• 沒有找到結果。

本研究開發出一種透過碳點修飾環糊精(C-dot@-CD)的新型螢光探針,並 針對其螢光性質進行探討,最後應用於檢測自來水及湖水中的鄰苯二酚及對苯二 酚。C-dot@-CD 通過羅丹明 B 證明其擁有獨特的主客化學識別能力,並利用 C-dot@-CD 的螢光特性與光穩定性,本研究亦開發出一種利用主客化學及立體障

礙來檢測鄰苯二酚及對苯二酚的方法。此方法僅需要短的反應時間,且具有寬的 線性範圍與優良的選擇性。成功應用於檢測自來水及湖水中的鄰苯二酚及對苯二 酚含量,並獲得良好的回收率,說明此方法在實地檢測環境樣品方面具有很高的 潛力。

41

參考文獻

1. Wang, Q.; Zheng, H.; Long, Y.; Zhang, L.; Gao, M.; Bai, W., Microwave–

hydrothermal synthesis of fluorescent carbon dots from graphite oxide. Carbon 2011, 49 (9), 3134-3140.

2. Liang, Q.; Ma, W.; Shi, Y.; Li, Z.; Yang, X., Easy synthesis of highly fluorescent carbon quantum dots from gelatin and their luminescent properties and applications.

Carbon 2013, 60 (Supplement C), 421-428.

3. Wu, Z. L.; Zhang, P.; Gao, M. X.; Liu, C. F.; Wang, W.; Leng, F.; Huang, C. Z., One-pot hydrothermal synthesis of highly luminescent nitrogen-doped amphoteric carbon dots for bioimaging from Bombyx mori silk - natural proteins. Journal of Materials Chemistry B 2013, 1 (22), 2868-2873.

4. Cao, L.; Wang, X.; Meziani, M. J.; Lu, F.; Wang, H.; Luo, P. G.; Lin, Y.; Harruff, B.

A.; Veca, L. M.; Murray, D.; Xie, S.-Y.; Sun, Y.-P., Carbon Dots for Multiphoton Bioimaging. Journal of the American Chemical Society 2007, 129 (37), 11318-11319.

5. Sachdev, A.; Matai, I.; Kumar, S. U.; Bhushan, B.; Dubey, P.; Gopinath, P., A novel one-step synthesis of PEG passivated multicolour fluorescent carbon dots for potential biolabeling application. RSC Advances 2013, 3 (38), 16958-16961.

6. Sun, Y.-P.; Zhou, B.; Lin, Y.; Wang, W.; Fernando, K. A. S.; Pathak, P.; Meziani, M.

J.; Harruff, B. A.; Wang, X.; Wang, H.; Luo, P. G.; Yang, H.; Kose, M. E.; Chen, B.;

Veca, L. M.; Xie, S.-Y., Quantum-Sized Carbon Dots for Bright and Colorful Photoluminescence. Journal of the American Chemical Society 2006, 128 (24), 7756-7757.

7. Liu, H.; Ye, T.; Mao, C., Fluorescent Carbon Nanoparticles Derived from Candle

42

Soot. Angewandte Chemie International Edition 2007, 46 (34), 6473-6475.

8. Fu, C.-C.; Lee, H.-Y.; Chen, K.; Lim, T.-S.; Wu, H.-Y.; Lin, P.-K.; Wei, P.-K.; Tsao, P.-H.; Chang, H.-C.; Fann, W., Characterization and application of single fluorescent nanodiamonds as cellular biomarkers. Proceedings of the National Academy of Sciences 2007, 104 (3), 727-732.

9. Baker, S. N.; Baker, G. A., Luminescent Carbon Nanodots: Emergent Nanolights.

Angewandte Chemie International Edition 2010, 49 (38), 6726-6744.

10. Huang, C.-C.; Yang, Z.; Lee, K.-H.; Chang, H.-T., Synthesis of Highly Fluorescent Gold Nanoparticles for Sensing Mercury(II). Angewandte Chemie 2007, 119 (36), 6948-6952.

11. Zhao, Q.-L.; Zhang, Z.-L.; Huang, B.-H.; Peng, J.; Zhang, M.; Pang, D.-W., Facile preparation of low cytotoxicity fluorescent carbon nanocrystals by electrooxidation of graphite. Chemical Communications 2008, (41), 5116-5118.

12. Lan, G.-Y.; Chen, W.-Y.; Chang, H.-T., One-pot synthesis of fluorescent oligonucleotide Ag nanoclusters for specific and sensitive detection of DNA. Biosensors and Bioelectronics 2011, 26 (5), 2431-2435.

13. Liu, C.; Zhang, P.; Tian, F.; Li, W.; Li, F.; Liu, W., One-step synthesis of surface passivated carbon nanodots by microwave assisted pyrolysis for enhanced multicolor photoluminescence and bioimaging. Journal of Materials Chemistry 2011, 21 (35), 13163-13167.

14. Wang, X.; Qu, K.; Xu, B.; Ren, J.; Qu, X., Microwave assisted one-step green synthesis of cell-permeable multicolor photoluminescent carbon dots without surface passivation reagents. Journal of Materials Chemistry 2011, 21 (8), 2445-2450.

15. Yang, Y.; Cui, J.; Zheng, M.; Hu, C.; Tan, S.; Xiao, Y.; Yang, Q.; Liu, Y., One-step

43

synthesis of amino-functionalized fluorescent carbon nanoparticles by hydrothermal carbonization of chitosan. Chemical Communications 2012, 48 (3), 380-382.

16. Shao, L.; Gao, Y.; Yan, F., Semiconductor Quantum Dots for Biomedicial Applications. Sensors 2011, 11 (12).

17. Peng, H.; Travas-Sejdic, J., Simple Aqueous Solution Route to Luminescent Carbogenic Dots from Carbohydrates. Chemistry of Materials 2009, 21 (23), 5563-5565.

18. Zhou, L.; Lin, Y.; Huang, Z.; Ren, J.; Qu, X., Carbon nanodots as fluorescence probes for rapid, sensitive, and label-free detection of Hg2+ and biothiols in complex matrices. Chemical Communications 2012, 48 (8), 1147-1149.

19. Wang, F.; Pang, S.; Wang, L.; Li, Q.; Kreiter, M.; Liu, C.-y., One-Step Synthesis of Highly Luminescent Carbon Dots in Noncoordinating Solvents. Chemistry of Materials 2010, 22 (16), 4528-4530.

20. He, X.; Li, H.; Liu, Y.; Huang, H.; Kang, Z.; Lee, S.-T., Water soluble carbon nanoparticles: Hydrothermal synthesis and excellent photoluminescence properties.

Colloids and Surfaces B: Biointerfaces 2011, 87 (2), 326-332.

21. Lu, J.; Yang, J.-x.; Wang, J.; Lim, A.; Wang, S.; Loh, K. P., One-Pot Synthesis of Fluorescent Carbon Nanoribbons, Nanoparticles, and Graphene by the Exfoliation of Graphite in Ionic Liquids. ACS Nano 2009, 3 (8), 2367-2375.

22. Ray, S. C.; Saha, A.; Jana, N. R.; Sarkar, R., Fluorescent Carbon Nanoparticles:

Synthesis, Characterization, and Bioimaging Application. The Journal of Physical Chemistry C 2009, 113 (43), 18546-18551.

23. Gong, Z.-S.; Duan, L.-P.; Tang, A.-N., Amino-functionalized silica nanoparticles for improved enantiomeric separation in capillary electrophoresis using

44

carboxymethyl-β-cyclodextrin (CM-β-CD) as a chiral selector. Microchimica Acta 2015, 182 (7), 1297-1304.

24. Durán, G. M.; Abellán, C.; Contento, A. M.; Ríos, Á ., Discrimination of penicillamine enantiomers using β-cyclodextrin modified CdSe/ZnS quantum dots.

Microchimica Acta 2017, 184 (3), 815-824.

25. Zhao, H.; Ji, X.; Wang, B.; Wang, N.; Li, X.; Ni, R.; Ren, J., An ultra-sensitive acetylcholinesterase biosensor based on reduced graphene oxide-Au nanoparticles-β-cyclodextrin/Prussian blue-chitosan nanocomposites for organophosphorus pesticides detection. Biosensors and Bioelectronics 2015, 65 (Supplement C), 23-30.

26. Zaidi, S. A., Facile and efficient electrochemical enantiomer recognition of phenylalanine using β-Cyclodextrin immobilized on reduced graphene oxide.

Biosensors and Bioelectronics 2017, 94 (Supplement C), 714-718.

27. Luo, M.; Hua, Y.; Liang, Y.; Han, J.; Liu, D.; Zhao, W.; Wang, P., Synthesis of novel β-cyclodextrin functionalized S, N codoped carbon dots for selective detection of testosterone. Biosensors and Bioelectronics 2017, 98 (Supplement C), 195-201.

28. Geng, S.; Lin, S. M.; Shi, Y.; Li, N. B.; Luo, H. Q., Determination of cobalt(II) using β-cyclodextrin-capped ZnO quantum dots as a fluorescent probe. Microchimica Acta 2017, 184 (8), 2533-2539.

29. Wang, J.; Qiu, F.; Wu, H.; Li, X.; Zhang, T.; Niu, X.; Yang, D.; Pan, J.; Xu, J., Fabrication of fluorescent carbon dots-linked isophorone diisocyanate and β-cyclodextrin for detection of chromium ions. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2017, 179 (Supplement C), 163-170.

30. Khodaveisi, J.; Shabani, A. M. H.; Dadfarnia, S.; Saberi, D., A novel sensor for

45

determination of naproxen based on change in localized surface plasmon peak of functionalized gold nanoparticles. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2017, 179 (Supplement C), 11-16.

31. Nie, X.; Ning, X.; Zhao, Y.-Y.; Yang, L.-Z.; Zhang, F.; He, P.-G., A fluorescent aptasensing strategy for adenosine triphosphate detection using tris(bipyridine)ruthenium(II) complex containing six cyclodextrin units. Chinese Chemical Letters 2017, 28 (3), 619-624.

32. Liu, S.-Y.; Wang, H.; He, T.; Qi, L.; Zhang, Z.-Q., Sensitive fluorimetric assays for α-glucosidase activity and inhibitor screening based on β-cyclodextrin-coated quantum dots. Luminescence 2016, 31 (1), 96-101.

33. Tang, C.; Qian, Z.; Huang, Y.; Xu, J.; Ao, H.; Zhao, M.; Zhou, J.; Chen, J.; Feng, H., A fluorometric assay for alkaline phosphatase activity based on β-cyclodextrin-modified carbon quantum dots through host-guest recognition.

Biosensors and Bioelectronics 2016, 83 (Supplement C), 274-280.

34. Zhou, J.; Liu, Y.; Zhang, Z.; Yang, S.; Tang, J.; Liu, W.; Tang, W., Cyclodextrin-clicked silica/CdTe fluorescent nanoparticles for enantioselective recognition of amino acids. Nanoscale 2016, 8 (10), 5621-5626.

35. Zhang, X.; Wu, L.; Zhou, J.; Zhang, X.; Chen, J., A new ratiometric electrochemical sensor for sensitive detection of bisphenol A based on poly-β-cyclodextrin/electroreduced graphene modified glassy carbon electrode. Journal of Electroanalytical Chemistry 2015, 742 (Supplement C), 97-103.

36. Wei, Y.; Li, H.; Hao, H.; Chen, Y.; Dong, C.; Wang, G., [small beta]-Cyclodextrin functionalized Mn-doped ZnS quantum dots for the chiral sensing of tryptophan enantiomers. Polymer Chemistry 2015, 6 (4), 591-598.

46

37. He, J.; Qiu, R.; Li, W.; Xing, S.; Song, Z.; Li, Q.; Zhang, S., A voltammetric sensor based on eosin Y film modified glassy carbon electrode for simultaneous determination of hydroquinone and catechol. Analytical Methods 2014, 6 (16), 6494-6503.

38. Wang, Y.; Xiong, Y.; Qu, J.; Qu, J.; Li, S., Selective sensing of hydroquinone and catechol based on multiwalled carbon nanotubes/polydopamine/gold nanoparticles composites. Sensors and Actuators B: Chemical 2016, 223 (Supplement C), 501-508.

39. Karich, A.; Kluge, M.; Ullrich, R.; Hofrichter, M., Benzene oxygenation and oxidation by the peroxygenase of Agrocybe aegerita. AMB Express 2013, 3 (1), 5.

40. Zhu, S.; Meng, Q.; Wang, L.; Zhang, J.; Song, Y.; Jin, H.; Zhang, K.; Sun, H.;

Wang, H.; Yang, B., Highly Photoluminescent Carbon Dots for Multicolor Patterning, Sensors, and Bioimaging. Angewandte Chemie 2013, 125 (14), 4045-4049.

41. Yang, Z.; Xu, M.; Liu, Y.; He, F.; Gao, F.; Su, Y.; Wei, H.; Zhang, Y., Nitrogen-doped, carbon-rich, highly photoluminescent carbon dots from ammonium citrate. Nanoscale 2014, 6 (3), 1890-1895.

42. Ni, Y.; Xia, Z.; Kokot, S., A kinetic spectrophotometric method for simultaneous determination of phenol and its three derivatives with the aid of artificial neural network.

Journal of Hazardous Materials 2011, 192 (2), 722-729.

43. Unnikrishnan, B.; Ru, P.-L.; Chen, S.-M., Electrochemically synthesized Pt–MnO2 composite particles for simultaneous determination of catechol and hydroquinone.

Sensors and Actuators B: Chemical 2012, 169 (Supplement C), 235-242.

44. Hu, F.; Chen, S.; Wang, C.; Yuan, R.; Yuan, D.; Wang, C., Study on the application of reduced graphene oxide and multiwall carbon nanotubes hybrid materials for simultaneous determination of catechol, hydroquinone, p-cresol and nitrite. Analytica Chimica Acta 2012, 724 (Supplement C), 40-46.

47

45. Zhang, C.; Zeng, L.; Zhu, X.; Yu, C.; Zuo, X.; Xiao, X.; Nan, J., Electrocatalytic oxidation and simultaneous determination of catechol and hydroquinone at a novel carbon nano-fragment modified glassy carbon electrode. Analytical Methods 2013, 5 (9), 2203-2208.

46. Feng, X.; Gao, W.; Zhou, S.; Shi, H.; Huang, H.; Song, W., Discrimination and simultaneous determination of hydroquinone and catechol by tunable polymerization of imidazolium-based ionic liquid on multi-walled carbon nanotube surfaces. Analytica Chimica Acta 2013, 805 (Supplement C), 36-44.

47. Zheng, L.; Xiong, L.; Li, Y.; Xu, J.; Kang, X.; Zou, Z.; Yang, S.; Xia, J., Facile preparation of polydopamine-reduced graphene oxide nanocomposite and its electrochemical application in simultaneous determination of hydroquinone and catechol. Sensors and Actuators B: Chemical 2013, 177 (Supplement C), 344-349.

48. Umasankar, Y.; Periasamy, A. P.; Chen, S.-M., Electrocatalysis and simultaneous determination of catechol and quinol by poly(malachite green) coated multiwalled carbon nanotube film. Analytical Biochemistry 2011, 411 (1), 71-79.

49. Zhang, H.; Zhao, J.; Liu, H.; Liu, R.; Wang, H.; Liu, J., Electrochemical determination of diphenols and their mixtures at the multiwall carbon nanotubes/poly (3-methylthiophene) modified glassy carbon electrode. Microchimica Acta 2010, 169 (3), 277-282.

50. Huo, Z.; Zhou, Y.; Liu, Q.; He, X.; Liang, Y.; Xu, M., Sensitive simultaneous determination of catechol and hydroquinone using a gold electrode modified with carbon nanofibers and gold nanoparticles. Microchimica Acta 2011, 173 (1), 119-125.

51. Wang, Y.; Qu, J.; Li, S.; Dong, Y.; Qu, J., Simultaneous determination of hydroquinone and catechol using a glassy carbon electrode modified with gold

48

nanoparticles, ZnS/NiS@ZnS quantum dots and L-cysteine. Microchimica Acta 2015, 182 (13), 2277-2283.

相關文件