• 沒有找到結果。

本研究發現擺動胺基酸支鏈加上活化中心氫鍵限制可以提高 enrichment

factor(EF),使用 Directory of Useful Decoys (DUD)資料庫為基準,計算 CDK2

蛋白激酶,平均來說,同時擺動胺基酸支鏈加上活性中心氫鍵限制時,EF 可以

104

擺動 2 個胺基酸支鏈、擺動 3 個胺基酸支鏈以及動 4 個胺基酸支鏈,來進行交叉

分子嵌合。我們發現,當與結晶小分子嵌合時,固定蛋白質將有較高的機會找到

最穩定構型,但與非結晶小分子嵌合部分,則發現隨著不同組合的可動胺基酸支

鏈數,其再現結果有些比固定蛋白質來的好。第三部分,我們使用相同的四部分

設定條件,加上活性中心氫鍵做限制,進行 1000 個小分子的虛擬篩選,顯示以

下幾項結果:(1)選擇擺動 Met1160、Glu1127、Ile1084 加上活化中心氫鍵做限

制的篩選效果最佳。(2)篩選數量範圍,前 10%的結果可有效找到具活性之分子,

因此我們篩選前 10%做為設定較有效率。(3)根據本篇研究所挑選的 10 個 c-MET

晶構型中,我們選擇篩選結果較佳的 3CTJ 做為高速虛擬篩選的蛋白質構型。第

四部分,我們使用分子嵌合方法來搜尋新的 c-MET 抑制劑。我們以 Lipinski 所

提出的藥物篩選依據為基準,篩選美國 ZINC 化學資料庫,挑選出 40 萬個分子,

並根據第三部分的三項設定條件,來進行高速虛擬篩選。最後篩選出 10 個分子

化合物做為建議之抑制劑,並找出前 5 名小分子的結合模式。最後,本研究 c-Met

部分利用可動胺基酸支鏈加上活性中心附近氫鍵做限制的設定,來找出較為有效

的 c-MET 高速篩選方式,以得到更精準的篩選結果。經由最後篩選所得的分子,

將有助於實驗學家測試抑制效果時的優先考量次序,進而幫助實驗學家設計

c-MET 抑制劑。

105

參考文獻

1. Johnson SR (2008) J Chem Inf Model 48:25

2. Ajay N. Jain • Ann E. Cleves.Does your model weigh the same as a Duck? J Comput Aided Mol Des (2012) 26:57–67

3. Charifson, P.S. Practical Application of Computer-Aided Drug Design (Marcel Dekker, Inc., 1997).

4. Taylor, R.D., Jewsbury, P.J. & Essex, J.W. (2002).

5. Klebe, G. Virtual ligand screening: strategies, perspectives and limitations.

Drug Discovery Today11, 580-594 (2006).

6. Galina G. Dubinina, Oleksandr O. Chupryna, Maxim O. Platonov, Petro O.

Borisko, Galina V.Ostrovska, Andriy O. Tolmachov and Alexander A. Shtil. In Silico Design of Protein Kinase Inhibitors: Successes and Failures.Anti-Cancer Agents in Medicinal Chemistry, 2007, 7, 171-188

7. Verdonk, M.L. et al. Virtual Screening Using Protein−Ligand Docking:  Avoiding Artificial Enrichment. Journal of Chemical Information and Computer Sciences44, 793-806 (2004)

8. L. M. Schang. Advances on Cyclin-dependent Kinases (CDKs) as Novel Targets forAntiviral Drugs. Current Drug Targets – Infectious Disorders 2005, 5, 29-37 9. http://www.dls.ym.edu.tw/lesson/ccc.htm

10. Shu Liu, Joshua K. Bolger, Lindsay O. Kirkland, Padmavathy N. Premnath, and Campbell McInnes. Structural and Functional Analysis of CyclinD1 Reveals p27 and Substrate InhibitorBinding Requirements. VOL.5 NO.12 • ACS CHEMICAL BIOLOG

11. Stephane Betzi,Riazul Alam,Mathew Martin,Donna J. Lubbers,Huijong Han, Sudhakar R. Jakkaraj,‡Gunda I. Georg,‡and Ernst Schonbrunn.Discovery of a Potential Allosteric Ligand Binding Site in CDK2. ACS Chem. Biol. 2011, 6, 492–501

12. Megan L. Peach,Nelly Tan,Sarah J. Choyke, Alessio Giubellino, GaganiAthauda, Terrence R. Burke, Jr.Marc C. Nicklaus, and Donald P. Bottaro. Directed

Discovery of Agents Targeting the Met Tyrosine Kinase Domain by Virtual Screening. J. Med. Chem. 2009, 52, 943–951

13. Xiangdong Liu, Robert C. Newton and Peggy A. Scherle. Developing c-MET pathway inhibitorsfor cancer therapy: progress andchallenges.Trends in Molecular Medicine Vol.16 No.1

14. Christine M. Stellrecht a,Varsha Gandhi. MET receptor tyrosine kinase as a

106

therapeutic anticancer target. Cancer Letters 280 (2009) 1–14

15. Nikolaus Schiering, Stefan Knapp, Marina Marconi, Maria M. Flocco, Jean Cui§, Rita Perego, Luisa Rusconi,and Cinzia Cristiani. Crystal structure of the tyrosine kinase domain of thehepatocyte growth factor receptor c-Met and itscomplex with the microbial alkaloid K-252a. PNASOctober 28, 2003vol. 100 no. 22

16. Morris, G.M. et al. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. Journal of Computational Chemistry 19, 1639-1662 (1998).

17. Makino, S. & Kuntz, I.D. Automated flexible ligand docking method and its application for database search. Journal of Computational Chemistry 18, 1812-1825 (1997)

18. Rarey, M., Kramer, B., Lengauer, T. & Klebe, G. A Fast Flexible Docking Method using an Incremental Construction Algorithm. Journal of Molecular Biology 261, 470-489 (1996)

19. Jones, G., Willett, P., Glen, R.C., Leach, A.R. & Taylor, R. Development and validation of a genetic algorithm for flexible docking. Journal of Molecular Biology 267, 727-748 (1997)

20. Friesner, R.A. et al. Glide: A New Approach for Rapid, Accurate Docking and Scoring. 1. Method and Assessment of Docking Accuracy. Journal of Medicinal Chemistry 47, 1739-1749 (2004).

21. Niu Huang, Brian K. Shoichet, and John J. Irwin. Benchmarking Sets for Molecular Docking. J. Med. Chem. 2006, 49, 6789-6801

22. Koska, J.r. et al. Fully Automated Molecular Mechanics Based Induced Fit Protein-Ligand Docking Method. Journal of Chemical Information and Modeling 48, 1965-1973 (2008)

23. Davis, I.W. & Baker, D. RosettaLigand Docking with Full Ligand and Receptor Flexibility. Journal of Molecular Biology 385, 381-392 (2009).

24. Cavasotto, C.N. & Abagyan, R.A. Protein Flexibility in Ligand Docking and Virtual Screening to Protein Kinases. Journal of Molecular Biology 337, 209-225 (2004).

25. Mishra, N. et al. Structure based virtual screening of GSK-3[beta]: Importance of protein flexibility and induced fit. Bioorganic & Medicinal Chemistry Letters 19, 5582-5585 (2009).

26. http://zinc.docking.org/

27. Lovell, S.C., Word, J.M., Richardson, J.S. & Richardson, D.C. The penultimate rotamer library. Proteins-Structure Function and Genetics 40, 389-408 (2000).

28. Schlessinger, A. & Rost, B. Protein flexibility and rigidity predicted from

107

sequence. Proteins-Structure Function and Bioinformatics 61, 115-126 (2005).

29. Emanuele Perola. Minimizing False Positives in Kinase Virtual Screens.

Structure, Function, and Bioinformatics 64:422–435 (2006)

30. Cole, J.C., Murray, C.W., Nissink, J.W.M., Taylor, R.D. & Taylor, R. Comparing protein-ligand docking programs is difficult. Proteins-Structure Function and Bioinformatics60, 325-332 (2005)

31. Marcel L. Verdonk,Jason C. Cole,Michael J. Hartshorn,Christopher W.

Murray,and Richard D. Taylor.Improved Protein–Ligand Docking Using GOLD.

Structure, Function, and Genetics 52:609–623 (2003)

32. Eldridge, M.D., Murray, C.W., Auton, T.R., Paolini, G.V. & Mee, R.P. Empirical scoring functions .1. The development of a fast empirical scoring function to estimate the binding affinity of ligands in receptor complexes. Journal of Computer-Aided Molecular Design11, 425-445 (1997).

33. Baxter, C.A., Murray, C.W., Clark, D.E., Westhead, D.R. & Eldridge, M.D. Flexible docking using Tabu search and an empirical estimate of binding affinity.

Proteins-Structure Function and Genetics33, 367-382 (1998).

34. Tiejun Cheng, Xun Li, Yan Li, Zhihai Liu, and Renxiao Wang. Comparative Assessment of Scoring Functions on a Diverse Test Set. J. Chem. Inf. Model.

2009, 49, 1079–1093

35. Mooij, W.T.M. & Verdonk, M.L. General and targeted statistical potentials for protein-ligand interactions. Proteins-Structure Function and Bioinformatics61, 272-287 (2005).

36. Verdonk, M.L. Modeling water molecules in protein-ligand docking using GOLD. Journal of Medicinal Chemistry 48, 6504 (2005)

37. Jones, G., Willett, P. & Glen, R.C. MOLECULAR RECOGNITION OF

RECEPTOR-SITES USING A GENETIC ALGORITHM WITH A DESCRIPTION OF DESOLVATION. Journal of Molecular Biology245, 43-53 (1995)

38. http://www.iem.bham.ac.uk/environmental/sharifi.htm. genetic algorithmprocedures

39. Bhusan K Kuntal, Polamarasetty Aparoy and Pallu Reddanna. EasyModeller: A graphical interface to MODELLER. BMC Research Notes 2010,3:226

40. Megan L. Peach, Nelly Tan,Sarah J. Choyke,Alessio Giubellino, Gagani

108

Athauda,Terrence R. Burke, Jr.Marc C. Nicklaus, and Donald P. Bottaro.

Directed Discovery of Agents Targeting the Met Tyrosine Kinase Domain by Virtual Screening. J. Med. Chem. 2009, 52, 943–951

41. Lipinski, C.A., Lombardo, F., Dominy, B.W. & Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews23, 3-25 (1997).

42. Jason B. Cross, David C. Thompson,Brajesh K. Rai, J. Christian Baber, Kristi Yi Fan,Yongbo Hu,| and Christine Humblet. Comparison of Several Molecular Docking Programs: Pose Prediction and VirtualScreening Accuracy. J. Chem.

Inf. Model. 2009, 49, 1455–1474

43. Izhar Wallachand Ryan Lilien. Virtual Decoy Sets for Molecular Docking Benchmarks. J. Chem. Inf. Model. 2011, 51, 196–202

44. Daria B. Kokh and Wolfgang Wenzel. Flexible Side Chain Models Improve Enrichment Rates in In Silico Screening. J. Med. Chem. 2008, 51, 5919–5931 45. Nibha Mishra a, Arijit Basu a,Venkatesan Jayaprakash a, Ashoke Sharon b,

Mahua Basu c, Kiran K. Patnaik. Structure based virtual screening of GSK-3b:

Importance of proteinflexibility and induced fit. Bioorganic & Medicinal Chemistry Letters 19 (2009) 5582–55854

46. The Penultimate Rotamer Library, S. C. Lovell, J. M. Word, J. S. Richardson & D.

C.Richardson, Proteins, 40, 389-408, 2000

相關文件