paleoenvironmental problems: Stable isotopes in sedimentary geology: SEPM Short Course, p. 1-151.

Attendorn, H .G., and Bowen, R. N. C., 1997, Radioactive and Stable Isotope Geology: London, Chapman & Hall, p.1-522.

Bergamonti, L., Bersani, D., and Lottici, P. P., 2011, The Nature of the Pigments in Corals and Pearls: A Contribution from Raman Spectroscopy: Spectroscopy Letters, v. 44, p. 453-458.

Berrocoso, Á ., Zuluaga, M., and Elorza, J., 2004, Minor- and trace-element intra-shell variations in Santonian inoceramids (Basque-Cantabrian Basin, northern Spain): Diagenetic and primary causes: Facies, v. 50, p. 35-60.

Cao, X., and Liu, Y., 2012, Theoretical estimation of the equilibrium distribution of clumped isotopes in nature: Geochimica et Cosmochimica Acta, v. 77, p.292-303.

Curry, W. B., Duplessy, J. C., Labeyrie, L. D., and Shackleton, N. J., 1988, Changes in the distribution of δ13C of deep water ΣCO2 between the last glaciation and the Holocene: Paleoceanography, v. 3, p. 317-341.

Dennis, K. J. and Schrag, D. P., 2010, Clumped isotope thermometry of carbonatites as an indicator of diagenetic alteration: Geochim. Cosmochim. Acta, v. 74, p.


Dettman, D. L., Reische, A. K., and Lohmann, K. C., 1999, Controls on the stable isotope composition of seasonal growth bands in aragonitic fresh-water bivalves (unionidae): Geochimica et Cosmochimica Acta, v. 63(7-8), p. 1049-1057.

Eagle, R. A., Schauble, E. A., Tripati, A. K., Tutken, T., Hulbert, R. C., and Eiler, J.

M. 2010, Body temperatures of modern and extinct vertebrates from 13C-18O bond abundances in bioapatite: Proceedings of the National Academy of Sciences, v. 107(23), p. 10377-10382.

Edirisinghe, E. A. N. V., Pitawala, H. M. T. G. A., Dharmagunawardhane, H. A., and Wijayawardane, R. L., 2017, Spatial and temporal variation in the stable isotope composition (δ18O and δ2H) of rain across the tropical island of Sri Lanka: Isotopes in Environmental and Health Studies, v. 53(6), p. 628-645.

Eiler, J. M., 2007, “Clumped-isotope” geochemistry—The study of naturally-occurring, multiply-substituted isotopologues: Earth and Planetary Science Letters, v. 262(3), p. 309-327.

Epstein, S., and Mayeda, T., 1953, Variation of 18O content of water from natural sources: Geochimica et Cosmochimica Acta, v. 4, p. 213-224.

Fredrik, P. A., Birger, S., and Emma, J., 1999, Surface-Water Seasonality from Stable Isotope Profiles of Littorina littorea Shells: Implications for

Paleoenvironmental Reconstructions of Coastal Areas: PALAIOS, V. 14, n. 3, p. 273-281.

Gaspard, D., Paris, C., Loubry, P., and Luquet, G., 2019, Raman investigation of the pigment families in recent and fossil brachiopod shells: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, v. 208, p. 73-84.

Gayantha, K., Routh, J., and Chandrajith, R., 2017, A multi-proxy reconstruction of the late Holocene climate evolution in Lake Bolgoda, Sri Lanka:

Palaeogeography, Palaeoclimatology, Palaeoecology, v. 473, p. 16-25.

Ghosh, P., Adkins, J., Affek, H., Balta, B., Guo, W., Schauble, E. A., Schrag, D., and Eiler, J. M., 2006, 13C–18O bonds in carbonate minerals: A new kind of paleothermometer: Geochimica et Cosmochimica Acta, v. 70(6), p. 1439-1456.

Gillikin, D. P., Lorrain, A., Navez, J., Taylor, J. W., André, L., Keppens, E., Dehairs, F., 2005, Strong biological controls on Sr/Ca ratios in aragonitic marine bivalve shells: Geochemistry, Geophysics, Geosystems, v. 6, n. 5, p. 1-16.

Gobac, Z. Z., Posilovic, H., and Bermanec, V. 2009, Identification of biogenic Calcite and Aragonite using SEM: Geologia Croatica, v. 9611, p. 201-206.

Goldberg, E. D., 1975, The mussel watch: A first step in global marine monitoring:

Marine Pollution Bulletin, v. 6, p. 111.

Grossman, E. L., and Ku, T. L., 1986, Oxygen and carbon isotope fractionation in biogenic aragonite: Temperature effects: Chemical Geology, v. 59, p. 59-74.

Gunatilaka, W. M. P., and Wijeyaratne, S. C., 2009, A study of water quality of Bolgoda North Lake: Vidyodaya J of Sci., v. 14, no. 11, p. 113-133.

Guo, Y., Deng, W., Wei, G., Lo, L., and Wang, N., 2019, Clumped isotopic signatures in land-snail shells revisited: Possible palaeoenvironmental implications:

Chemical Geology, v. 519, p. 83-94.

Hellings, L., Dehairs, F., Tack, M., Keppens, E., and Baeyens, W., 1999, Origin and fate of organic carbon in the freshwater part of the Scheldt Estuary as traced by stable carbon isotope composition: Biogeochemistry, v. 47, p. 167-186.

Henkes, G. A., Passey, B. H., Wanamaker, A. D., Grossman, E. L., Ambrose, W. G.,

& Carroll, M. L.,2013, Carbonate clumped isotope compositions of modern marine mollusk and brachiopod shells: Geochimica et Cosmochimica Acta, v.

106, p. 307-325.

Hickman, C.S., 1992, Interpreting the separate taphonomic fates of turbinid

gastropod shells and opercula in fossil mollusk assemblages: Western Society of Malacologists, v. 24, p. 18-19.

Hudson, J. D., and Anderson, T. F., 1989, Ocean temperatures and isotopic compositions through time: Transactions of the Royal Society of Edinburgh:

Earth Sciences, v. 80, p. 183-192.

Hughes, M. K., Schweingruber, F. H., Cartwright, D., and Kelly, P.M., 1984, July/August temperature at Edinburgh between 1721 and 1975 from tree-ring density and width data: Nature, v. 308, p. 341-344.

Huntington, K. W., Budd, D. A., Wernicke, B. P., and Eiler, J. M., 2011, Use of Clumped-Isotope Thermometry To Constrain the Crystallization Temperature of Diagenetic Calcite: Journal of Sedimentary Research, v. 81(9), p. 656-669.

Kluge, T., John, C. M., Jourdan, A.-L., Davis, S., and Crawshaw, J., 2015, Laboratory calibration of the calcium carbonate clumped isotope thermometer in the 25-250°C temperature range: Geochimica et Cosmochimica Acta, v. 157, p.213-227.

Kobashi, T., Grossman, E. L., Yancey, T. E., and Dockery, D. T., 2001, Reevaluation of conflicting Eocene tropical temperature estimates: Molluskan oxygen isotope evidence for warm low latitudes: Geology, v. 29, p. 983-986.

Kroopnick, P. M., 1974a, Correlations between 13C and ΣCO2 in surface waters and atmospheric CO2: Earth Planetary Science Letters, v. 22, p. 397-403.

Kroopnick, P. M, 1974b, The dissolved O2-CO2-13C system in the eastern Equatorial Pacific: Deep-Sea Research, v. 21, p. 211-227.

Kroopnick, P. M., Deuser, W. G., and Craig, H., 1970, Carbon 13 measurements on dissolved inorganic carbon at the North Pacific (1969) Geosecs station.:Journal of Geophysical Research, v. 75, p. 7668-7671.

Löffler, N., Fiebig, J., Mulch, A., Tütken, T., Schmidt, B. C., Bajnai, D., Conrad, A.

C., Wacker, U., Böttcher, M. E., 2019, Refining the temperature dependence of the oxygen and clumped isotopic compositions of structurally bound carbonate in apatite: Geochimica et Cosmochimica Acta., v. 253, p. 19-38.

Lok, A. F. S. L., W. F. Ang, P. X. Ng, B. Y. Q. Ng, and S. K. Tan, 2011, Status and distribution of Faunus ater (Linnaeus, 1758) (Mollusca: Cerithioidea) in Singapore: Nature in Singapore, v. 4, p. 115-121.

Lorens, R. B., and Bender, M. L., 1980, The impact of solution chemistry on

Mytilus edulis calcite and aragonite: Geochimica et Cosmochimica Acta, v. 44, n. 9, p. 1265-1278.

Maier, C., Felis, T., Pätzold, J., and Bak, R.P.M., 2004, Effect of skeletal growth and lack of species effects in the skeletal oxygen isotope climate signal within the

Parthasarathy, B., Munot, A. A., and Kothawale, D. R., 1988, Regression modelfor estimation of indian foodgrain production from summer monsoon rainfall:

Agricultural and Forest Meteorology, v. 42, no. 2-3, p. 167-182.

Passey, B. H. and Henkes, G. A., 2012, Carbonate clumped isotope bond reordering and geospeedometry: Earth Planet. Sci. Lett.v. 351-352, p. 223-236.

Premathilake, R., and Risberg, J., 2003, Late Quaternary climate history of the Horton Plains, central Sri Lanka: Quaternary Science Reviews, v. 22, p. 1525-1541.

Spero, H. J., Bijima, J., Lea, D. and Bemis, B. E., 1997, Effect of seawater carbonate concentration on foraminiferal carbon and oxygen isotopes: Nature, v. 390(4), p. 497-500.

Sri-aroon, P., Lohachit, C. and Harada, M., 2005, Brackish-water molluscs of Surat Thani Province, Southern Thailand: Southeast Asian Journal of Tropical Medicine and Public Health, v. 36, p. 180-188.

Sri-aroon, P., Lohachit, C. and Harada, M., 2006, Malacological survey in Phang-Nga Province, Southern Thailand, Pre- and Post-Indian Ocean Tsunami:

Southeast Asian Journal of Tropical Medicine and Public Health, v. 37, p. 104-109.

Staubwasser, M., Sirocko, F., Grootes, P. M., and Segl, M., 2003, Climate change at the 4.2 ka BP termination of the Indus valley civilization and Holocene south Asian monsoon variability: Geophysical research letters, v. 30.

Suzuki A., Yukino I., Kawahata H., 1999, Temperature-skeletal δ18O relationship of Porites australiensis from Ishigaki Island, the Ryukyus, Japan: Geochem. J., v. 33, p. 419-428.

Urey, H. C., Lowenstam, H. A., Epstein, S., and McKinney, C. R., 1951,

Measurement of paleotemperatures and temperatures of the Upper Cretaceous of England, Denmark, and southeast United States: Geological Society of America Bulletin, v. 62, p. 399-416.

Veena, M. P., Achyuthan, H., Eastoe, C., and Farooqui, A., 2014, A multi-proxy reconstruction of monsoon variability in the late Holocene, South India:

Quaternary International, v. 325, p. 63-73.

Vermeij, G., 2002, Evolution in the consumer age: predators and the history of life:

Paleontol. Soc. v. 8, p. 375-394.

Wade, J., Pugh, H., Nightingale, J., Kim, J. S., and Williams, S. T., 2019, Colour in bivalve shells: Using resonance Raman spectroscopy to compare pigments at different phylogenetic levels: Journal of Raman Spectroscopy, p. 1-10.

Wang, C. H., Peng, T. R., and Chen, P. F., 1991, Oxygen And Carbon Isotopic Compositions Of Mollusks From The Late Pleistocene Szekou Formation, Southern Taiwan: Earth Sci. Academia Sinica, p. 11-49.

Webb, T., 1998, Late Quaternary Climates: Data Synthesis and Model Experiments:

Quaternary Science Reviews, v.17, p.587-606.

Weber J. N. and Rocque A. L., 1964, Carbon Isotopic Composition of Lacustrine Gastropoda from Pond-Weed Environments: Journal of Paleontology, v. 38, no.

5 , p. 965-967.

Wehrmeister, U., Jacob, D. E., Soldati, A. L., Ha¨ger, T., and Hofmeister, W., 2007, Vaterite in freshwater cultured pearls from China and Japan: J. Gemmol., v.

31, p. 269-276.

Wijeyaratne, W. D. N., 2016, Application of pollution indices to quantify the pollution status of shallow sediments of the Bolgoda Lake, Sri Lanka. Journal of the National Science Foundation of Sri Lanka, v. 44(3), p. 279-289.

Williams, P. W., Marshall, A., Ford, D. C. and Jenkinson, A. V., 1999, Palaeoclimatic interpretation of stable isotope data from Holocene speleothems of the Waitomo district, North Island, New Zealand: Holocene, v. 9, p. 649-657.

Woodroffe, S. A., and Horton, B. P., 2005, Holocene sea-level changes in the Indo-Pacific: Journal of Asian Earth Sciences, v. 25(1), p. 29-43.

Yap, C. K., Aziran, Y. and Cheng, W. H., 2009, Distribution of heavy metal concentrations in different soft tissues and shells of the bivalve Psammotaea elongata and gastropod Faunus ater collected from Pantai Sri Tujuh, Kelantan:

Journal of Sustainability Science and Management, v. 4(1), p. 66-74.

Yap, C. K., Hisyam, M. N. D., Edward, F. B., Cheng, W. H., and Tan, S. G.,2010, Concentrations of Heavy Metal in Different Parts of the Gastropod, Faunus ater (Linnaeus), Collected from Intertidal Areas of Peninsular Malaysia: Pertanika Journal of Tropical Agricultural Science, v. 33(1), p. 45-60.

Zaarur, S., Affek, H. P., and Brandon, M., 2013, A revised calibration of the clumped isotope thermometer: Earth Planet.Sci. Lett., v. 382, p. 47-57.

Zinsmeister, W. J. and Camacho, H. H., 1980, Late Eocene Struthiolariidae (Mollusca, Gastropoda) from Seymour Island, Antarctic Peninsula and their significance to the biogeography of Early Tertiary shallow-water faunas of the Southern Hemisphere: Journal of Paleontology, v. 54, p. 1-14.


BGLM1_18 68 -3.32 -2.50 1.16 0.50 0.00 2.24 13.13 1.94

BGLM2_14 120 -3.34 -3.45 0.35 1.11 0.00 1.26 11.17 2.40

BGLM4_11 44 -3.60 -4.59 0.33 0.90 0.00 1.82 16.99 2.42

BG1_22 84 -4.86 -6.34 0.00 0.00 0.00 0.81 7.69 2.27

BG1_51 200 -5.11 -9.14 0.00 0.00 0.00 0.67 6.20 2.52

BG3_21 80 -2.05 -1.92

BG10_23 88 -4.07 -4.91 0.00 0.00 0.00 1.08 10.22 2.47

BG10_52 204 -2.94 -1.02 0.00 0.00 0.00 1.19 18.63 2.21

BG11_20 76 -4.47 -9.21 0.00 0.00 0.00 0.74 7.56 2.40

殼體編號:BG14 岩芯深度:21.5-22.0 (cm) 定年年代:470 (cal yr BP)

殼體編號:BG15 岩芯深度:23.5-24.0 (cm) 定年年代:520 (cal yr BP)

BG15_28 108 -3.61 -3.85 0.00 0.00 0.00 0.80 11.10 2.41 殼體編號:BG20,岩芯深度:37.0-37.5 (cm),定年年代:800 (cal yr BP)


BG20_31 120 -4.02 -4.71 0.00 0.00 0.00 0.00 9.74 2.14 殼體編號:BG22,岩芯深度:197.5-198.0 (cm),定年年代:2090 (cal yr BP)


BG22_22_a 84 -4.04 -4.42 0.00 0.00 0.00 1.49 10.64 1.89

殼體編號:BG22,岩芯深度:197.5-198.0 (cm),定年年代:2090 (cal yr BP) 珍珠層(內層)殼體數值

BG22_3_b 8 -2.87 -2.51 0.00 0.49 0.00 2.44 11.19 2.09

BG22_31_b 120 -2.92 -1.86 0.00 2.11 0.00 4.66 12.50 2.22

殼體編號:BG28,岩芯深度:241.0-242.5 (cm),定年年代:2330 (cal yr BP) Sample

BG28_12 44 -5.23 -10.42 0.00 0.00 0.00 0.31 7.15 2.17

殼體編號:BG29,岩芯深度:242.0-243.5 (cm),定年年代:2340 (cal yr BP)


在文檔中 以錐蜷殼體之穩定碳氧同位素及元素成分探討古環境—以斯里蘭卡Bolgoda湖泊為例 (頁 53-80)