• 沒有找到結果。

結論

在文檔中 中 華 大 學 (頁 33-63)

本研究透過數值程式之分析進行了非正交網格之驗證得以進行稜形夾角改變 對孔穴內自然對流之影響,接著以同心圓柱熱傳問題觀察瑞利數增加下內部流場結 構之變化與熱傳增益之情形,進而處理內部圓柱於上下週期運動下之動態熱傳分 析,最後進行開放圓柱之熱傳分析。由前面之結果可得下述結論:

1. 當稜形夾角在 30o下自然熱傳問題中,本研究之結果與文獻所提供之紐塞數、

溫度分布與流線分布皆相當一致。

2. 在相同瑞利數下改變稜形之夾角,其最大熱傳量發生在 90o,不受左右壁面擠 壓之造型下,若相同夾角則瑞利數越大平均紐塞數越高,另外流場內部之漩渦 數目會隨對流效應之增強而變多,因此當夾角縮小至 30o或是放大至 165o時其 左右壁面之摩擦增強,其內部只剩一個迴旋。

3. 針對同心圓之自然熱傳問題也利用文獻之數據進行紐塞數、溫度分布與流線分 布之比對,並進行不同瑞利數之探討,當瑞利數小於10 其流場結構左右各一 大迴旋,當瑞利數於5 × 10 則左右各一大迴旋內部開始分裂成為兩個漩渦,

若瑞利數增至1 × 10 則同心圓下方產生另一迴流且內部有兩個漩渦,並將原 先一個大迴旋內部兩個漩渦之結構向上擠壓,形成更複雜之流場現象,此一渦 流與迴旋數目增多之現象可以說明層流開始轉換至不穩定流動之發展歷程。

4. 當內部圓柱處於上下週期運動時,目前分析程式以雙時間步階方式進行非穩態 之計算,透過文獻之結果與目前分析結果在瞬間流線與溫度分布很相近,但在 瞬間最大與最小之熱傳發展上有較延後之差異。

5. 最後在開放圓柱之熱傳分析上,針對上下游之邊界設定上至少需有 10 直徑對 局部紐塞數之影響將不會超過 2%。

24

參考文獻

[1]W.F. Noh, “A Time-dependent Two-space-dimensional Coupled Eulerian- Lagrangian Code”, Methods in Computational Physics, vol.3, p.117, B. Alder, S.

Fernbach and M. Rotenberg, Academic Press, New York, 1964.

[2]C.W. Hirt, A.A. Amsden, and H.K. Cooks, “An Arbitrary Lagrangian -Eulerian Computing Method for all Flow Speeds,” Journal of Computational Physics, vol.14, pp.227-253, 1974.

[3]Thomas J.R. Hughes, Wing Kam Liu, Thomas K. Zimmermann“Lagrangian-Eulerian finite element formulation for incompressible Viscous flows”Computer Methods in Applied Mechanics and Engineering, Volume 29, Issue 3, December 1981, PP.329-349 [4]T.H. Kuehn, R.J. Goldstein, “An experimental and theoretical study of natural convection in the annulus between horizontal concentric cylinders, J. Fluid Mech. 74 (1976) 695–719.

[5]G. De Vahl Davis. “Natural connection of air in a square cavity a bench mark numerical solution. ”International Journal for Numerical Methods in Fluids, vol. 3 (1983) 249-264.

[6]C-H CHENG, J-L HONG, “Numerical prediction of lock-on effect on convective heat transfer from a transversely oscillating circular cylinder,”International Journal of Heat and Mass Transfer 40 (1997) 1825–1834.

[7]J.S Yoo, “Prandtl number effect on bifurcation and dual solution in natural

convection in a horizontal annulus,”International Journal of Heat and Mass Transfer 42 (1999) 3279–3290.

25

[8]C.H. Cheng and K.S. Hung, “ Numerical Predictions of Flow and Thermal Fields in a Reciprocating Piston-Cylinder Assembly, ”Numerical Heat Transfer, Part A, Vol. 38 (2000) pp. 397-421.

[9]W.S. Fu, B.H Tong, “Numerical investigation of heat transfer from a heated

oscillating cylinder in a cross flow,” International Journal of Heat and Mass Transfer 45 (2002) 3033–3043.

[10]Esam M. Alawadhi, “Natural convection flow in a horizontal annulus with an oscillating inner cylinder using Lagrangian-Eulerian kinematics”Computers and fluids 37 (2008) 1253–1261.

[11]D. Angeli, P. Levoni, GS. Barozzi, “Numerical Predictions for stable buoyant regimes within a square cavity containing a heated horizontal cylinder,” International Journal of Heat and Mass Transfer 51 (2008) pp.553–565.

[12]Y.Y. Lung, Y.C. Lin., “Numerical investigation of natural convection in an inclined wavy cavity using a high-order differential scheme,” Journal of Aeronautics,

Astronautics and Aviation, Series A, Vol. 43, 2011, No.1, pp. 045-056.

[13]H. Saleha, R. Roslanb, I. Hashima.“Natural convection heat transfer in a

nanofluid-filled trapezoidal enclosure.”International Journal of Heat and Mass Transfer Volume 54, Issues 1–3, 15 January 2011, PP. 194–201.

[14]W.S Fu, J.C Huang, C.G Li., “Enhancement of forced convection heat transfer in a three-dimensional laminar channel flow with insertion of a moving block,” International Journal of Heat and Mass Transfer, Vol. 53, 2010, pp.3887-3897.

[15]廖經勝., “具波形壁之二維渠道於可壓縮流場下強制熱傳分析,” 中華大學碩士

26

論文, 2011-7 月.

[16]R. Anandalakshmi, Tanmay Basak., “Heat flow visualization for natural convection in rhombic enclosures due to isothermal and non-isothermal heating at the bottom wall,”

International Journal of Heat and Mass Transfer, Vol. 55, 2012, pp.1325-1342.

[17]C.C. Liao, C.A. Lin.,“Influences of a confined elliptic cylinder at different aspect ratios and inlinations on the laminar natural and mixed convection flows,” International Journal of Heat and Mass Transfer, Vol. 55, 2012, pp. 6638-6650.

[18]Choi, Y. H. and Merkle, C. L., “The application of preconditioning in viscous flows,” Journal of Computational Physics, Vol. 105, No. 2, 1993, pp. 207-223.

[19]Weiss, J. M. and Smith, W. A., “Preconditioning applied to variable and constant density time-accurate flows on unstructured meshes,” AIAA Paper, 94-2209, June 1994.

[20]Irons, B. M., “Engineering applications of numerical integration in stiffness methods,”AIAA Journal, Vol. 4, No. 11, 1966, pp. 2035-2037.

[21]M. Hortmann, M. Peric, and G. Scheuerer,“Volume Multigrid Prediction of Laminar Natural Convection; Bench-Mark Solutions”, Int. J. Numerical Methods in Fluids, 11 (1990), 187-207.

[22]A.Nag, A. Sarkar, and V. M.K. Sastri, “Natural Convection in a Differentially Heated Square Cavity with a Horizontal Partition Plate on the Hot Wall”, Comput.

Methods Appl. Mech. Eng., 110(1993), 143-156.

[23]X. Shi and J. M. Khodadadi, “Laminar Natural Convection Heat Transfer in a

Differentially Heated Square Cavity Due to a Thin Fin on the Hot Wall”, Journal of Heat Transfer, 125 (2003),624-634.

[24]E. Bilgen, “Natural convection in cavities with a thin fin on the hot wall”, Int. J.

Heat and Mass Transfer, 48 (2005), 3493-3505.

27

[25] Z. Wang, J. Fan, K. Luo, K. Cen, Immersed boundary method for the simulation of flows with heat transfer, Int. J. Heat Mass Transfer. 52 (2009) 4510–4518.

[26] D.J. Triton, Experiments on the flow past a circular cylinder at low Reynolds number, J. Fluid Mech. 6 (1959) 547–567.

[27] T. Ye, R. Mittal, H.S. Udaykumar, W. Shyy, An accurate Cartesian gird method for viscous imcompressible flows with complex immersed boundaries, J. Comput. Phys.

156 (1999) 209–240.

[28]C.C. Liao, C.A. Lin.,“Simulations of natural and forced convection flows with moving embedded object using immersed boundary method ,” Comput. Methods Appl.

Mech. Engrg. 213–216 (2012) 58–70.

[29]N. Zhang, Z.C. Zheng, S. Eckels, Study of heat-transfer on the surface of a circular cylinder in flow using an immersed-boundary method, Int. J. HeatFluid Flow 29 (2008) 1558–1566.

[30] R.P. Bharti, R.P. Chhabra, V. Eswaran, A numerical study of the steady forced convection heat transfer from an unconfied circular cylinder, Heat Mass Transfer. 43 (2007) 639–648

28

表一、壁面傾角 90o下之平均紐塞爾數 Reference Average Nusselt number, Nu

Ra = 10 Ra = 10 Ra = 10 Ra = 10 Davish[5] 2.234 4.51 8.789 - Hortmann[21] 2.4468 5.5231 8.8359 -

Nag[22] 2.24 4.51 8.82 -

Shi[23] 2.247 4.532 8.839 16.935 Bilgen[24] 2.245 4.521 8.8 16.629

Present 2.25 4.52 8.83 16.58

表二、 不同壁面傾角下之平均紐塞爾數 Angle(α) Average Nusselt number,

Ra=104 Ra=105 Ra=106 Ra=107

150 1.13 1.31 2.87 7.48

300 1.18 2.43 5.75 12.16

450 1.53 3.45 7.32 14.44

600 1.90 4.06 8.21 15.71

750 2.14 4.40 8.67 16.38

900 2.25 4.52 8.83 16.58

1050 2.23 4.47 8.72 16.39

1200 2.09 4.23 8.34 15.77

1350 1.78 3.78 7.63 14.61

1500 1.31 2.99 6.41 12.71

1650 1.19 1.69 4.10 9.10

表三、 不同瑞利數下內外圓柱之平均紐塞爾數

Ra = 10 Ra = 5 × 10 Ra = 10 Ra = 5 × 10 Ra = 10 Inner 3.31 4.88 5.81 8.44 9.88

Outer 1.27 1.88 2.23 3.23 3.79

29

表四、 在Re = 20、不同上下游距離之阻力係數與文獻比較圖

Present Liao and Lin[28] Triton [26] Ye et al. [27] Wang et al. [25]

5D 2.35

2.21 2.22 2.03 2.18

10D 2.12 20D 2.07 30D 2.05

30

(a)流線圖(Anandalakshmi and Basak)

(b)流線圖(Present)

(c)溫度圖(Anandalakshmi and Basak) (d)溫度圖(Present)

圖 4-1 傾斜角度30 、Ra = 10 、Pr = 1000與文獻[16]流線溫度之比較圖

(a)Left Wall (b)Right Wall

(c)Bottom wall

圖 4-2 在傾斜角度30 、Ra = 10 、Pr = 1000與文獻[16]局部紐塞數比較圖

Distance

LocalNusseltNumber

0 0.2 0.4 0.6 0.8 1

0 2 4 6 8 10 12 14 16 18 20 22 24

Present

Anandalakshmi and Basak

Distance

LocalNusseltNumber

0 0.2 0.4 0.6 0.8 1

0 2 4 6 8 10 12 14 16 18 20 22 24

Present

Anandalakshmi and Basak

Distance

LocalNusseltNumber

0 0.2 0.4 0.6 0.8 1

0 2 4 6 8 10 12 14 16 18 20 22 24

Present

Anandalakshmi and Basak

31

(A)150 (B)300 (C)450

(D)600 (E)750

(F)900

(G)1050 (H)1200 (I)1350

(J)1500 (K)1650

圖 4-3 在Ra = 10 下流線分布圖

32

(A)150 (B)300 (C)450

(D)600 (E)750 (F)900

(G)1050 (H)1200 (I)1350

(J)1500 (K)1650

圖 4-4 在Ra = 10 下流線分布圖

33

(A)150 (B)300 (C)450

(D)600 (E)750 (F)900

(G)1050 (H)1200 (I)1350

(J)1500 (K)1650

圖 4-5 在Ra = 10 下流線分布圖

34

(A)150 (B)300 (C)450

(D)600 (E)750 (F)900

(G)1050 (H)1200 (I)1350

(J)1500 (K)1650

圖 4-6 在Ra = 10 下流線分布圖

35

(A)150 (B)300

(C)450

(D)600 (E)750 (F)900

(G)1050 (H)1200 (I)1350

(J)1500 (K)1650

圖 4-7 在Ra = 10 下溫度分布圖

0.9 0.8

0.7 0.6 0.5

0.4 0.3

0.2 0.1

36

(A)150 (B)300 (C)450

(D)600 (E)750 (F)900

(G)1050 (H)1200 (I)1350

(J)1500 (K)1650

圖 4-8 在Ra = 10 之溫度分布圖

0.9 0.8

0.7 0.6

0.5 0.4 0.3

0.2 0.1

37

(A)150 (B)300 (C)450

(D)600 (E)750 (F)900

(G)1050 (H)1200 (I)1350

(J)1500 (K)1650

圖 4-9 在Ra = 10 之溫度分布圖

0.9

0.8

0.7 0.6 0.5 0.4 0.3 0.2

0.1

38

(A)150 (B)300 (C)450

(D)600 (E)750 (F)900

(G)1050 (H)1200 (I)1350

(J)1500 (K)1650

圖 4-10 在Ra = 10 之溫度分布圖

0.9

0.8

0.7 0.6 0.5 0.4 0.3 0.2

0.1

39

圖 4-11 不同傾斜角度與瑞利數下平均紐塞數

N u

avg

0 15 30 45 60 75 90 105 120 135 150 165 180 0

2 4 6 8 10 12 14 16 18 20

Ra=107 Ra=106 Ra=105 Ra=104

40

圖 4-12 在Ra = 5 × 10 同心圓柱不同角度處溫度與文獻[4]比較圖

圖 4-13 在Ra = 5 × 10 局部紐塞數與文獻[4]比較圖

R

T

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1















keq

0 30 60 90 120 150 180

0 1 2 3 4 5 6 7 8 9 10 11

Kuehn and Goldstein(Outer) Kuehn and Goldstein (Inner) Present(Inner)

Present(outer)

41

圖 4-14 在Ra = 1 × 10 下流線(左)與溫度(右)分布圖

圖 4-15 在Ra = 5 × 10 下流線(左)與溫度(右)分布圖

42

圖 4-16 在Ra = 1 × 10 下流線(左)與溫度(右)分布圖

圖 4-17 在Ra = 5 × 10 下流線(左)與溫度(右)分布圖

43

圖 4-18 在Ra = 1 × 10 下流線(左)與溫度(右)分布圖

44

(a)Inner

(b)Outer

圖 4-19 在不同瑞利數下外圓局部紐塞數分布圖

LocalNusseltNumber

0 30 60 90 120 150 180

0 2 4 6 8 10 12 14

16 Ra=1X104

Ra=5X104 Ra=1X105 Ra=5X105 Ra=1X106

LocalNusseltNumber

0 30 60 90 120 150 180

0 5 10 15 20 25

Ra=1X104 Ra=5X104 Ra=1X105 Ra=5X105 Ra=1X106

45

(a)Inner

(b)Outer

圖 4-20 瑞利數Ra = 5 × 10 、 = 0.5、Ω = 1,內外圓柱平均紐塞數發展歷

Dimensionless Time AvreageNusseltNumber(keq)

0.5 1 1.5 2 2.5 3

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Present Alawadhi.

Dimensionless Time AverageNusseltNumber(keq)

0.5 1 1.5 2 2.5 3

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Present Alawadhi.

46

圖 4-21 t = 0T時之溫度(上)、流線(下)分布與文獻(左)之比較圖

47

圖 4-22 t = T時之溫度(上)、流線(下)分布與文獻(左)之比較圖

48

圖 4-23 t = T時之溫度(上)、流線(下)分布與文獻(左)之比較圖

49

圖 4-24 t = T時之溫度(上)、流線(下)分布與文獻(左)之比較圖

50

(a)Inner

(a)Outer

圖 4-25 不同週期時局部紐賽數分布圖

LocalNusseltNumber(keq)

0 30 60 90 120 150 180

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0T T/4 T/2 3T/4

LocalNusseltNumber(keq)

0 30 60 90 120 150 180

2 4 6 8 10

0T T/4 T/2 3T/4

51

(a)

(b)5D (c)10D

(d)15D (e)20D

圖 4-26 在Re = 20、不同上下游大小下,溫度與 vorticity 和文獻[28](a)比較圖

52

(a)5D

(b)10D

(c)15D

(d)20D

圖 4-27 在Re = 20、不同上下游距離設定下圓柱流線圖

在文檔中 中 華 大 學 (頁 33-63)

相關文件