• 沒有找到結果。

第一章 前言

6.3 颱風結論

1. 在 Forced stage,屬於強烈颱風的瑪莉亞颱風,距離馬祖浮標最近僅 5 公里遠,

對於海流的影響較深,且整層海水的變化較一致,水下3.5 公尺處流速從約 45cm/s 增強至157cm/s,海流流向隨著風向迅速改變,在颱風最靠近時為北風,海流往風 向的右手邊流,朝西南的方向。相較於中度颱風米塔,距離馬祖浮標較遠,對於 海流的影響沒那麼深,以及變化的速度沒那麼迅速跟一致。

2. Relaxation stage 颱風遠離後會誘發近慣性震盪增強,從相似路徑中比較因不同颱 風因素,如颱風強度、暴風半徑、移動速度等,而造成不同或相似的近慣性海流 反應,近慣性震盪持續的天數,或是增強的程度。

2.1 馬勒卡及米塔颱風的暴風半徑、颱風強度、與龍洞浮標的距離等條件皆相 似,但馬勒卡颱風誘發的近慣性海流較強,其移動速度較慢低於4m/s,故近慣 性海流的強弱可能受移動速度的快慢影響。

2.2 暴風半徑較大且距離七美浮標較近的梅姬颱風,與相對暴風半徑小與距離 七美浮標遠的杜鵑颱風比,梅姬颱風誘發的近慣性海流持續時間較久,故暴風 半徑大小及距離遠近,也是可能影響近慣性海流持續時間的因素。

2.3 位於颱風路徑左右兩側的近慣性強度會有所不同,馬勒卡颱風、米塔颱風,

以及尼莎颱風,三颱風的強度、暴風半徑、與浮標距離皆相似,但位於尼莎颱

90

風右手邊的龍洞浮標觀測到的海流,颱風經過後所誘發的近慣性海流較強,在 馬勒卡與米塔路徑左手邊觀測到的近慣性海流相對較弱,因為在颱風路徑的右 手邊,受颱風通過驅動順時針旋轉的風場並產生強烈的近慣性運動,從颱風路 徑的左手邊通過產生逆時針的風場,不會促使近慣性海流的增強。

表 6-1 位於龍洞浮標之左側颱風與右側颱風比較表

颱風名稱 位置 強度 暴風半徑 移動速度 近慣性海流

馬勒卡

龍洞浮標右側

77 公里 中度 180/60 1.8m/s 中

米塔

龍洞浮標右側 78 公里

中度 180/60 5.5m/s 較弱

尼莎

龍洞浮標左側 62 公里

中度 180/60 4.6m/s 較強

91

參考文獻

[1] Byun, D. S., Hart, D. E., (2022), Tidal current classification insights for search, rescue and recovery operations in the yellow and east China seas and Korea Strait. Continental Shelf Research. 232, 104632. https://doi.org/10.1016/j.csr.2021.

104632

[2] Chang, Y. C., R. S. Tseng, and L. R. Centurioni (2010), Typhoon-induced strong surface flows in the Taiwan Strait and Pacific, J. Oceanogr., 66(2), 175–182.

[3] Chen, S. L., J. Y. Hu, Polton, J., (2014), Features of near-inertial motions observed on the northern South China Sea shelf during the passage of two typhoons, Acta Oceanologica Sinica, 2015, 34(1): 38-43. doi: 10.1007/s13131-015-0594-y

[4] Chen, Y. R., Paduan, J. D., Cook, M. S., Chuang, L. Z. H., Chung, Y. J. (2021), Observations of surface currents and tidal variability off of northeastern Taiwan from shore-based high frequency radar. Remote Sens. 2021, 13, 3438. https://

doi.org/10.3390/rs13173438

[5] Chung, S., S. Jan, and K. Liu (2001), Nutrient fluxes through the Taiwan Strait in spring and summer 1999, J. Oceanogr., 57(1), 47–53.

[6] Codiga, D.L., (2011), Unified Tidal Analysis and Prediction Using the UTide Matlab Functions. Technical Report 2011-01. Graduate School of Oceanography, University of Rhode Island, Narragansett, RI. 59pp.

[7] Guan, S., W. Zhao, J. Huthnance, J. Tian, and J. Wang (2014), Observed upper ocean response to typhoon Megi (2010) in the Northern South China Sea, J.

Geophys. Res. Oceans, 119, 3134– 3157.

[8] Jan, S., C. C. Chen, Y. L. Tsai, Y. J. Yang, J. Wang, C. S. Chern, G. Gawarkiewicz,

92

R.-C. Lien, L. Centurioni, and J.-Y. Kuo (2011), Mean structure and variability of the cold dome northeast of Taiwan. Oceanography, 24,100–109.

[9] Keen, T. R., and S. M. Glenn (1999), Shallow water currents during Hurricane Andrew, J. Geophys. Res., 83(3), 457–471.

[10] Kim, S. Y., A. L. Kurapov, and P. M. Kosro (2015), Influence of varying upper ocean stratification on coastal near-inertial current, J. Geophys. Res. Oceans, 120, 8504–8527, doi:10.1002/2015JC011153.

[11] Ko, D. S., R. H. Preller, G. A. Jacobs, T. Y. Tang, and S. F. Lin (2003), Transport reversals at Taiwan strait during October and November 1999. Journal of Geophysical Research: Oceans, 108, 1-13.

[12] Kunze, E., (1985), Near-inertial wave propagation in geostrophic shear. J. Phys.

Oceanogr., 15, 544–565.

[13] Lin, S. F., T. Y. Tang, S. Jan, and C. J. Chen (2005), Taiwan Strait current in winter. Continental Shelf Research, 25, 1023-1042.

[14] Mukherjee, A., et al. (2013), Near-inertial currents off the east coast of India, Cont.

Shelf Res., 55, 29–39.

[15] Pawlowicz, R., Beardsley, B., & Lentz, S. (2002), Classical tidal harmonic analysis including error estimates in matlab using t_tide. Computers & Geosciences, 28(8), 929–937. https://doi.org/10.1016/s0098-3004(02)00013-4

[16] Price, J. F. (1981), Upper ocean response to a hurricane, J. Phys. Oceanogr., 11(2), 153–175.

[17] Price, J. F., T. B. Sanford, and G. Z. Forristall (1994), Forced stage response to a moving hurricane, J. Phys. Oceanogr., 24(2), 233–260.

[18] Shen, J., Y. Qiu, S. Zhang, and F. Kuang (2017), Observation of Tropical Cyclone-Induced Shallow Water Currents in Taiwan Strait, J. Geophys. Res.

93

Oceans, 122, 5005–5021.

[19] Sun, Z., J. Hu, Q. Zheng, and C. Li (2011), Strong near-inertial oscillations in geostrophic shear in the northern South China Sea, J. Oceanogr., 67(4), 377–384.

[20] Teague, W. J., E. Jarosz, D. W. Wang, and D. A. Mitchell (2007), Observed oceanic response over the upper continental slope and outer shelf during Hurricane Ivan, J.

Phys. Oceanogr., 37(9), 2181–2206.

[21] Thomson, Richard E., and Emery, William J. (2014), Data Analysis Methods in Physical Oceanography.

[22] Webster F (1968), Observation of inertial period motions in the deep sea. Rev Geophys 6:473–490.

[23] Wu, C. R., and, Y. C. Hsin (2005), Volume transport through the Taiwan Strait: a numerical study. Terrestrial, Atmospheric and Oceanic Sciences, 16, 377-391.

[24] Yang, B., Y. Hou, P. Hu, Z. Liu, and Y. Liu (2015), Shallow ocean response to tropical cyclones observed on the continental shelf of the northwestern South China Sea, J. Geophys. Res. Oceans, 83, 457–471, doi:10.1002/2015JC010783.

[25] Zhang, W., H. Hong, S. Shang, X. Yan, and F. Chai (2009), Strong southward transport events due to typhoons in the Taiwan Strait, J. Geophys. Res., 114, C11013, doi:10.1029/2009JC005372.

[26] 王玉懷,2016,「澎湖海(潮)流調查」技術服務案,台電委託計畫期末報告。

[27] 吳政忠、呂芳川,2003,東北季風時期台灣海峽強風預報個案之研究,波譜 模式發展與應用研討會,桃園,第7 頁。

[28] 吳政忠、呂芳川,2004,東北季風時期台灣海峽鄰近地區風場預報之研究,

國防大學中正理工學院應用物理研究所碩士論文。

[29] 呂賜興,2005,台南海域海流特性之分析。國立成功大學水利及海洋工程研 究所碩士論文。

相關文件