• 沒有找到結果。

由n&k 分析儀、紫外/可見光光譜儀量測與軟體模擬結果得知,調整 SiNx 薄膜之厚度與調整矽與氮的比例,可以製作出 365nm、248nm 及 193nm 波長所需要的二元式光罩(BIM)遮光層材料,也可以製造出這些波 長的光源所需之相位移光罩(PSM)的相位移層(Shifter)材料。

據SEM、AFM、FTIR、XPS 及 AES 等儀器之分析結果得知以 PECVD 成長之 SiNx薄膜表面粗糙度優於傳統二元式光罩之鉻膜,且成長的薄膜 品質穩定,物理特性與化學特性都證明適合先進微影製程。

本次研究之衰減式相位移光罩(Att-PSM),雖然並未發現在密集線 (Dense Line)的解像能力有明顯的提升,但對密集洞(Dense Hole)的解析能 力卻有明顯改善。傳統之二元式光罩雖可以製作出 0.60µm 間距(Pitch)的 密集洞,但洞的截面形貌(Profile)不佳,甚至底部有光阻殘留的情況發生,

而本次研究之衰減式相位移光罩則可以製作出 0.56µm 間距(Pitch)的密集 洞(Dense Hole),且無光阻殘留的情況,足以證明 SiNx薄膜材料確實可以 作為相位移層材料。

綜合以上結果可以得知,氮化矽(SiNx) 薄膜材料不僅可以取代鉻做為 下一世代二元式光罩的遮光層材料,也可以取代鉬作為下一世代衰減式相 位移光罩之相位移層材料,加上此薄膜為半導體製程中經常被使用到的材 料,製程技術已經相當成熟,因此以氮化矽(SiNx)薄膜取代鉻及鉬成為下 一世代環保微影光罩結構材料確實可行。

參考文獻

[1] Katz, Sidney A.; Salem Harry "The toxicology of chromium with respect to its chemical speciation: A review". Journal of Applied Toxicology 13 (3), pp217–224, 1992.

[2] National Institute for Occupational Safety and Health. 1996-08-16 Retrieved 2007-05-31

[3] Barceloux, Donald G.; Barceloux, Donald. "Chromium". Clinical Toxicology 37 (2), pp173–194, 1999.

[4] S. L. Shy, et al., "Green binary and phase shifting mask", Proc. SPIE 7520, 75202D, p1-10 (2009)

[5] Hong Xiao, Introduction to Semiconductor Manufacturing Technology, Prentice Hall, USA,2001.

[6] George R. Brewer, Electron-Beam Technology in Microelectronic Fabrication, ACADEMIC PRESS, USA, 1980.

[7] Wayne M. Moreau, Semiconductor Lithography, Plenum Press, New York, 1988.

[8] Stephen Y. Chou, Peter R. Krauss, and Preston J. Renstrom,

"Nanoimprint Lithography", J. Vac. Sci. Technol. B14, pp 4129-4133, 1996.

[9] Stephen Y. Chou, Peter R. Krauss, and Preston J. Renstrom, "Imprint of sub-25 nm vias and trenches in polymers", Appl. Phys. Lett. 67, 3114 , 1995.

[10] John N. Helbert, HANDBOOK of VLSI Microlithography, 2nd edition, Noyes Publications, USA, 2001.

[11] Saburo Nonogaki, Takumi Ueno, Toshio Ito, MICROLITHOGRAPHY FUNDAMENTALS IN SEMICONDUCTOR DEVICES AND FABRICATION TECHNOLOGY, Marcel Dekker, Inc., USA, 1998.

[12] Richard E. Schenker, Ludwig Eichner, Hem Vaidya, Sheila Vaidya and William G. Oldham, "Degradation of fused silica at 193 nm and 213 nm", Proc. SPIE 2440, 118 ,1995.

[13] Richard E. Schenker, Fan Piao and William G. Oldham, "Material limitations to 193-nm lithographic system lifetimes", Proc. SPIE 2726, 698 ,1996.

[14] W. H. A. Finchan, M. H. Freeman, Optics, 楊建人, 8th edition, 光學原 理, 徐氏基金會, 台北, 1998.

[15] Hiroshi Fukuda, Akira Imai and Shinji Okazaki, "Phase-shifting mask and FLEX method for advanced photolithography", Proc. SPIE 1264, 14 ,1990.

[16] Hiroshi Fukuda, Akira Imai, Tsuneo Terasawa, and Shinji Okazaki,"New approach to resolution limit and advanced image formation techniques in optical lithography", IEEE Transactions on Electron Devices, VOL. 38,Issue 1, pp. 67-75 ,JANUARY 1991.

[17] Mireille Maenhoudt, Staf Verhaegen, Kurt G. Ronse, Peter Zandbergen and Edward G. Muzio, "Limits of optical lithography", Proc. SPIE 4000, 373 ,2000.

[18] Harry J. Levinson, Principles Of Lithography, 2nd edition, SPIE, USA, 2005.

[19] Emiko Sugiura, Hisashi Watanabe, Tadashi Imoriya and Yoshihiro Todokoro, "Fabrication and pattern transfer of optical proximity correction (OPC) mask", Proc. SPIE 2254, 183 ,1994.

[20] P.Rai-Choudhury,Handbook of Microlithography,Micromachining,and Microfabrication.,volume 1: Microlithography,SPIE,USA,1997.

[21] M. D. Levenson, et al., "Improving Resolution in Photolithography with a Phase-Shifting Mask", IEEE Transactions on Electron Devices, Vol.

Ed-29, No. 12, p1828-1836 ,December 1982.

[22] T.Terasawa, N.Haswgawa, T.Kurosaki, T.Tanaka, "0.3-micron optical lithography using a phase-shifting mask", SPffi,Vol. 1088, p25,1989.

[23] H.Watanabe, Y.Todokoro, M.Inoue, "Transparent phase shifting mask", Proc. IEDM, 82 p1,1990.

[24] A.Nitayama, T.Sato, K.Hashimoto, F.Shigemitsu, N.Nakase, "New phase-shifting mask with self-aligned phase-shifters for a quarter micron photolithography", Proc. IEDM, p57 ,1989.

[25] B.Lin, "Phase-shifting and other chanlenges in optical mask technology", SPIE, Vol.1496, p54, 1990.

[26] Z. Cui, et al., " Comparison of Phase Shift Mask Types for Submicron Contact Hole Definition ", SPIE Vol.2197,253,1994.

[27] M.Nakajima, et al., " Attenuated phase-shifting mask with a single-layer absorptive shifter of Cr0, CrON, MoSiO and MoSiON film ", SPIE Vol.

2197,111,1994

[28] K.Han Nam, et al., " Impact of ArF attenuated PSM using multishifter layer (TiN -Si3N4) for next-generation lithography " , SPIE Vol.

4409,70,2001.

[29] A.Ogura, et al., "Development of practical attenuated phase-shifting mask ", SPIE Vol. 2254,275,1994.

[30] N.Singh, et al., "Effect of feature size, pitch, and resist sensitivity on side-lobe and ring formation for via hole patterning in attenuated phase-shift masks " , SPIE Vol. 4691,1054,2002.

[31] H.K. Oh, et al., "Exposure of halftone mask by conventional and off-axis illumination" , SPIE Vol. 2197,265,1994.

[32] http://www.photomask.com/products/phase-shift-masks

[33] A.R. Forouhi, I. Bloomer, “Method and apparatus of determining optical constants of amorphous semiconductors and dielectrics” U. S. Patent 4,905,170 ,1990.

[34] A.R. Forouhi, I. Bloomer, “Optical Properties of Crystalline Semiconductors and Dielectrics”, Phys. Rev. B, Vol. 38, p1865 ,1988.

[35] A.R. Forouhi, I. Bloomer, “Optical Dispersion Relations for Amorphous Semiconductors and Amorphous Dielectrics”, Phys. Rev. B, Vol. 34, p7018 ,1986.

[36] Joseph I. Goldstein, et al, Scanning Electron Microscopy and X-Ray Microanalysis, 2nd edition, Plenum Press, New york, 1992.

[37] Z. Yin and F. W. Smith, “Optical dielectric function and infrared absorption of hydrogenated amorphous silicon nitride films:

Experimental results and effective-medium approximation analysis,”

Physical Review B, vol. 42, no. 6, p.3666, 1990.

[38] INTERNATIONAL TECHNOLOGY ROADMAP FOR SEMICONDUCTORS 2011 EDITION LITHOGRAPHY

[39] http://www.lasurface.com/accueil/index.php

[40] W. S. Liao, C.H. Lin, and S. C. Lee, “Oxidation of silicon nitride prepared by plasma enhanced chemical vapor deposition at low temperature”, Appl. Phys. Lett., 65, p2229 ,1994.