• 沒有找到結果。

此部分主要觀察塑料流到微流道的情形,圖 8 左為溫度場分布情形、右為速度場分布情形。當塑 料流入微流道之後,溫度明顯逐漸下降,而速度值也明顯變慢,當當流體第二及第三個微流道時,第 一個微流道內的速度變為 0,而從溫度場來看,明顯的是此流道已被流體填滿,從時間步階為 700000 來看,流體已充滿於各個微流道中。

8 塑料流到微流道的情形

最後由於我們使用格點判別法[10]與自由表面結合,因此可以匯出各時間步階每個格點的格點標示形 式,由此可以得到個時間步階的介面移動位置,如圖9。其中橘色的格點為流體格點,標示為紅色的 格點即為介面格點。經由格點判別法與自由表面的結合,能夠明確的得到各時間步階下的介面移動位 置。

9 介面移動變化圖

五、結論

本研究採用晶格波茲曼法模擬射出成型的填充過程,不僅成功的利用自由表面方法模擬塑料填充 的過程,並利用自由表面方法結合被動標量模型,成功模擬出含有介面之速度場與溫度場的結果,最 後將其引入新參數 ,不僅能夠得到良好的數值結果,並能得到高普朗特數Pr 的模擬結果。

將自由表面引入LBM 中,依照射出成型的流動行為設計程式的邏輯運算,並使用格點判別法簡化 複雜的計算方式,不僅大大簡化計算時間,從驗證的結果來看,排除人為計算誤差可以得到極小的誤 差值。

10

溫度場的部分則是在被動標量模型中引入自由表面,其同樣使用格點判別法簡化複雜的程式,並 加入新參數 ,利用此數值與鬆弛時間的關係作為調整鬆弛時間,使其落於穩定範圍內,即

2g0.5001,由此提升程式的穩定性及準確性,並利用此方法解決無法模擬高Pr 值的流動情形,最

高能夠模擬到Pr 6000 。在研究的過程中發現,在流體以均勻流速流進流道後,在流體受到黏滯力影響 逐漸變為完全發展流的過程中最容易使結果發散,所以只要此過程中流體沒有發散,就能夠得到穩定 的結果。

最後,將晶格波茲曼法之速度場與溫度場應用於微射出成型的填充過程中,不僅成功將單向自由 表面LBM 應用到微射出成型上,更模擬出高黏度的流場流動情形。由此說明了單向自由表面 LBM 在 模擬微射出成型的流動有很大的發展潛力,為數值模擬射出成型開闢了新道路。

11

參考文獻

[1] H. Wang, H.M. Zhou, Y. Zhang, D.Q. Li, K. Xu, Three-dimensional simulation of underfill process in flip-chip encapsulation, Comput. Fluids 44 (2011) 187–201.

[2] W.B. Young, Non-Newtonian flow formulation of the underfill process in flip-chip packaging, IEEE Trans. Compon. Packag. Manuf. 1 (2011) 2033–2037.

[3] J.W. Wan, W.J. Zhang, D.J. Bergstrom, Numerical modeling for the underfill flow in flip-chip packaging, IEEE Trans. Compon. Packag. Manuf. Technol. 32 (2009) 227–234.

[4] S.W. Moon, Z. Li, S. Gokhale, J. Wang, 3-D numerical simulation and validation of underfill flow of flip-chips, IEEE Trans. Compon. Packag. Manuf. 1 (2011) 1517–1522.

[5] C.Y. Khor, M.Z. Abdullah, M.A. Mujeebu, F.C. Ani, FVM based numerical study on the effect of solder bump arrangement on capillary driven flip chip underfill process, Int. Commun. Heat Mass Transfer 37 (2010) 281–286.

[6] T. Hashimoto, T. Shin-ichiro, K. Morinishi, N. Satofuka, Numerical simulation of conventional capillary flow and no-flow underfill in flip-chip packaging, Comput. Fluids 37 (2008) 520–523.

[7] Aizat Abas, M.H.H. Ishak, M.Z. Abdullah, F. Che Ani, Soon Fuat Khor, Lattice Boltzmann method study of bga bump arrangements on void formation, Microelectronics Reliability, in press, 2015

[8] Irina Ginzburg, Konrad Steiner, Lattice Boltzmann model for free-surface flow and its application to filling process in casting, Journal of Computational Physics 185 (2003) 61–99

[9] C.W. Hirt, B.D. Nicholls, Volume of fluid (VOF) method for the dynamics of free boundaries, J. Comput.

Phys. 39 (1981) 201.

[10] A.N. Alexandrou, E. Duc, V. Entov, Inertial, viscous and yield stress effects in Bingham fluid filling of a 2-D cavity, J. Non-Newtonian Fluid Mech. 96 (3) (2001) 383.

[11] D.M. Gao, A three-dimensional hybrid finite element-volume tracking model for mold filling in casting processes, Int. J. Numer. Methods Fluids 29 (1999) 877.

[12] D.E. Fyfe, E.S. Oran, M.J. Fritts, Surface tension and viscosity with Lagrangian hydrodynamics on a triangular mesh, J. Comput.Phys. 76 (1988) 394.

[13] P. W. Cleary, J. Hat, V. Ahuja, High pressure die casting simulation using Smoothed Particle Hydrodynamics, J. Cast Metals Res. 12 (2000) 335.

[14] E., Aharonov and D. H., Rothman, Non­Newtonian flow (through porous media): A lattice­Boltzmann method. Geophysical Research Letters, 20(8), 679-682,1993.

[15] Y.-L. Chen, X.-D. Cao, , and K.-Q. Zhu, A gray lattice Boltzmann model for power-law fluid and its application in the study of slip velocity at porous interface. Journal of Non-Newtonian Fluid Mechanics, 159(1), 130-136,2009.

[16] Jin Su, Jie Ouyang, Xiaodong Wang, and Binxin Yang, Lattice Boltzmann method coupled with the Oldroyd-B constitutive model for a viscoelastic fluid, PHYSICAL REVIEW E 88, 053304 (2013)

[17] Shun Zou, Xue-Feng Yuan, Xuejun Yang, Wei Yi, Xinhai Xu, An integrated lattice Boltzmann and finite volume method for the simulation of viscoelastic fluid flows, Journal of Non-Newtonian Fluid Mechanics 211 (2014) 99–113

[18] Shun Zou, Xinhai Xu, Juan Chen, Xiaowei Guo, and Qian Wang, Benchmark Numerical Simulations of Viscoelastic Fluid Flows with an Efficient Integrated Lattice Boltzmann and Finite Volume Scheme,

12

Advances in Mechanical Engineering February 2015 vol. 7 no. 2 805484

[19] A. Gupta, M. Sbragaglia, A. Scagliarini, Hybrid Lattice Boltzmann/Finite Difference simulations ofviscoelastic multicomponent flows in confined geometries, Journal of ComputationalPhysics291(2015)177–197

[20] Cyrus K. Aidun and Jonathan R. Clausen, Lattice-Boltzmann Method for Complex Flows, Annu. Rev.

Fluid Mech. 2010. 42:439–72

[21] X. Shan, H. Chen, Lattice Boltzmann model for simulating flows with multiple phases and components, Phys. Rev. E 47 (1993) 1815–1819.

[22] X. Shan, G. Doolen, Multicomponent Lattice-Boltzmann model with interparticle interaction, J. Stat.

Phys. 81 (1995) 379–393.

[23] Haibo Huang, Zhitao Li, Shuaishuai Liu and Xi-yun Lu, Shan-and-Chen-type multiphase lattice Boltzmann study of viscous coupling effects for two-phase flow in porous media, Int. J. Numer. Meth.

Fluids 2009; 61:341–354

[24] Irina Ginzburg and Konrad Steiner, A free-surface lattice Boltzmann method for modelling the filling of expanding cavities by Bingham fluids. Phil. Trans. R. Soc. Lond. A (2002) 360, 453–466

[25] Irina Ginzburg, Konrad Steiner, Lattice Boltzmann model for free-surface flow and its application to filling process in casting, Journal of Computational Physics 185 (2003) 61–99

[26] J.M. Buick, J.A. Cosgrove, Numerical simulation of the flow field in the mixing section of a screw extruder by the lattice Boltzmann model, Chemical Engineering Science 61 (2006) 3323 – 3326

[27] J.M. Buick, Lattice Boltzmann simulation of power-law fluid flow in the mixing section ofa single-screw extruder, Chemical EngineeringScience64(2009)52--58

[28] Jonas Latt, Guy Courbebaisse, Bastien Chopard, and Jean Luc Falcone, Lattice Boltzmann Modeling of Injection Moulding Process, Cellular Automata, P.M.A. Sloot, B. Chopard, and A.G. Hoekstra (Eds.): pp.

345–354, 2004.

[29] Y. H. Qian and S. A. Orszag, "Lattice BGK Models for the Navier-Stokes Equation: Nonlinear Deviation in Compressible Regimes," EPL (Europhysics Letters), vol. 21, p. 255, 1993.

[30] D. P. Ziegler, "Boundary conditions for lattice Boltzmann simulations," Journal of Statistical Physics, vol.

71, no. 5-6, pp. 1171-1177, 1993.

[31] Q. Zou and X. He, "On pressure and velocity boundary conditions for the lattice Boltzmann BGK model," Physics of Fluids, vol. 9, no. 6, pp. 1591-1598, 1997.

[32] X. Shan, "Simulation of Rayleigh-Be´nard convection using a lattice Boltzmann method," Phys.

Rev. E, vol. 55, no. 3, pp. 2780-2788, 1997.

[33] S.-C. Chang, Y.-S. Hsu, and C.-L. Chen, "Lattice Boltzmann simulation of fluid flows with fractal geometry an unknown-index algorithm," Chinese Society of Mechanical Engineers, vol.

32, pp. 523-531, 2011.

[34] C. Körner, M. Thies, T. Hofmann, N. Thürey, and U. Rüde, "Lattice Boltzmann Model for Free Surface Flow for Modeling Foaming," Journal of Statistical Physics, vol. 121, pp. 179-196, 2005.

[35] X. Q. Xing, D. L. Butler, and C. Yang, "Lattice Boltzmann-based single-phase method for free surface tracking of droplet motions," International Journal for Numerical Methods in Fluids, vol.

53, pp. 333-351, 2007.

13

[36] R. Ammer, M. Markl, U. Ljungblad, C. Körner, and U. Rüde, "Simulating fast electron beam melting with a parallel thermal free surface lattice Boltzmann method," Computers &

Mathematics with Applications, vol. 67, no. 2, pp. 318-330, 2014.

[37] X. Xiang, Z. Wang, and B. Shi, "Modified lattice Boltzmann scheme for nonlinear convection diffusion equations," Communications in Nonlinear Science and Numerical Simulation, vol. 17, pp. 2415-2425, 2012.

行政院國家科學委員會補助國內專家學者出席國際學術會議報告

(英文) UK Heat Transfer Conference 2017 發表

研討會主題包含很廣,主要場次大項有Micro  &  Nano  Scale,  Single  Phase  Heat  Transfer, Condensation, Heat Exchangers & Heat Pipes, Heat Transfer in Combustion & 

Thermal Management in Vehicles, Boiling & Evaporation, Computational Heat Transfer,  Heat  Transfer  for  Sustainable  Energy,  Energy  Recovery  &  Heat  Integration,  Heat  Transfer Fundamentals  II  &  Porous  Media, Cooling  of electronics  and  other  high  heat  flux devices, Heat Transfer Enhancement…..。本次發表之論文”  晶格波茲曼法於雙攪 拌器之熱傳與質傳效能增進模擬研究”就屬於熱傳增進之研究領域。 

雖然大會在前一天傍晚有會議reception, 但因前往曼徹斯特與利物浦拜會以往的 教授與同學,本人於9/4日上午8:30到達會場,8:40大會開始,其中曼徹斯特大學 國際著名教授Brian  E.  Launder  也獲邀發表對Prof  D.  Brian  Spalding一生貢獻熱流研 究之回顧。本次在Brunel University主辦,因中國學者在英國任教的學者較多,相對 中國的研究者也是僅次歐美學者的大團體。日本也只有4篇,台灣只有三篇文章參 與本次研討會。本人出席的場次中以Boiling  &  Evaporation,  Condensation,  Heat  Exchangers & Heat Pipes, Heat Transfer Enhancement 收穫最多。藉由本次研討與人 際交流對將來之研究主題之開發與成果展現均有非常大的助益。

Keynote speech  其中一場為新熱系統應用與設計,對強健設計的建構與可能新主題 都提出不錯的研究參考。 

  二、攜回資料名稱及內容

本次研討會攜回資料包含大會論文紙本與電子檔(記憶碟) 各一份。

105年度專題研究計畫成果彙整表

技術移轉 件數 0 件

收入 0 千元

參 與 計 畫 人 力

本國籍

大專生 0

人次

碩士生 2 兼任研究助理

博士生 0

博士後研究員 0

專任助理 0

非本國籍

大專生 0

碩士生 0

博士生 0

博士後研究員 0

專任助理 0

其他成果

(無法以量化表達之成果如辦理學術活動

、獲得獎項、重要國際合作、研究成果國 際影響力及其他協助產業技術發展之具體 效益事項等,請以文字敘述填列。)  

科技部補助專題研究計畫成果自評表

4. 主要發現

本研究具有政策應用參考價值:■否 □是,建議提供機關

(勾選「是」者,請列舉建議可提供施政參考之業務主管機關)

本研究具影響公共利益之重大發現:□否 □是  說明:(以150字為限)

將晶格波茲曼法之速度場與溫度場應用於微射出成型的填充過程中,不僅成功 將單向自由表面LBM應用到微射出成型上,更模擬出高黏度的流場流動情形。

由此說明了單向自由表面LBM在模擬微射出成型的流動有很大的發展潛力,為

數值模擬射出成型開闢了新道路。

相關文件