• 沒有找到結果。

B Proof of Theorem 2

在文檔中 預測性迴歸之間接推論 (頁 21-32)

Utilizing (4) and (10), we have βˆII= ˆβLSσˆuvII the true Γand xt is covariance-stationary, xht will meet the stationary condition as well when

T →∞.8 By the law of large number (LLN), central limit theory (CLT; Corollary 5.25 of White, 1984) leads to

T−1/2

Combining (14) and (15) gives that√

T f ˆΓII, T → 0 as T →∞. And together with (13), it is

and making use of the similar arguments of (14) and (15) yields the desired results:

T−1

Amihud, Y., and Hurvich, C.M. (2004), “Predictive Regression: A Reduced-Bias Estimation Method,” Journal of Financial and Quantitative Analysis, 39, 813−841.

Amihud, Y., Hurvich, C.M., and Wang, Y. (2010), “Predictive Regression With Order-p Au-toregressive Predictors,” Journal of Empirical Finance, 17, 513−525.

Campbell, J.Y., and Shiller, R.J. (1988), “The Dividend-Price Ratio and Expectations of Future Dividends and Discount Factors,” The Review of Financial Studies, 1, 195−228.

Campbell, J.Y., and Thompson, S.B. (2008), “Predicting Excess Stock Returns Out of Sample:

Can Anything Beat the Historical Average?” Review of Financial Studies, 21, 1509−1531.

8As shown by Shaman and Stine (1988), the bias function of the least-squares estimator ˆΓLS is an O(T−1) function of T andΓitself. Thus, the indirect inference estimator can be expressed as ˆΓII= ˆΓLS+ O(T−1). This directly leads to the consistency of ˆΓIIas long as the well known result that ˆΓLS pΓholds.

Campbell, J. Y., and Yogo, M. (2006), “Efficient Tests of Stock Return Predictability,” Journal of Financial Economics, 81, 27−60.

Cavanagh, C.L., Elliott, G., Stock, J.H. (1995), “Inference in Models With Nearly Integrated Regressors,” Econometric Theory, 11, 1131−1147.

Engel, C., and West, K.D. (2005), “Exchange Rate and Fundamentals,” Journal of Political Economy, 113, 485−517.

Engel, C., Mark, N.C., and West, K.D. (2008), “Exchange Rate Models Are Not as Bad as You Think,” NBER Chapters, in NBER Macroeconomics Annual 2007, Volume 22, National Bureau of Economic Research, Inc., pp. 381−441.

Fama, E. F., and French, K. R. (1988), “Dividend Yields and Expected Stock Returns,” Journal of Financial Economics, 22, 3−25.

Gouri´eroux, C., Monfort, A., Renault, E. (1993), “Indirect Inference,” Journal of Applied Econometrics, 8, S85−S118.

Gouri´eroux, C., Renault, E., and Touzi, N. (2000), “Calibration by Simulation for Small Sample Bias Correction,” in Simulation-Based Inference in Econometrics: Methods and Applica-tions, eds. Mariano, R.S., Schuermann, T., and Weeks, M., Cambridge University Press, pp.

328−358.

Gouri´eroux, C., Phillips, P. C. B., and Yu, J. (2010), “Indirect Inference for Dynamic Panel Models,” Journal of Econometrics, 157, 68−77.

Goyal, A., and Welch, I. (2008), “A Comprehensive Look at the Empirical Performance of Equity Premium Prediction,” The Review of Financial Studies, 21, 1455−1508.

Groen, J.J.J. (2000), “The Monetary Exchange Rate Model as a Long-Run Phenomenon,” Jour-nal of InternatioJour-nal Economics, 52, 299−319.

Groen, J.J.J. (2005), “Exchange Rate Predictability and Monetary Fundamentals in a Small Multi-Country Panel,” Journal of Money, Credit, and Banking, 37, 495−516.

Kendall, M. G. (1954), “Note on the Bias in the Estimation of Autocorrelation,” Biometrika, 41, 403−404.

Kothari, S., and Shanken, J. (1997), “Book-to-Market, Dividend Yield, and Expected Market Returns: A Time-Series Analysis,” Journal of Financial Economics, 44, 169−203.

Hodrick, R. J. (1992), “Dividend Yields and Expected Stock Returns: Alternative Procedures for Inference and Measurement,” The Review of Financial Studies, 5, 257−86.

Kilian L. (1999), “Exchange Rates and Monetary Fundamentals: What Do We Learn From Long Horizon Regressions?” Journal of Applied Econometrics, 14, 491−510.

Kothari, S. P., and Shanken, J. (1997), “Book-to-Market, Dividend Yield, and Expected Market Returns: A Time-Series Analysis,” Journal of Financial Economics, 2, 169−203.

Lewellen, J. (2004), “Predicting Returns With Financial Ratios,” Journal of Financial Eco-nomics, 74, 209−35.

MacKinnon, J. G., and Smith Jr., A. A. (1998), “Approximate Bias Correction in Econometrics,”

Journal of Econometrics, 85, 205−230.

Mankiw, N.G., and Shapiro, M.D. (1986), “Do We Reject Too Often? Small Sample Properties of Tests of Rational Expectations Models,” Economics Letters, 20, 139−145.

Mark, N.C. (1995), “Exchange Rates and Fundamentals: Evidence on Long-Horizon Pre-dictability,” American Economic Review, 85, 201-218.

Mark, N.C., and Sul, D. (2001), “Nominal Exchange Rates and Monetary Fundamentals: Evi-dence From a Seventeen Country Panel,” Journal of International Economics, 53, 29−52.

Marriott, F. H. C., and Pope, J. A. (1954), “Bias in the Estimation of Autocorrelations,” Biometrika, 41, 393−402.

Molodtsova, T., and Papell, D. H. (2009), ”Out-of-Sample Exchange Rate Predictability With Taylor Rule Fundamentals,” Journal of International Economics, 77, 167−180.

Shaman, P., and Stine, R. A. (1988), “The Bias of Autoregressive Coefficient Estimators,” Jour-nal of the American Statistical Association, 83, 842−848.

Staiger, D., Stock, J.H., and Watson, M.W. (1997), “The NAIRU, Unemployment and Monetary Policy,” Journal of Economic Perspectives, 11, 33−49.

Stambaugh, R. (1986), “Bias in Regressions With Lagged Stochastic Regressors,” Unpublished Manuscript, University of Chicago, Chicago, IL.

Stambaugh, R. F. (1999), “Predictive Regressions,” Journal of Financial Economics, 54, 375−421.

Stock, J.H., and Watson, M.W. (1999), “Forecasting Inflation,” Journal of Monetary Economics, 44, 293−335.

Tanizaki, H., Hamori, S., and Matsubayashi, Y. (2005), “On Least-Squares Bias in the AR(p) Models: Bias Correction Using the Bootstrap Methods,” Statistical Papers, 47, 109−124.

Torous, W., Valkanov, R. and Yan, S. (2004), “On Predicting Stock Returns with Nearly Inte-grated Explanatory Variables,” Journal of Business, 77, 937−66.

White, H. (1984), Asymptotic Theory for Econometricians, Academic Press.

Table 1: Bias of AR(1)-Based Estimator When Pre-dictor is AR(2) obtained from an AR(1) regression of the predictor.

3 10, 000 replications are conducted.

Table 2: Simulation Results: Autoregression of Predictor Predictor T p Largest-Root |Bias| Variance RMSE

b/m 88 1 0.886 LS 0.044 0.004 0.078

II 0.001 0.005 0.069

dfy 90 1 0.828 LS 0.041 0.005 0.081

II 0.000 0.006 0.074

d/y 137 1 0.980 LS 0.034 0.001 0.049

II 0.008 0.001 0.032

e/p 137 1 0.785 LS 0.026 0.003 0.062

II 0.000 0.003 0.058

i/k 62 1 0.773 LS 0.058 0.009 0.112

II 0.001 0.010 0.102

lty 90 1 0.977 LS 0.052 0.003 0.073

II 0.016 0.002 0.046

svar 124 1 0.711 LS 0.025 0.005 0.072

II 0.001 0.005 0.069

tms 89 2 0.407 LS 0.036 0.023 0.153

II 0.002 0.024 0.155

d/p 137 3 0.966 LS 0.049 0.026 0.163

II 0.006 0.027 0.164

infl 90 4 0.920 LS 0.098 0.054 0.241

II 0.006 0.059 0.243

tbl 89 4 0.997 LS 0.084 0.075 0.280

II 0.041 0.081 0.286

ntis 82 5 0.794 LS 0.078 0.082 0.289

II 0.006 0.091 0.302

d/e 137 6 0.927 LS 0.094 0.060 0.250

II 0.004 0.064 0.254

eqis 82 7 0.831 LS 0.153 0.110 0.338

II 0.011 0.125 0.354

1 Estimated model: xt=ρ0+ρ1xt−1+ ··· +ρpxt−p+ vtwhere xt is the predictor in the predictive regression model.

2 |Bias|, Variance, and RMSE are defined aspi=1|E( ˆρiρi)|,i=1p Var( ˆρi) and

i=1p E( ˆρiρi)21/2

, respectively.

Table 3: Simulation Results: Predictive Regression Predictor T β Bias( ˆβ) Var( ˆβ) RMSE( ˆβ) |Bias( ˆβ)|

std( ˆβ) SizeL5% SizeR5% SizeL10% SizeR10%

b/m 88 0.131 LS 0.049 0.007 0.097 0.575 1.9% 12.5% 3.3% 21.3%

II -0.002 0.008 0.088 0.022 10.5% 5.2% 16.8% 10.0%

dfy 90 -0.642 LS 1.005 6.454 2.732 0.396 2.6% 9.6% 5.75% 17.4%

II 0.015 6.781 2.604 0.006 6.1% 4.8% 12.5% 10.0%

d/y 137 0.077 LS -0.002 0.001 0.037 0.062 6.0% 4.7% 11.2% 9.2%

II 0.000 0.001 0.037 0.008 5.2% 5.5% 10.2% 10.7%

e/p 137 0.074 LS 0.005 0.001 0.039 0.139 4.2% 6.7% 8.1% 12.4%

II 0.000 0.001 0.039 0.006 5.5% 5.2% 10.6% 10.0%

i/k 62 -13.2 LS -0.149 37.710 6.143 0.024 5.5% 4.9% 11.0% 9.9%

II 0.038 37.974 6.162 0.006 5.3% 5.4% 10.4% 10.6%

lty 90 -0.584 LS 0.138 1.124 1.069 0.130 4.1% 6.5% 8.2% 11.9%

II 0.018 1.140 1.068 0.017 5.5% 5.3% 11.0% 10.0%

svar 124 0.085 LS 0.062 0.162 0.407 0.155 3.5% 6.4% 7.5% 11.8%

II -0.005 0.164 0.405 0.011 5.3% 4.8% 10.7% 9.4%

tms 89 1.497 LS 0.072 2.308 1.521 0.047 4.7% 5.6% 9.3% 11.1%

II 0.002 2.315 1.522 0.001 5.2% 5.0% 10.3% 10.3%

d/p 137 0.031 LS 0.030 0.002 0.050 0.761 0.7% 15.3% 2.1% 26.0%

II 0.001 0.002 0.042 0.014 10.9% 5.5% 18.0% 10.3%

infl 90 -0.218 LS 0.016 0.236 0.487 0.032 4.8% 5.4% 9.6% 10.4%

II 0.001 0.238 0.488 0.002 5.3% 5.1% 10.2% 10.1%

tbl 89 -0.592 LS -0.126 0.395 0.641 0.200 7.3% 3.4% 13.8% 7.0%

II -0.036 0.403 0.636 0.057 5.4% 5.1% 10.6% 9.9%

ntis 82 -1.450 LS -0.024 1.485 1.219 0.020 5.3% 5.0% 10.4% 9.8%

II -0.011 1.491 1.221 0.009 5.2% 5.1% 10.3% 10.1%

d/e 137 -0.001 LS 0.007 0.002 0.047 0.157 3.9% 6.8% 7.8% 12.7%

II 0.000 0.002 0.048 0.001 5.7% 5.3% 11.1% 10.0%

eqis 82 -0.470 LS 0.006 0.062 0.249 0.025 5.2% 5.5% 10.1% 10.5%

II 0.001 0.062 0.249 0.003 5.4% 5.3% 10.5% 10.1%

1 Boldface number denotes the value of |Bias( ˆβ)|

std( ˆβ) is larger than 0.2.

2 SizeLαand SizeRαare respectively the realized sizes of the left-tailed test and right-tailed test with a nominal size ofα.

Table 4: Predictors for S&P500 Equity Premium and the AR-Order Selections Predictor Definition Time Span AR-Order χ[1]2 χ[2]2 χ[3]2 χ[4]2

b/m Book to Market 1921-2008 1 1.511 3.447 3.920 5.890

dfy Default Yield Spread 1919-2008 1 2.488 2.472 2.837 3.612

d/y Dividend Yield 1872-2008 1 0.016 2.983 3.219 3.613

e/p Earning Price Ratio 1872-2008 1 0.694 1.688 1.723 3.431 i/k Investment Capital Ratio 1947-2008 1 1.592 2.108 3.596 5.545

lty Long Term Yield 1919-2008 1 1.466 1.416 2.434 3.575

svar Stock Variance 1885-2008 1 2.569 4.469 4.729 5.945

tms Term Spread 1920-2008 2 0.607 0.782 5.727 5.219

d/p Dividend Price Ratio 1872-2008 3 0.609 1.081 2.723 2.756

infl Inflation 1919-2008 4 0.150 1.413 2.856 3.317

tbl T-Bill Rate 1920-2008 4 2.538 2.580 2.906 3.617

ntis Net Equity Expansion 1927-2008 5 0.055 1.525 2.363 3.027 d/e Dividend Payout Ratio 1872-2008 6 0.536 2.185 5.484 7.250 eqis Pct Equity Issuing 1927-2008 7 2.193 2.412 2.343 4.192

1 See Goyal and Welch (2008) and Amit Goyal’s website for detailed variable description.

2 χ[q]2 is the Breusch-Godfrey LM test statistic, with a null hypothesis that there is no serial correlation up to order q.

3 Boldface number denotes significance at 10% level.

4 The lag-order is selected by continuously increasing the lag-order of the AR model from a initialization “0”, until all the fourχ[q]2 statistics are not significant.

Table 5: Estimation of the Autoregression

Predictor Method ρˆ0 ρˆ1 ρˆ2 ρˆ3 ρˆ4 ρˆ5 ρˆ6 ρˆ7 Largest-Root

b/m LS 0.089 0.842 − − − − − − 0.842

II 0.063 0.886 − − − − − − 0.886

dfy LS 0.003 0.787 − − − − − − 0.787

II 0.002 0.828 − − − − − − 0.828

d/y LS −0.179 0.946 − − − − − − 0.946

II −0.071 0.980 − − − − − − 0.980

e/p LS −0.647 0.760 − − − − − − 0.760

II −0.581 0.785 − − − − − − 0.785

i/k LS 0.010 0.717 − − − − − − 0.717

II 0.008 0.773 − − − − − − 0.773

lty LS 0.002 0.962 − − − − − − 0.962

II 0.001 0.977 − − − − − − 0.977

svar LS 0.010 0.685 − − − − − − 0.685

II 0.009 0.711 − − − − − − 0.711

tms LS 0.007 0.691 −0.181 − − − − − 0.426

II 0.007 0.709 −0.166 − − − − − 0.407

d/p LS −0.314 0.807 −0.164 0.261 − − − − 0.932

II −0.163 0.829 −0.158 0.281 − − − − 0.966

infl LS 0.007 0.671 −0.097 −0.120 0.303 − − − 0.866

II 0.005 0.700 −0.076 −0.125 0.351 − − − 0.920

tbl LS 0.003 1.062 −0.351 0.047 0.158 − − − 0.933

II −0.000 1.111 −0.349 0.045 0.190 − − − 0.997

ntis LS 0.005 0.626 −0.006 0.019 0.041 −0.025 − − 0.671

II 0.004 0.650 0.012 0.020 0.063 −0.012 − − 0.794

d/e LS −0.126 0.799 −0.250 0.115 −0.053 −0.215 0.362 − 0.892 II −0.088 0.818 −0.238 0.114 −0.036 −0.229 0.402 − 0.927 eqis LS 0.075 0.504 0.142 0.023 0.268 −0.280 −0.103 0.044 0.819 II 0.060 0.529 0.165 0.014 0.302 −0.309 −0.090 0.065 0.831

Table 6: Estimation of the Predictive Regression

Predictor T αˆ βˆ tβˆ χ[1]2 χ[2]2 χ[3]2 χ[4]2 b/m 88 LS −0.046 0.180 2.259 2.459 2.607 3.432 3.658

II −0.018 0.131 1.645 2.691 2.846 3.683 4.030

dfy 90 LS 0.052 0.327 0.122 0.751 2.314 2.085 4.328

II 0.064 −0.642 −0.240 1.067 2.531 2.283 4.379 d/y 137 LS 0.280 0.075 1.877 0.088 4.683 5.968 6.914 II 0.286 0.077 1.930 0.081 4.680 5.952 6.882 e/p 137 LS 0.255 0.079 1.843 0.533 7.102 8.830 10.148 II 0.241 0.074 1.725 0.569 7.149 8.863 10.171 i/k 62 LS 0.534 −13.343 −2.156 0.119 1.943 2.207 3.344 II 0.529 −13.225 −2.137 0.120 1.936 2.195 3.339 lty 90 LS 0.080 −0.460 −0.591 0.415 2.428 2.158 4.482 II 0.086 −0.584 −0.750 0.442 2.450 2.19 4.489 svar 124 LS 0.043 0.150 0.337 0.096 5.011 6.062 7.177 II 0.045 0.084 0.190 0.118 4.967 6.039 7.141

tms 89 LS 0.038 1.559 1.025 0.498 1.739 1.810 3.580

II 0.038 1.497 0.984 0.506 1.744 1.816 3.588 d/p 137 LS 0.239 0.061 1.655 0.939 5.317 6.773 8.181 II 0.143 0.031 0.837 1.819 6.166 7.745 9.180 infl 90 LS 0.062 −0.210 −0.458 0.671 2.637 2.729 4.701 II 0.062 −0.218 −0.475 0.686 2.651 2.751 4.718 tbl 89 LS 0.087 −0.714 −1.025 0.427 1.975 2.016 4.045 II 0.082 −0.592 −0.852 0.458 1.998 2.041 4.084 ntis 82 LS 0.080 −1.464 −1.764 0.151 1.110 0.963 7.879 II 0.080 −1.450 −1.748 0.164 1.123 0.961 7.842 d/e 137 LS 0.048 0.006 0.115 0.247 5.955 6.974 8.266 II 0.044 −0.001 −0.009 0.281 5.946 7.010 8.298 eqis 82 LS 0.141 −0.463 −2.408 0.121 0.692 0.738 2.406 II 0.143 −0.470 −2.441 0.114 0.687 0.752 2.435

1Boldface number denotes the significance at 10% level when a two-tailed test is conducted.

2The same as note 2 in Table 4.

Table 7: Estimation of the Residual Covariance Matrix

Predictor σˆu2 σˆv2 σˆuv σˆuv ˆσv2

b/m LS 3.574 × 10−2 1.992 × 10−2 −2.196 × 10−2 −1.103 II 3.590 × 10−2 2.005 × 10−2 −2.210 × 10−2 −1.103 dfy LS 3.811 × 10−2 2.784 × 10−5 −6.717 × 10−4 −24.131 II 3.812 × 10−2 2.794 × 10−5 −6.741 × 10−4 −24.131 d/y LS 3.257 × 10−2 1.984 × 10−2 1.453 × 10−3 0.073 II 3.257 × 10−2 2.002 × 10−2 1.464 × 10−3 0.073 e/p LS 3.260 × 10−2 7.081 × 10−2 −1.439 × 10−2 −0.203 II 3.260 × 10−2 7.090 × 10−2 −1.441 × 10−2 −0.203 i/k LS 2.697 × 10−2 5.917 × 10−6 2.033 × 10−5 3.436 II 2.697 × 10−2 5.956 × 10−6 2.041 × 10−5 3.427 lty LS 3.780 × 10−2 5.945 × 10−5 −1.425 × 10−4 −2.396 II 3.780 × 10−2 5.962 × 10−5 −1.438 × 10−4 −2.412 svar LS 3.447 × 10−2 9.273 × 10−4 −2.401 × 10−3 −2.590 II 3.447 × 10−2 9.282 × 10−4 −2.404 × 10−3 −2.590 tms LS 3.700 × 10−2 1.208 × 10−4 −3.096 × 10−4 −2.562 II 3.700 × 10−2 1.208 × 10−4 −3.096 × 10−4 −2.582 d/p LS 3.275 × 10−2 4.139 × 10−2 −3.015 × 10−2 −0.728 II 3.291 × 10−2 4.175 × 10−2 −3.042 × 10−2 −0.729 infl LS 3.802 × 10−2 9.331 × 10−4 −2.603 × 10−4 −0.279 II 3.802 × 10−2 9.430 × 10−4 −2.755 × 10−4 −0.292 tbl LS 3.700 × 10−2 1.904 × 10−4 3.344 × 10−4 1.756 II 3.701 × 10−2 1.957 × 10−4 3.439 × 10−4 1.757 ntis LS 3.767 × 10−2 1.919 × 10−4 9.756 × 10−5 0.509 II 3.767 × 10−2 1.930 × 10−4 5.340 × 10−5 0.277 d/e LS 3.342 × 10−2 5.095 × 10−2 −1.352 × 10−2 −0.265 II 3.342 × 10−2 5.120 × 10−2 −1.369 × 10−2 −0.267 eqis LS 3.647 × 10−2 4.165 × 10−3 −5.725 × 10−4 −0.137 II 3.647 × 10−2 4.195 × 10−3 −6.826 × 10−4 −0.163

在文檔中 預測性迴歸之間接推論 (頁 21-32)

相關文件