida, pp. 235–238, 1999.

[4] Y. Wang, M. Ding, C. Zhou and Y. Hu, “Interactive relevance feedback mechanism for image retrieval using rough set”, Computer Vision and Image Understanding, Vol.

88, Issue 2, pp. 55-75, Nov. 2002.

[5] P. Y. Yin and S. H. Li, “Content-based image retrieval using association rule mining with soft relevance feedback”, Journal of Visual Communication and Image Representation, Vol. 17, Issue 5, pp. 1108-1125, Oct. 2006.

[6] Y. Wu and A. Zhang. “A feature re-weighting approach for relevance feedback in image retrieval”, In IEEE International Conference on Image Processing (ICIP’02), Rochester, New York, pp. 581–584, September 2002.

[7] G. Giacinto and F. Roli, “Instance-based relevance feedback for image retrieval”, In Advances in Neural Processing Systems vol.17, Cambridge, MA, pp. 489–496, 2005.

[8] R. Nuray and F. Can, “Automatic ranking of information retrieval systems using data fusion,” Information Processing and Management, vol. 42, no 3, pp. 595-614, May 2006.

[9] M. Jovic, Y. Hatakeyama, F. Dong and K. Hirota, “Image Retrieval Based on Similarity Score Fusion from Feature Similarity Ranking Lists,” Proc. 3rd Int’l Conf.

Fuzzy Systems and Knowledge Discovery, pp. 461-470, 2006

[10]G. Das and S. Ray, “A comparison of relevance feedback strategies in CBIR”, 6th IEEE/ACIS International Conference on Computer and Information Science, pp.

100 – 105, July 2007.

[11]G. Das and S. Ray, Feature re-weighting in content-based image retrieval. In Proceedings of International Conference on Image and Video Retrieval, Arizona State University Tempe AZ, pp. 387–391,July 13-15 2006.

[12]Sanjoy K. Saha, Amit K. Das and Bhabatosh Chanda, "Image retrieval based on indexing and relevance feedback", Pattern Recognition Letters, Vol. 28, Issue 3, pp.357-366, 1. Feb. 2007.

[13]Pei-Cheng Cheng, Been-Chian Chien, Hao-Ren Ke and Wei-Pang Yang, “A two-level relevance feedback mechanism for image retrieval”, Expert Systems with Applications, Vol. 34, Issue 3, pp. 2193-2200, April 2008.

[14]H. J. Escalante, C. Hernandez, E. Sucar and M. Montes, “Late fusion of heterogeneous methods for multimedia image retrieval,” Proc. 1st ACM Int’l Conf.

Multimedia information retrieval, Vancouver, Canada, pp. 172–179, 2008.

[15]R. Ohbuchi, Y. Hata, "Combining Multiresolution Shape Descriptors for 3D Model Retrieval", Proc WSCG 2006, 2006.

[16]M. M. Monwar and M. L. Gavrilova, “Multimodal biometric system using rank-level fusion approach,” IEEE Trans. Syst. Man Cybern. B Cybern., vol. 39, no 4, pp.

867-78, Mar 2009.

[17]J. L. Shih and H. Y. Chen, “A 3D model retrieval approach using the interior and exterior 3D shape information,” Multimedia Tools Applicat., vol. 43, no. 1, pp. 45-62, May 2009.

[18]J. Ricard, D. Coeurjolly and A. Baskurt, “ART extension for description, indexing and retrieval of 3D objects,” Proc. 17th Int. Conf. Pattern Recognition, vol. 3, pp.

79-82, 2004.

[19]J. L. Shih, C. H. Lee, and J. T. Wang, “3D object retrieval system based on grid D2, Electron. Lett., vol. 41, no. 4, pp. 23-24, Feb. 2005.

[20]M. Reisert and H. Burkhardt “Second order 3D shape features: an exhaustive study,”

Comput. & Graph., vol. 30, no. 2, pp. 197-206, Apr. 2006.

[21]J. L. Shih and W. C.Wang, “A 3D model retrieval approach based on the principal plane descriptor,” Proc. 2nd Int. Conf. Innovative Computing, Inform. Control, 2007.

[22]P. Shilane, P. Min, M. Kazhdan, and T. Funkhouser, “The Princeton shape benchmark,” Proc. Shape Modeling Application., 2004, pp. 167-178.

[23]M. Jovic, Y. Hatakeyama, F. Dong and K. Hirota, “Image Retrieval Based on Similarity Score Fusion from Feature Similarity Ranking Lists,” Proc. 3rd Int’l Conf.

Fuzzy Systems and Knowledge Discovery, pp. 461-470, 2006.

[24]B. K. P. Horn, “Extended Gaussian images,” Proc. IEEE, vol. 72, no. 12, pp.

1671-1686, Dec. 1984.

[25]P. Papadakis, I. Pratikakis, S. Perantonis, T. Theoharis, “Efficient 3D shape matching and retrieval using a concrete radicalized spherical projection representation,” Pattern Recognition, vol. 40, no. 9, pp. 2437-2452, Sep. 2007.

[26]D. V. Vranic, “3D model retrieval,” Ph.D. Dissertation, University of Leipzig, Department of Computer Science, 2004.

[27]C. B. Akgul, B. Sankur, Y. Yemez, and F. Schmitt, “3D model retrieval using probability density-based shape descriptors,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 31, no. 6, pp. 1117-1133, June 2009.

[28]M. Kazhdan, T. Funkhouser, and S. Rusinkiewicz, “Rotation invariant spherical harmonic representation of 3D shape descriptors,” Proc. Eurographics/ACM SIGGRAPH symp. Geometry process., pp. 156-164, 2003.

[29]D. Y. Chen, X. P. Tian, Y. T. Shen, and M. Ouhyoung, “On visual similarity based 3D model retrieval,” Comput. Graph. Forum, vol. 22, no. 3, pp. 223-232, Sep. 2003.

[30]H. Laga, H. Takahashi, and M. Nakajima, “Spherical wavelet descriptors for content-based 3D model retrieval,” Proc. IEEE Int. Conf. Shape Modeling and Applicat., 2006.

[31]C. T. Kuo and S. C. Cheng, “3D model retrieval using principal plane analysis and dynamic programming,” Pattern Recognition, vol. 40, no. 2, pp. 742-755, Feb. 2007.

[32]M. Ankerst, G. Kastenmüller, H. P. Kriegel, and T. Seidl, “3D shape histograms for similarity search and classification in spatial databases,” Proc. 6th Int. Symp.

Advances in Spatial Databases, pp. 207-226, 1999.

[33]T. Zaharia and F. J. Preteux, “Shape-based retrieval of 3D mesh models,” Proc. IEEE Int’l Conf. Multimedia and Expo, vol. 1, pp. 437-440, 2002.

[34]E. Paquet and M. Rioux, “Nefertiti: A Query by Content Software for Three-Dimensional Models Databases Management,” Proc. Int. Conf. Recent Advances in 3D Digital Imaging and Modeling, pp. 345-352, 1997.

[35]D. V. Vranic, “An Improvement of Rotation Invariant 3D Shape Descriptor Based on Functions on Concentric Spheres,” Proc. IEEE Int. Conf. Image Process., pp. 757-760, Sept. 2003.

[36]T. F. Ansary, M. Daoudi, and J.-P. Vandeborre, ”3D Model Retrieval Based on Adaptive Views Clustering,” LNCS 3687, pp. 473–483, 2005.

[37]S. Jayanti, K. Kalyanaraman, N. Iyer, and K. Ramani, “Developing an Engineering Shape Benchmark for CAD Models,” Computer-Aided Design, vol. 38, no. 9, pp.

在文檔中 中 華 大 學 (頁 41-53)

相關文件