• 沒有找到結果。

large in size, as this phase can be fragmented and embedded in the β matrix. The TEM observation also revealed that the as-cast and as-quenched LZ91 had dual phase microstructure with numerous ultra fine particles, identified as ZnO and MgO oxides. The orientation of the Wurtzite structure of ZnO, but not that of MgO, was found to be intimately related to that of the magnesium matrix. XRD analysis also revealed the presence of an extra bump adjacent to the main peak associated with α(0002) following the aging treatment at 50°C/100 h and 100°C/10 h, suggesting a product of spinodal decomposition. The precipitate was an unstable phase because it disappeared after subjected to long-time aging. The LZ91 alloy treated with peak aging conditions at 100°C underwent a short-range structural modification, which could be caused by spinodal decomposition.

The results of tension and formability tests indicated that the ductility of various Mg-Li-Zn alloys has been greatly enhanced with higher Li content. LZ61 alloy showed low ductility at ambient temperature; whereas, the high lithium content alloys, LZ91 and LZ101, possessed considerable ductility of more than 40%, which was close to that of AZ31 at elevated temperature. However, the inadequate %

elongation of LZ61 and AZ31 at room temperature demonstrated poor formability. On the other hand, the LZ alloys appeared to show insufficient strain hardening ability under the strain of 1×10-3S-1. As such, work-hardening of the alloy may be possible for enhancing the material’s formability by applying rapid strain rate during stretching deformation.

The n value decreased with the increasing lithium content in LZ alloy, and as the lithium content was higher than 9wt%, all of them were lower than 0.05. The forming limit curves of LZ91 and LZ 101 were located at higher position in the major strain versus minor strain plot than their AZ31’s counterparts at 100℃ and room temperature, indicating a better formability of the alloys at the strain of 1×10-3S-1.

FUTURE STUDIES

Magnesium-Lithium alloy is a promising metal for structural applications, such as portable electrical products, transportation vehicle and the like. As such, the formability of this new alloy in the plastic forming process during mass production is a critical issue needs to be addressed. Two major aspects associated formability are suggested for future research:

First, since friction coefficient plays a vital role in the stamping process, stamping using different lubricants and that with no lubrication are important issues need to be addressed in the forming of Mg-Li alloy sheets.

Secondly, LZ alloys have smaller n-values, but the formability could be improved by applying various strain rate, varied forming temperature and different stamping die design.

REFERENCES

1. D.M. Lee, B.G. Suh, B.G. Kim, J.S. Lee and C.H. Lee, Mater. Sci.

Technol. 13 (1997) 590.

2. Y. Kojima, Material Science Forum, 350-351 (2000) 3.

3. E. Aghion, B. Bronfin, Material Science Forum, 19 (2000) 350.

4. G.S. Cole, A.M. Sherman, Materials Characterization, 35 (1995) 3.

5. Y. Kojima, Materials Transactions, 42 (2001) 1154.

6. H. Haferkamp, R. Boehm, U. Holzkamp, C. Jaschick, V. Kaese and M. Niemeyer, Materials Transactions, 42 (2001) 1160.

7. J.H. Jackson, P.D. Frost, A.C. Loonam, L.W. Eastwood, C.H. Lorig, Trans. AIME 185 (1949) 149.

8. R.S. Busk, D.L. Leman, J.J. Casey, Trans. AIME 188 (1950) 945.

9. P.D. Frost, J.G. Kura, L.W. Eastwood, Trans. AIME 188 (1950) 1277.

10. S. Kamado and Y. Kojima, Metall. Sci. Tech. 16 (1998) 45.

11. Y.W. Kim, D.H. Kim H.I. Lee and C.P. Hong, Scr. Mater. 38 (1998) 923.

12. G.S. Song, M. Staiger and M. Kral, Magnesium Technology 2003, ed.

by H.I. Kaplan, The TMS, California, USA, 2003, p. 77.

13. F.H. Harbstein and B.L. Averbach, Acta Met. 4 (1956) 414.

14. T.G. Byrer, E.L. White and P.D. Frost, The Development of Magnesium-Lithium Alloys for Structural Applications, Battelle Memorial Institute, Columbus OH, NASA Contractor Report, 1963.

15. J.Y. Wang, W.P. Hong, P.C. Hsu, C.C. Hsu and S. Lee, Mater. Sci.

Forum, 419-422 (2003) 165.

16. A. Yamamoto, T. Ashida, Y. Kouta, and K.B. Kim, Mater. Trans. 44 (2003) 619.

17. A.A. Nayeb-Hashemi, J.B. Clark. and A.D. Pelton, Phases Diagrams of Binary Magnesium Alloys, ed. by A.A. Nayeb-Hashemi and J.B.

Clark, ASM International, Ohio, USA, 1998, P. 184.

18. K. Matsuzawa, T. Koshihara and Y. Kojima, Keikinzoku, 39 (1989) 45 (in Japanese).

19. R.J. Jackson, P.D. Frost, and P.A. Frost, Properties and Current Applications of Magnesium Lithium Alloys, NASA SP-5068, 1967.

20. H. Takuda, H. Matsusaka, S. Kikuchi, K. Kubota, J. Mater. Sci. 37 (2002) 51.

21. R.E. Lee and W. J.D. Jones, Journal of Materials Science, 9 (1974)

469.

22. M. Sahoo, J.T.N. Atkinson, J. Mater. Sci. 17 (1982) 3564.

23. P. Metenier, G. Gonzalez-Doncel, O.A. Ruano, J. Wolfenstine, O.D.

Sherby, Mater. Sci. Eng. A125 (1990) 195.

24. N. Saito, M. Mabuchi, M. Nakanishi, K. Kubota, K. Higashi, Scripta Mater. 36 (1997) 551.

25. S.R. Agnew, M.H. Yoo, N. Tomé, Acta Mater. 49 (2001) 4277.

26. P. Crawford, R. Barrosa, J. Mendez, J. Foyos, O.S. Es-Said, J. Mater.

Process Technol. 56 (1996) 108.

27. A.M. Russell, L.S. Chumbley, V.B Gantovnik, K. Xu, Y. Tian, F.C Laabs, Scripta Mater. 39 (1988) 1663.

28. R.A. Munroe, Met. Prog. 90 (1966) 89.

29. A. Saia and R.E. Edelman, Metalscope, Aug 1965, p10.

30. Y. Iwadate, M. Lassouani, F. Lantelme and M. Chemla, Journal of Applied Electrochemistry, 17 (1987) 385.

31. S. Kudela, Int. J. of Mater. & Product Technology, 18 (2003) 91.

32. J.C. McDonald, Journal of the Institute of Metals, 97 (1969) 353.

33. Alamo and A.D. Banchik, Journal of Materials Science, 15 (1980) 222.

34. R.K Singh and R.S. Mishra, Scripta Metallurgica et Materialia, 24 (1990) 451.

35. D.H. Kim, Y.S. Han, H.I. Lee and B. Cantor, Scripta Metallurgica et Materialia, 31 (1994) 819.

36. A. Sanschagrin, R. Tremblay, R. Angers and D. Dube, Materials Science and Engineering, 220A (1996) 69.

37. S. Das, and H.L. Fraser, Thermal Analysis in Metallurgy, ed by R.D.

Shull and A. Joshi, Warrendale, PA, TMS, 1992, p. 361.

38. T.V.L.N. Rao, M.V. Bhat and D.H. Sastry, British Corrosion Journal, 31 (1996) 44.

39. R.J.M. Payne, and J.D.L. Eynon, Journal of the Institute of Metals, 86 (1958) 351.

40. M.H. Yoo, Metall. Trans. 12A (1981) 409.

41. M.J. Phillipe, Mat. Sci. Forum, 157-162 (1994) 1337.

42. M.J. Phillipe, F. Wagner, F.E. Mellab, C. Esling and J. Wegria, Acta Mtall. Mater. 42 (1994) 239.

43. M.J. Phillipe, M. Serghat, P. Van Houtte and C. Esling, Acta Metall.

Mater. 43 (1995) 1619.

44. J.J. Fundenberger, M.J. Phillipe, F. Wagner and C. Esling, Acta

Mater. 45 (1997) 4041.

45. E. Tenckhoff, Deformation Mechanisms, Texture, and Anisotropy in Zirconium and Zircaloy, Special Technical Publication 966. ASTM, Philadelphia, PA, 1988.

46. A.D. Rollett and S.I. Wright, Texture and Anisotropy, ed. by U.F.

Kocks, C.N. Tome´e and H.R. Wenk, Cambridge, New York, 1998, p. 184.

47. M. pourbaix, Atlas of Electrochemical Equilibrium in Aqueous Solutions, 2nd English Edition, NACE, Houston, 1974.

48. W. Gasior, Z. Moser, W. Zakulski, and W. Schwitzgebel, Metallurgical and Materials Transactions, 27A (1996) 2419.

49. C. Ma, D. Zhang, J. Qin, Z. Shi, W. Hu, and R. Wu, Chinese Journal of Rare Metals, 23 (1999) 401.

50. B. A. Wilcox and A. H. Clauer, Transactions of the Metallurgical Society of AIME, 245 (1969) 935.

51. P. C Canfield, D. K. Finnemore, S. L. Bud'ko, J. E. Ostenson, G. C.

Lapertot, E. Cunningham and C. Petrovic, Physical Review Letters, 86 (2001) 2423.

52. R. T. Swann and D. M. Esterling, Composites, 15 (1984) 305.

53. M. Zheng, K. Wu, C. Yao, T. Sato, H. Tezuka, A. Kamio and D. X.

Li, Materials Letters, 41 (1999) 57.

54. M. Warwick and R. T. W. Clyne, Proc. of 3rd European Conference on Composite Materials, ed. by A. Bunsell, P. Lamicq and A.

Massiah, Elsevier, 1989, p. 205.

55. C. Ma, D. Zhang, J. Qin and R. Wu, The Chinese Journal of Non-Ferrous Metals, 10 (2000) 22.

56. D. J. Lloyd, International Materials Reviews, 39 (1994) 1.

57. P. Karen, A. Kjekshus, Q. Huang and V. L. Karen, Journal of Alloys and Compounds, 282 (1999) 72.

58. L. C. Viala, P. Fortier, G. Claveyrolas, H. Vincent and J. Bouix, Journal of Materials Science, 26 (1991) 4977.

59. A. Magerl and H. Zabel, Physical Review Letters, 55 (1985)222.

60. S Kudela, V. Gergely, E. Jansch, A. Hofmann, S. Baunack, S.

Oswald, and K. Wetzig, Journal of Materials Science, 29 (1994) 5576.

61. S. Kudela, A. John, S. Baunack, S. Jr. Kudela and K. Wetzig, Applied Surface Science, 179 (2001) 129.

62. W. Lehnert, W. Schmickler and A. Bannerjee, Chemical Physics,

163 (1992) 331.

63. S. Kudela, V. Gergely, A. Schweighofer, S. Baunack, S. Oswald and K. Wetzig, Journal of Materials Science, 29 (1994) 5071.

64. S. Kudela, V. Gergely, L. Smrcok, S. Oswald, S. Baunack and K.

Wetzig, Journal of Materials Science, 31 (1996) 1595.

65. S. Kudela, V. Gergely, S. Baunack, A. John, S. Oswald and K.

Wetzig, Journal of Materials Science, 32 (1997) 2155.

66. G.S. Song, M.V. Kral, Materials Characterization, 54 (2005) 279.

67. S.P. Keeler, W.A. Backofen, Trans Am Soc Met 56 (1963)25.

68. T. Aida, H. Hatta, C. S. Ramesh, S. Kamado and Kojima, Proceedings of the Third International Magnesium Conference, ed.

by G. W. Lorimer, (The Institute of Materials, Manchester, UK, 1997), p. 343.

69. F.S. Lin, S.B. Charkrabortty and E.A. Starke, Met. Trans. 13A (1982) 401.

70. A.K. Vasuderan and R.D. Dohorty, Acta Met. 19 (1985) 205.

71. H. Takuda, S. Kikuchi, T. Tsukada, K. Kubota, N. Hatta, Materials Science and Engineering, A 271 (1999) 251.

72. H. Takuda, T. Enami, K. Kubota, N. Hatta, Journal of Materials

Processing Technology, 101 (2000) 281.

73. Standard Test Method for Tensile Strain-Hardening Exponents (n-Values) of Metallic Sheet Materials, ASTM International, 10-Oct-1998.

74. G.E. Dieter, Mechanical Metallurgy, SI Metric Edition, McGraw-Hill Book Company.

75. H.H. Chen, Formability of Stamping Magnesium Alloy Sheets, Master Thesis, Department of Mechanical Engineering, National Taiwan University, 2002.

76. F. Pourboghrat and E. Chu, International Journal of Mechanical Sciences, 37 (1995) 327.

LIST OF PUBLICATIONS

Journal Paper

1. C.H. Chiu, H.Y. Wu, J.Y. Wang and S. Lee, Microstructure and Mechanical Behavior of LZ91 Mg Alloy Processed by Rolling and Heat Treatments, Journal of Alloys and Compounds. (SCI), 2007. (In Press)

2. H.Y. Wu, C.H. Chiu, S.H Sheu, S. Lee and J.Y. Wang, Effect of die surface roughness on deformation characteristics and cavitation during blow forming in a superplastic 5083 alloy, Materials Transactions. (SCI), 2007. (In Press)

3. C.H. Chiu, J.Y. Wang, and H.Y. Wu, Microstructural Characterization and Mechanical Behavior of an Mg-9%Li-1%Zn Alloy, Materials Science Forum, Vol. 546-549, p.229-232, 2007. (SCI)

4. C.H. Chiu, J.Y. Wang, H.Y. Wu, Microstructural Characterization of an Mg-9%Li-1%Zn Alloy, Materials Transactions, Vol. 47, No. 4, p.966-970, 2006. (SCI)

5. H.Y. Wu, J.Y. Perng, S.H. Shis, C.H. Chiu, S. Lee, and J.Y.

Wang, "Cavitation Characteristics of a Superplastic 5083 Al Alloy during Gas Blow Forming, Journal of Materials Science, Vol. 41, No. 22, p.7446-7453, 2006. (SCI)

6. H.Y. Wu, C.H. Chiu, J.Y. Wang, S. Lee, "Effect of Lubrication on Deformation Characteristics of a Superplastic 5083 Al Alloy during Bi-axial Deformation, Materials Science and Engineering A, Vol. A427, p.268-273, 2006. (SCI)

7. 吳泓瑜、邱垂泓,鋁鋰合金材料性質與應用,工業材料雜誌,

Vol. 247, P.145-149, 2007.

8. 邱垂泓、吳泓瑜,鎂合金之超塑性成型,工業材料雜誌, Vol.

242, p.153-159, 2007.

9. 邱垂泓、王文寬,超輕鎂鋰合金性質及其應用,工業材料雜 誌,Vol. 233, p.163-170, 2006.

Conference Paper

1. C.H. Chiu, R& D Trend on Magnesium Alloys in Taiwan, 2nd

Yellow Sea Rim Magnesium Symposium, Gwangju, Korea, Mar 15, 2007. (Invited speaker)

2. H.Y. Wu , G.Z. Zhou, C.H. Chiu, J.Y. Wang and S. Lee, The Formability of an Mg-9%Li-1%Zn Alloy Thin Sheet, 2nd Asian Symposium on Magnesium Alloys. (Submit)

3. C.J. Liao, F.K. Chen, W.K. Wang, C.H. Chiu, Formability of LZ Magnesium Alloy Sheets, 2nd Asian Symposium on Magnesium Alloys. (Submit)

4. J.Y. Wang, Y.N. Lin, C.H. Chiu and S. Lee, Effect of Annealing on Solid State Recycled Magnesium Alloy AZ91D, 63rd Annual World Magnesium Conference, 2006.05.

5. 邱垂泓、王文寬、周耿中、許清賢、吳泓瑜,超輕鎂鋰合金

性質之研究,2005材料學會年會論文。

6. 周耿中、邱垂泓、吳泓瑜,LZ91鎂鋰合金之拉伸性質,2006 材料學會年會論文。

7. 邱垂泓 、王文寬、王建義,Mg-9%Li-1%Zn鎂合金微結構與

性質之研究,2006鎂合金協會年會論文,p214-225.

8. 廖志杰、陳復國、王文寬、邱垂泓,LZ系鎂合金沖壓成形性

之研究,2006鎂合金協會年會論文,p.139-143.

9. 王建義、蔡浩然、邱垂泓、陳世芳,AZ91D鎂合金之時效處理研 究,2006鎂合金協會年會論文,P. 69-71.

10. 蔡浩然、王建義、邱垂泓、陳世芳,AZ91D 擠型材之熱處理研 究,2006材料學會年會論文。

CURRICULUM VITAE

Chui-Hung Chiu

Contact Information

Address: Rm.702, Bldg.52, 195, Sec.4, Chung Hsing Road, Chutung, Hsinchu, Taiwan

Tel: +886-3-5914157

E-mail: davy@itri.org.tw

Education

Metallurgy Engineering, National Taipei Institute of Technology, (Sep 1985 - June 1988)

M.S. in Material Science, Tatung Institute of Technology, (Sep 1994 - June 1996)

Current Positions

Researcher, Industrial Technology Research Institute, Taiwan ( July 2002 - )

相關文件