• 沒有找到結果。

Conclusion

在文檔中 中華大學 (頁 138-165)

125

126

effect are developed (in Chapter 5). The voltage source on the left side of the two-port network is analog to the probe field on the regarded EIT material. The capacitors (C C ) 1, 2 inside the RLC-resonant circuit is corresponding to two Rabi frequencies (the intensity control fieldsemployed between | 2 | 3 and | 2 | 3 respectively). The total capacitive susceptance is relevant to electrical dipole which is calculated through the square of off-diagonal density matrix element (i.e.,31) and achieved the relative electric permittivity of the EIT vapor at probe frequency through equation (2-12). Therefore, the Autler-Townes doublet and triplet in EIT transparency windows can be inspected by any kind of response of the EIT-Like circuit through total current passing through, total impedance, output voltage, output current,..etc. All the responding parameters have the Autler-Townes doublet and triplet allocation defined by the resonant frequency points (valley/peak of responding curve).

The present scheme can be generalized to the cases of four-level EIT systems, where two control fields and one probe field drive the atomic level transitions[37],[38],[41],[63]. Obviously, the optical response in such a four-level EIT-based photonic crystal would be more sensitive to the probe frequency than in a three-level EIT photonic crystal presented in this paper. Apart from this intriguing property, there are also interesting applications based on the four-level EIT photonic crystal, e.g., some examples of photonic devices (e.g., multi-input logic gates), in which the control fields and the transmitted probe field act as the multi-input and output signals, respectively, can be designed. We expect that all these new optical properties relevant to quantum coherence, including their applications to photonic devices, could be realized experimentally in the near future.

127

Appendix A The steps to find t

21

and s

21

Fig. A-1 The capacitive susceptance relevant to bulk-EITcan analogue to the dipole due to the transition of electron from the ground state to excited state inside the atomic system. The transmission voltage reached the maximum point while the susceptance reached the minimum allocation (resonant frequency, i.e., the power dip allocation for EIT material)

step 1: Findt :Use the voltage division law 21

    

p p

p p 1 p

o

21 2 2

in p p p p p p p p

with angle tan

t R R R X

t V

V t R jX R jX R X R

  

          ,

Step 2: Substitute p p p p

o o

R , X

r x

Z Z

  into 21 p

p p

t R

R jX

  , we get

p 21

p p

t r

r jx

 

step 3: Find s :Refer to reference [104],[105] 21

(a) ,

(b) ,

(c) 21 2 2 2

1 1 1

50 50

b V I

s a V I

  

 ,from Fig. A-1,

Let p p p p

o o

R , X

r x

Z Z

  ,then

  

*

 

1 1 50 1 / 2 o1 o1 1 50 1 / 10 2 , when o1 50

aVI ZZVI Z

  

*

 

2 2 50 2 / 2 o2 o2 2 50 2 / 10 2 , when o2 50

bVI ZZVI Z

128

   

p p

 

p p

1 p p 1

p p p p

1 || ,

1 1

1 1 || 1 1 ||

r jx m V V

V V V I

m m

r jx r jx

    

           

   

p p

 

p

2 p p 2 1

p p p

1 || , ,

1 1

1 1 ||

r r r

V V V I I

m r

r jx

      

           

   

p p

p p

p p

2 2 2

21

p p

1 1 1 p p

2 2

1 1

1 1

1 1

r V

V r

r r

m m

b V I

s a V I mV V m r jx

m m

     

       

    

    

     

    

 

      

p

p p p

p p p p p p

p

p p

2 1 2 2

1 1 1 2 1

1 1

r

r r r

r jx r r jx r

r jx r

 

 

  

 

  

       

  

step 4: Check when resonance undergoes (xp 0):

 

p p p

21

p p p p

1 i.e., 0 dB 0

r r r

tr jxr jr

  

 

p

   

p

  

p

21

p p p p p p

2 2 2

1 2 1 1 2 0 1 1 2

r r r

sr jx rr j rr

        

IfRp 51.7 then p p

o

51.7 1.034 50

r R

Z   ,

p

21

p

2 2 1.034 2.068

0.674 i.e. -3.7261 dB 1 2 1.034 3.068

1 2 s r

r

    

   and

 

p 21

p p

1.034

1 i.e. 0 dB

1.034 0

t r

r jx j

  

  

step 5: Check when load impedance is shorted (rp 0), botht and 21 s are zero. 21

 

21 0, 21 0 i.e. dB

ts   

step 6: Check when load impedance is opened (rp  ),

 

p p

21

p p p

p

p

1 1 i.e., 0 dB

1 0

r r

t r jx x j

r j r

   

    

   

129

 

p

 

1 p

21 2

p p p p p

2 2 2

= angle tan

2 2

1 2 1 4

r x

s r jx r jx x

 

         

step 7: Check when power is half transfer to the port 2 (load port), rpxp,then

 

p o

21

p p

1 1

angle 90

1 1 2

t r

r jx j

   

  

 

p

   

p

 

21

p p p p p p

2 2

1 2 1 1 2 1

r r

sr jx rr jr r

     

 

p p

p 1

2 3 4

p p p p p

2 1

angle tan 1 4 5 2 1 2

r r

r

r r r r r

  

 

        

130

Reference

[1] Harris, S. E., (1997). Electromagnetically Induced Transparency.Physics Today,Vol. 50, No.7, pp. 36-42, ISSN 0031-9228

[2] Harris, S. E., and Zhen-Fei Luo (1995). Preparation energy for electromagnetically induced Transparency, Physical Review A, Vol. 52, No. 2, pp. R928-R931, ISSN 1050-2947

[3] Harris, S. E., and Y. Yamamoto (1998). Photon Switching by Quqntum Interference, Physical Review A, Vol. 81, No. 17, pp. 3611-3614, ISSN 1050-2947

[4] Harris, S. E., and A. V. Sokolov, (1997). Broadband spetral generation with refractive index control, Physical Review A, Vol. 55, No. 6, pp. R4091-R4022, ISSN 1050-2947

[5] Harris, S. E., (1999). Nonlinear Optics at Low Light Levels, Physical Review Letters, Vol. 82, No. 23, pp. 4611-4614, PACS No.: 32.80. –t, 42.50 Dv, 42.50.Gy, 42.50.Hz

[6] Harris, S. E., J. E. Field, and A. Kasapi, (1992). Dispersive properties of electromagnetically induced transparency, Physical Review A, Vol. 46, No. 1, pp.

R29-R46, ISSN 1050-2947

[7] S. E. Harris, J. E. Field, and A. Imamoglu, (1990), Nolinear Optical Processes Using Electromagnetically Induced Transparency, Physical Review Letters, Vol.

64, No. 10, pp. 1107-1110, PACS No.: 32.80. –t, 42.50 Dv, 42.50.Gy, 42.50.Hz [8] Harris, S. E., (2000). Pondermotive Forces with Slow Light, Physical Review Letters,

Vol. 85, No. 19, pp. 4032-4035, PACS No.: 32.80. –t, 42.50 Dv, 42.50.Gy, 42.50.Hz

[9] Harris, S. E., (1996). Electromagnetically Induced Transparency in Ideal Plasma, Physical Review Letters, Vol. 77, No. 27, pp. 5357-5360, PACS No.: 32.80.

–t, 42.50 Dv, 42.50.Gy, 42.50.Hz

[10] Harris, S. E., (1994). Refractive-index control with strong fields, Optics Letters, Vol.

19, No. 23, pp. 2018-2020,

[11] Harris, S. E., (1994). Normal Modes for Electromagnetically Induced Transparency, Physical Review Letters, Vol. 72, No. 1, pp. 52-55, PACS No.: 32.80. –t, 42.50 Dv, 42.50.Gy, 42.50.Hz

131

[12] Harris, S. E., (1993). Electromagnetically Induced Transparency with Matched Pulses, Physical Review Letters, Vol. 70, No. 5, pp. 552-555, PACS No.: 32.80. –t, 42.50 Dv, 42.50.Gy, 42.50.Hz

[13] Harris, S. E., (1989). Lasers without Inversion: Interference of Lifetime-Broadened Resonances, Physical Review Letters, Vol. 62, No. 9, pp. 1033-1036, PACS No.:

32.80. –t, 42.50 Dv, 42.50.Gy, 42.50.Hz

[14] Harris, S. E., and J. J. Macklin, (1989). Lasers without Inversion: Single-atom transient response, Physical Review A, Vol. 40, No. 7, pp. 4135-4137, ISSN 1050-2947 [15] Boller K. –J., Imamoglu A., and Harris S. E., (1991). Observation of Electromag-

netically Induced Transparency, Physical Review Letters, Vol. 66, No. 20, pp.

25932596, PACS No.: 32.80. –t, 42.50 Dv, 42.50.Gy, 42.50.Hz

[16] Harris S. E. and Maneesh Jain, (1997). Optically parameteric oscillators pimped by population-trapped atoms, Optics Letters, Vol. 22, No. 9, pp. 636-638,

[17] Cohen, J. L. & Berman, P. R. (1997). Amplification without Inversion: Understanding Probability Amplitudes, Quantum Interference, and Feynman Rules in a Strongly Ddriven System. Physical Review A, Vol. 55, pp. 3900-3917, ISSN 1050-2947 [18] Zhu, S. Y. & Scully, M. O. (1996). Spectral Line Elimination and Spontaneous Emission

Cancellation via Quantum Interference. Physical Review Letters, Vol. 76, pp. 388-391, ISSN 0031-9007

[19] Champenois, C.; Morigi, G. & Eschner, J. (2006). Quantum Coherence and Population Trapping in Three-Photon Processes. Physical Review A, Vol. 74, 053404(1- 10),ISSN 1050-2947

[20] Zheltikov, A. M. (2006). Phase Coherence Control and Subcycle Transient Detection in Nonlinear Raman Scattering with Ultrashort Laser Pulses. Physical Review A, Vol.

74, 053403 (1-7), ISSN 1050-2947

[21] Gandman, A.; Chuntonov, L.; Rybak, L. & Amitay, Z. (2007). Coherent Phase Control of Resonance-Mediated (2+1) Three-Photon Absorption. Physical Review A, Vol.75, 031401(1-4), ISSN 1050-2947

[22] Ren-Gang Wan, Jun Kou, Li Jiang, Yun Jiang and Jin-Ueo Gao, (2011). Magneto-optical switching and routing via coherently induced photonic band gaps in a driven Fe=0-> Fg=1 transition, J. Phys. B: At. Mol. Opt. Phys., Vol. 44, 065502, pp. 1-

6, Online at stacks.iop.org/JPhysB/44/065502

[23] Krowne, C. M. & Shen, J. Q. (2009). Dressed-State Mixed-Parity Transitions for

132

Realizing Negative Refractive Index. Physical Review A, Vol 79, 023818 (1-11), ISSN 1050-2947

[24] Schmidt, H. & Imamoğlu, A. (1996). Giant Kerr Nonlinearities Obtained by

Electromagnetically Induced Transparency. Optics Letters, Vol. 21, pp. 1936-1938, ISSN 0146-9592

[25] Wang, L. J.; Kuzmich, A. & Dogariu, A. (2000). Gain-Assisted Superluminal Llight Propagation. Nature, Vol. 406, pp. 277-279, ISSN 0028-0836

[26] Arve, P.; Jänes, P. & Thylén, L. (2004). Propagation of Two-Ddimensional Pulses in Electromagnetically Induced Transparency Media. Physical Review A, Vol. 69, 063809(1-8), ISSN 1050-2947

[27] Shen, J. Q.; Ruan, Z. C. & He, S. (2004). Influence of the Signal Light on the Transient Optical Properties of a Four-Level EIT Medium. Physics Letters A, Vol. 330, pp.

487-495, ISSN 0375-9601

[28] Yablonovitch, E. (1987). Inhibited Spontaneous Emission in Solid-State Physics and Electronics. Physical Review Letters, Vol. 58, pp. 2059-2062, ISSN 0031-9007;

John, S. (1987). Strong Localization of Photons in Certain Disordered Dielectric Superlattices. Physical Review Letters, Vol. 58, pp. 2486-2489, ISSN 0031-9007

[29] Joannopoulos, J. D.; Mead, R. D. & Winn, J. N. (1995). Photonic Crystals: Molding the Flow of Light, Princeton University Press, ISBN 978-069-1124-56-8, Princeton, New Jersey, USA

[30] Joannopoulos, J. D.; Villenenve, P. & Fan, S. (1997). Photonic Crystals: Putting a new Twist on Light. Nature, Vol. 386, pp. 143-149, ISSN 0028-0836

[31] Forsberg, E. & She, J. (2006). Tunable Photonic Crystals Based on EIT Media.

Optoelectronic Materials and Devices (edited by Lee, Y. H., Koyama, F. & Luo, Y.), Proc. of SPIE. Vol. 6352, 63520S, ISSN 0277-786X

[32] He, Q.-Y.; Wu, J.-H.; Wang, T.-J. & Gao, J.-Y. (2006). Dynamic Control of the Photonic Stop Bands Formed by a Standing Wave in Inhomogeneous Broadening Solids.

Physical Review A, Vol. 73, 053813(1-6), ISSN 1050-2947

[33] Zhuang, F.; Shen, J. Q. & Ye, J. (2007). Controlling the Photonic Bandgap Structures via Manipulation of Refractive Index of Electromagnetically Induced Transparency Vapor. Acta Physica Sinica (China), Vol. 56, pp. 541-545, ISSN 1000-3290

133

[34] Petrosyan, D. Tunable Photonic Band Gaps with Coherently Driven Atoms in Optical Lattices. Physical Review A, Vol. 76, (2007), 053823(1-10), ISSN 1050-2947 [35] Sangu, S.; Kobayashi, K.; Shojiguchi, A. & Ohtsu, M. (2004). Logic and Functional

Operations Using a Near-Field Optically Coupled Quantum-Dot System.

Physical Review B, Vol 69, 115334(1-13), ISSN 0163-1829

[36] Kawazoe, T.; Kobayashi, K.; Sangu, S. & Ohtsu, M. (2003). Demonstration of a Nanophotonic Switching Operation by Optical Near-Field Energy Transfer.

Applied Physics Letters, Vol. 82, pp. 2957-2959, ISSN 0003-6951

[37] Shen, J. Q. (2007). Transient Evolutional Behaviours of Double-Control Electromagnetically Induced Transparency. New Journal of Physics, Vol. 15, pp.

374-388, ISSN 1367-2630

[38] Shen, J. Q. & Zhang, P. (2007). Double-Control Quantum Interferences in a Four-Level Atomic System. Optics Express, Vol. 15, pp. 6484-6493, ISSN 1094-4087 [39] Yue Chang and C. P. Sun, (2011). Analog of the electromagnetically- induced-

transparency effect for two nanomechanical or micromechanical resonators coupled to a spin ensemble, Physical Review A, Vol. 83, No. 053834, pp. 1-7, DOI: 10.1103/PhysRevA.83.053834

[40] Jingjing Zhang, Sanshui Xiao, Claus Jeppense, Anders Kristensen, and Niels Asger Mortensen, (2010). Electromagnetically induced transparency in metamaterials at near-infrared frequency, Optics Express, Vol. 18, No. 16, pp. 17187-17192, ISSN 1094-4087

[41] Gharibi, A.; Shen, J. Q. & Gu, J. (2009). Tunable Transient Evolutional Behaviors of a Four-Level Atomic Vapor and the Application to Photonic Logic Gates. Journal of Physics B: Atomic, Molecular and Optical Physics, Vol. 42, 055502(1-8), ISSN 0953-4075

[42] Abdumalikov, A. A.; Astafiev, Jr., O.; Zagoskin, A. M.; Pashkin, Y. A.; Nakamura, Y. &

Tsai, J. S. (2010). Solitons in Weakly Nonlocal Media with Cubic-Quintic Nonlinearity. Physical Review Letters, Vol 104, 193601(1-4), ISSN 0031-9007 [43] Scully, M. O. & Zubairy, M. S. (1997). Quantum Optics, Chapt. 7, Cambridge Univ.

Press, ISBN 0521435951, Cambridge, UK

[44] Wu, J. H.; Wei, X. G.;, Wang D. F.; Chen, Y. & Gao, J. Y. (2004). Coherent Hole-Burning Phenomenon in a Doppler Bbroadened Three-Level Lambda-Type Atomic System. Journal of Optics B: Quantum and Semiclassical Optics, Vol.

134 6, pp. 54-58, ISSN 1464-4266

[45] Veselago, V. G. (1968). The Electrodynamics of Substances with Simultaneously Negative Values of and . Soviet Physics Uspekhi, Vol. 10, pp. 509-514, ISSN 0038-5670

[46] Shelby, R. A.; Smith, D. R. & Schultz, S. (2001). Experimental Verification of a Negative Index of Refraction. Science, Vol. 292, pp. 77-79, ISSN 1095-9203 [47] Pendry, J. B.; Holden, A. J.; Robbins, D. J. & Stewart, W. J. (1998). Low Frequency

Plasmons in Thin Wire Structures. Journal of Physics: Condensed Matter, Vol.

10, pp. 4785-4809, ISSN 0953-8984

[48] Pendry, J. B.; Holden, A. J.; Stewart, W. J. & Youngs, I. (1996). Extremely Low Frequency Plasmons in Metallic Mesostructures. Physical Review Letters, Vol.

76, pp. 4773-4776, ISSN 0031-9007

[49] Pendry J. B., (2000). Negative Refraction Makes a Perfect Lens, Physical Review Letters, Vol. 85, No. 18, pp. 3966-3969, ISSN 0031-9007

[50] David R. Smith and Norman Kroll, (2000). Negative Refractive Index in Left-Handed Materials, Physical Review Letters, Vol. 85, No. 14, pp. 2933-2936, ISSN 0031-9007

[51] P. K. ghosh and M. E. Azimi, (1994). Numerical Calculation of Effective Permittivity of Lossless Dielectric Mixtures using Boundary Integral Method, IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 1, No. 1, pp. 975-981 [52] Shulin Sun, S. T. Chui, and Lei Zhou, (2009). Effective-medium properties of metamaterials: A quasimode theory, Physical Review E, Vol. 79, 066604, pp. 1-7, DOI: 10.1103/PhysRevE.79.066604

[53] Patil S. K., Koledintseva M. Y., Schwartz R. W., and Huebner W., (2008). Prediction of effective permittivity of diphasic dielectrics using an equivalent capacitance model, Journal of Applied Physics, Vol. 104, 074108, pp. 1-11

[54] Kimmo Karkkaainen, and Keijo Nikoskinen, (2001). Analysis of a Three-Dimensional Dielectric Mixture with Finite Difference Method, IEEE Transaction on Geoscience and Remote Sensing, Vol. 39, No. 5, pp. 1013-1018

[55] Venkatesh M. S. and Raghavan G.S.V., (2005). An Overview of Dielectric Preperties measuring Techniques, Canadian Biosystem Engineering, Vol. 47, pp. 715-730 [56] William M. Merrill, Rodolfo E. Diaz, Michael M, LoRe, Mark C. Squires, and Nicolaos G. Alexopoulos, Effective Medium Theories for Artificial Materials Composed

135

of Multiple Sizes of Spherical Inclisions in a Host Continum, IEEE Transaction on Antenna and propagation, Vol.46, No. 1, pp. 142-148,

[57] Peiming Wang, and Andrzej Anderko, (2001). Computation of dielectric constants of solvent mixtures and electrolyte solution, Elsevier, Fluid Phase Equilibria Vol.

186, pp. 102-122,

[58] Anthony Grbic and George V. Elftheriades, (2002). Experimental verification of backward-wave radiation from a negative refractive index metamaterial, Journal of Applied Physics, Vol. 92, No. 10, pp. 5931-5935, DOI:

10.1063/1.1513194

[59] Shen, J. Q. (2003). Anti-Shielding Effect and Negative Temperature in Instantaneously Reversed Electric Fields and Left-Handed Media. Physica Script, Vol. 68, pp.

87-97, ISSN 0031-8949

[60] Shen, J. Q. (2008). Classical & Quantum Optical Properties of Artificial Electromagnetic Media, Chapt. 1, pp. 15-16, Transworld Research Network, ISBN 978-817-8953-56-4, Kerala, India

[61] Lurié, D. (1968). Particles and Fields, Chapt. 2, Wiley, ISBN 978-047-0556-42-9, New York, USA

[62] Calogeracos, A. & Dombey, N. (1999). History and Physics of the Klein Paradox.Contemporary Physics, Vol 40, No. 5, pp. 313–321, ISSN 0010-7514 [63] Shen, J. Q. (2010). Coherence Control for Photonic Logic Gates via Y-Configuration

Double-Control Quantum Interferences. Optics Communications, Vol. 283, pp.

4546–4550, ISSN 0030-4018

[64] Dean A.Frickey, 'Conversions Between S, 2, Y, h, ABCD,and T Parameters which are Valid forComplex Source and Load Impedances', IEEE Transactionon

Microwave Theory and Technique,vol. 42, no.2. February1994.

[65] Reinhold Ludwig, Pavel Bretchko, 'RF Circuit Design –Theory and Application', Prentice Hall, Upper Saddle, NJ07458, ISBN 0-13-09523-7,

http://www.prenhall.com

[66] Yeh, P. (2005). Optical Waves in Layered Media, Chapts. 4-6, pp. 83-143, John Wiley

& Sons, Inc., ISBN 978-047-1354-04-8, New Jersey, USA

[67] Caloz, C. & Itoh, T. (2006). Electromagnetic Metamaterials: Transmission Line Theoryand Microwave Applications, Chapt. 2, John Wiley & Sons, Inc., ISBN 978-047-1669-85-2, New Jersey, USA

136

[68] Marlan O. Sculy and M. Suhail Zubairy. (1997). Quantum Optics, Chapter 7, 220-247, Cambridge University Press. , ISBN: 9780521435956

[69] Karl Blum (2011). Density Matrix Theory and Application, 3rd Edition, Springer Series on Atomic, Optical, and Plasma Physics.

[70] Stephen Gasiorowicz (2003). Quantum Physics, Chapter 18, pp-270-286, John Wiley

&Sons, Inc., ISBN:978-0-471-05700-0, New Jersey, USA

[71] B. E. A. Saleh and M. C. Teich, (2007). Fundamentals of Photonics, Chapter 4-6, pp.

102-242, John Wiley & Sons, Inc., ISBN: 978-0-471-35832-9, New Jersey, USA [72] Amnon Yariv and Pochi Yeh, (2007). Photonics—Optical Electronics in Modern

Communications, Sixth Edition, Chapter 5, pp. 211-236, Chapter 12, pp. 539-601,

Oxford University Press. , ISBN: 978-0-19-517946-0, New York, USA

[73] 崔萬照、馬偉、邱樂德、張洪太,(2008). 電磁超介質及其應用, 第六章~第九章 pp. 144-365, 國防工業出版社, ISBN: 978-7-118-05665-5,

[74] Dietrich Marcuse, (1991). Theory of Dielectric Optical Waveguides, 2nd. Edition, Chapter 9, pp. 335-367, Academic Press, Inc. ISBN: 0-12-470951-6, San Diago, USA

[75] Yehuda B. Band, (2006). Light and Matter—Electromagnetism, Optics, Spectroscope and Lasers, Chapter 9, pp. 503-560, John Wiley & Sons, Inc., ISBN

978-0-471-899313, New Jersey, USA

[76] 譚維翰,(2009). 量子光學導論, 第三章~第六章, pp. 61-223, 科學出版社, ISBN:

978-7-03-022351-7,

[77] 劉少斌、劉崧、洪偉, (2010). 色散介質時域有限差分法, Chapter 3, pp. 86-178, 科學出版社, ISBN: 978-7-03-0283356-6

[78] Dennis W. Prather, Shouyuan Shi, Ahmed Sharkawy, Janusz Murakowski, Garrett J.

Schneider, (2009). Photonic Crystals—Theory, Applications, and Fabrication, Chapter 5-6, pp. 197-369, John Wiley & Sons, Inc., ISBN 978-0-470-27803-1, Florida, USA

[79] John D. Joannopoulos, Steven G. Johnson, Joshua N. Winn, and Robert D. Meade,

137

(2008). Photonic Crystals—Modeling the Flow of Light, 2nd. Edition, Chapter 4-7, pp. 44-134, Princeton University Press, ISBN: 978-0-691-12456-8, New Jersey, USA

[80] 馬錫英, (2009). 光子晶體原理及應用,第八章, pp. 316-349, 科學出版社, ISBN:

978-7-03-027984-2

[81] Geoffrey Brooker, (2003), Modern Classical Optics, Chapter 6, pp. 132-149, Oxford University Press, ISBN:

[82] 柯善哲,肖福康,江興方, (2008). 量子力學,第三章~第七章, pp. 91-349, 科學出版社

[83] Lorenzo Curtis, (2003). Atomic Structure and Lifetimes, Chapter 4-13, pp. 72-252 Cambridge University Press, ISBN: 978-0-521-82939-7, United Kingdom [84] Anatoli Andreev, (2006). Atomic Spectroscopy: Introduction to the Theory of

Hyperfine Structure, Chapter 3-6, pp. 13-154, Springer, ISBN: 978-0-387-25573-6,New York, USA

[85] Paul R. Berman,Vladimir S. Malinovsky, (2011) Principles of Laser Spectroscopy and Quantum Optics,Princeton University Press, ISBN: 978-0-691-14056-8, New Jersey, USA

[86] 周炳琨,高以智,陳惆嶸,陳家驊, (2009). 激光原理, 第四章-第八章, pp. 123-271, 國防工業社, ISBN:978-7-118-05971-7

[87] 楊福家,(2007). 原子物理學, 第四章, pp. 151-209, 高等教育出版社,ISBN:978-7- 040-22994-3

[88] 郭碩鴻, (2008). 電動力學, 第七章, pp. 240-275, 高等教育出版社,ISBN:978-7- 040-23924-9

[89] 曹昌祺,(2004). 輻射和光場的量子統計理論,第五章-第六章,pp.168-267, 科學出版社, ISBN:978-7-030-16984-6

[90] Stephen M. Barnett and Paul M. Radmore, (1997) Chapter 6, pp.182-213,

138

Oxford Science Publication, ISBN:978-0-198-56361-7, New York, USA [91] Laszlo Solymar & Ekaterina Shamonina, (2009). Waves in Metamaterials,

Chapter 3, pp. 75-118, Oxford University Press, ISBN: 978-0-199-21533-1, Oxford New York, USA

[92] Marcis Auzinsh, Dmitry Budker, Simon M. Rochester, (2010). Optically Polarized Atoms--Understanding Light-Atom Interactions, Chapter 2-15, pp.8-296,

Oxford University Press, ISBN: 978-0-199-56512-2, Oxford New York, USA [93] Roger F. Harrington, (1993). Time-Harmonic Electromagnetic Fields, Chapter 7,

pp.317-365, Mcgraw-Hill International Editions, ISBN: 0-07-112735-6,New York, USA

[94] Eugene Hecht, (2002). Optics, Chapter 11-13, pp. 519-648, Addison Wesley, ISBN:0-321-18879-0, New York, USA

[95] Graham T. Reed, (2008). Silicon Photonics—the state of the art, Chapter 3, pp. 47-94, John Wiley & Sons, Inc., ISBN 978-0-470-02579-6, West Sussex PO19 8SQ, UK

[96] Kasap S. O., (1996). Optoelectronics and Photonics—Principles and Praticwes, Chapter 1-2, pp. 1-106, Pearson Prentice Hall, ISBN 0-321-19046-7, University of Saskatchewan, Canada

[97] Jean-Michel Lourtioz, Henri Bensisty, Vincent Berger, Jean-Michel Gerad, Daniel Maystre, and Alexis Tchelnokov, (2008). Photonic Crystals, Chapter 6, pp. 197-224, Springer,ISBN: 978-3-540-78346-6, Orsay Cedex, France

[98] Alan Rogers, (1997). Essentials of Optoelectronics with Applications, Chapter 4-5, pp.

109-155, Chapman & Hall, ISBN: 0-412-40890-2, New York, USA

[99] Shun Lien Chuang, (2009). Physics of Photonic Devices, Chapter 5-8, pp. 181-344, John Wiley & Sons, Inc., ISBN 978-0-470-29319-5, University of Illinois, USA [100] John Wilson and John Hawkes, (1998). Optoelectronics – an introduction,Pearson

Prentice Hall, ISBN 0-13-103961-X, Essex CM20 21E, England

139

[101] Pradeep Fulay, (2010). Electronic, Magnetic, and Optical Materials, Chapter 7, pp.

239-298,CRC Press, ISBN: 978-0-8493-9564-2, New York, YSA

[102] Kawazoe T., Kobayashi Harris S. E., K., Sangu S. and Ohtsu M., (2003). Appl. Phys.

Lett. 82 (2003), 2957.

[103] S. Sangu K. Kobayashi, A. Shojiguchi and M. Ohtsu, (2004). Phys. Rev. B 69, 115334 [104] Dean A. Frickey (1994),Conversions Between S, 2, Y, h, ABCD, and T Parameters which are Valid for Complex Source and Load Impedances, IEEE Transactions on Microwave Theory and Techniques. VOL 42, NO 2. FEBRUARY 1994,

[105] Roger B. Marks and Dylan F. Williams (1995), A correction of paper:Conversions Between S, 2, Y, h, ABCD, and T Parameters which are Valid for Complex Source and Load Impedances, IEEE Transactions on Microwave Theory and Techniques. Vol 43, No 4. April 1995.

140

Table of Figures

Figure 2.1 The schematic diagram of a three-level EIT atomic system……… 4 Figure 2.2 The relative electric permittivity of the three-level EIT atomic vaporas a

function of the probe frequencydetuning p and the Rabi frequency

c of the control field………... 8 Figure 2.3 The typical behavior of the refractive index of the EIT vapor versus the

normalized probe frequency detuning ………. 9 Figure 2.4 The typical behavior of the refractive index of the EIT vapor versus the

normalized Rabi frequency of the control field………... 9 Figure 2.5 The typical behavior of the refractive index of the EIT vapor versus the

normalized frequency detuning of the control field………. 10 Figure 2.6 The schematic diagram of a double-control four-level system…………... 11

Figure 3.1 The 1D -layer structure of (D|E) cells embedded in GaAs

homogeneous dielectric………... 14 Figure 3.2 The bandgap structure of the 1D infinite periodic (D|E) cells when the

probe frequency of TE waves is far from the resonance……… 21 Figure 3.3 The Bloch wave number K of the 1D infinite periodic (D|E) cells when

the EIT atomic transition is on resonance………. 23 Figure 3.4 The real part (a) and the imaginary part (b) of the normalized Bloch wave

number K (in the units of 2 /) of the 1D infinite periodic (D|E) cells

versus pand c………... 23

Figure 3.5 The reflection coefficient of the 1D N-layer periodic (D|E) cells asp changes. (N 1, 2, 3, 4, 5, 6)………... 25 Figure 3.6 The reflectance and transmittance on the left interface of the 1D N-layer

periodic (D|E)cells aspchanges. (N1, 2, 3, 4, 5, 6)……… 26 Figure 3.7 The fine details of two typical cases for showing sensitivity of the

reflectance to thefrequency of the probe field in a narrow bandwidth…. 27 Figure 3.8 The real and imaginary parts of the reflection coefficient r versus the

normalized probe frequencydetuning p/ 3 in the frequency range of two-photon resonance caused by the destructive quantum interference between the |1 | 3 and | 2 | 3 transitions………. 30 Figure 3.9 The real and imaginary parts of the reflection coefficient

r

versus the

normalizedRabi frequency

/ 3

 c of the control field………. 32 Figure 3.10 The three-dimensional behavior of the reflectance of the EIT-based

layered medium versus the normalized control Rabi frequency  c/ 3 and the normalized probe frequency detuning p/ 3………. 33 Figure 3.11 The reflectance and transmittance versus the normalized Rabi frequency

c/ 3

  of the control field………. 34

Figure 3.12 Bloch wave number versus the probe frequency detuning pand Rabi frequency of the control field………... 36

/ 3

 p

/ 3

 c

c/ 3

 

N

K

c

141

Figure 3.13 The real and imaginary parts of the Bloch wave number versus the normalized frequency detuning of the control field……….. 38 Figure 3.14 The real and imaginary parts of the reflection coefficient versus the

normalized frequency detuning of the control field in the frequency range of two-photon resonance caused by the destructive quantum interference between the - and - transitions………. 39 Figure 3.15 The reflectance of transmittance of the EIT-based layered medium versus

the normalized frequency detuning of the control field…………. 41 Figure 3.16 The transmittance of the EIT-based layered medium versus the

normalized probe frequency detuning and the normalized

control frequency detuning ……….. 42

Figure 3.17 The reflectance and transmittance versus the normalized probe frequency detuning . The layer number of the EIT-based

periodic mediumN1, 5, 20, 100………. 44 Figure 3.18 The reflectance and transmittance versus the normalized Rabi

frequency of the control field……… 46

Figure 3.19 The three-dimensional behavior of the transmittance of the EIT-based layered medium versus the normalized control Rabi frequency

and the normalized probe frequency detuning ……….. 47 Figure 3.20 The schematic diagram of a NOT gate designed based on the EIT periodic

layered structure……….

48 Figure 3.21 The schematic diagram of a two-input NOR gate designed based on the

EIT periodic layered structures………

48 Figure 3.22 The schematic diagram of an EIT-based periodic layered medium. (TE

wave of the probe beam is normally incident on the left side interface (x0) of the layered medium)……… 52 Figure 3.23 The reflectance and transmittance of the 4 -layer and 6 -layer periodic

(D|E)cells in a narrow probe frequency band………

53 Figure 3.24 The dispersive and tunable optical response in the transmittance of the

4 -layerand 6 -layer periodic (D|E) cells with    c

2 3, 20 3

and  p

0.2 3, 0.7 3

……… 55 Figure 3.25 General behavior of tunable optical response of the -layer periodic

(D|E) cells with ……….. 56

Figure 4.1(a) The structure of finite layer periodic (D|E) cells andan obliquely incident visible ray………. 60 Figure 4.1(b) The structure of finite layer periodic (LHM|EIT) cells are embeded

inside the same LHM material and an obliquely incident visible ray

(probe field) imping on the most left side interface……… 61

c/ 3

 

r / 3

 c

1 3 2 3

/ 3

 c

p/ 3

 

c/ 3

 

R T

/ 3

 p

R T

/ 3

 c

/ 3

 c / 3

 p

N

1, 5, 20, 100 N

142

Figure 4.1(c) The structure of finite layer periodic (LHM|EIT) cells are embeded

inside the vacuum and an obliquely incident visible ray (probe field)

imping on the most left side interface……… 61 Figure 4.2 Bloch wave number versus normalizedpand normalizedc………….. 63 Figure 4.3 The bandgap structure of the 1D infinite periodic (LHM|EIT) cells when

the probe frequency of TM waves is far from the resonance………

64 Figure 4.4The band structure of the 1D infinite periodic LHM-EIT cells when the

angles of incidence of the TM wave of the probe beam are,

o o o o o o

in 0 , 15 , 30 , 45 , 60 , 75

  respectively………... 67

Figure 4.5 The real and imaginary parts of the reflection coefficient

r

corresponding to theN-layer LHM-EIT cells (N 1 ~ 6), where the relative refractive index of the left-handed medium isn1 1……….. 68 Figure 4.6 The real and imaginary parts of the reflection coefficient

r

corresponding

to theN-layer Dielectric-EIT cells (N 1 ~ 6), where the relative

refractiveindex of the left-handed medium isn1 1……….. 70 Figure 4.7 Reflection coefficients of one (D|E) cell with     p 1 3 2 10 s7 1..

72 Figure 4.8 Reflection coefficients of finite layer (D|E) cells

N 1, 5, 20, 100

with

8 1

p 5 3 10 s

     ……… 73

Figure 4.9 Reflectance and transmittance of one (D|E) cell with     p 1 3

7 1

2 10 s ……… 74

Figure 4.10 Reflectance and transmittance of finite layer (D|E) cells

N 1, 5, 20, 100

with    p 5 3 10 s8 1………... 75 Figure 4.11 Reflection coefficients of (Left-Handed Material|EIT) cells with

7 1

p 1 3 2 10 s

      ……… 75 Figure 4.12 Reflection coefficients of finite layer (Left-Handed Material |EIT) cells

N 1, 5, 20, 100

with    p 5 3 10 s8 1……….. 77 Figure 4.13 Reflectance and transmittance of (Left-Handed Material|EIT) cells with

7 1

p 1 3 2 10 s

      ……….. 78 Figure 4.14 Reflectance and transmittance of finite layer (Left-Handed Material |EIT)

cells

N 1, 5, 20, 100

with    p 5 3 10 s8 1……… 79 Figure 4.15 The reflectance and transmittance of 1-layer and 2-layer LHM-EIT

structures (the relative refractive index of the left-handed medium

1 1

n   ) in the probe frequency rangep/ 3

 

0, 1 ………. 80 Figure 4.16 The reflectance and transmittance of 1-layer and 2-layer LHM-EIT

structures (the relative refractive index of the left-handed medium

1 1

n   ) in the probe frequency range p/ 3

 

0, 1 ………... 82 Figure 4.17 The schematic diagram of a photonic transistor designed based on the

LHM-EIT layered structure……….. 82 Figure 4.18(a) Scheme for all optics logic gates design……….

83

143

Figure 4.18(b) Scheme for optical-transistor amplifier...

83

Figure 5.1 The circuit analog of the three- and four-level quantum coherent effects... 90 Figure 5.2 The ADS simulation results of Autler-Townes doublet (triplet) and EIT

transparency windows for the circuit analog of two-, three- and four-level quantum coherent effects (corresponding to the various

capacitances chosen for )………... 93

Figure 5.3 The configuration of experimental setup for measuring the voltage ….. 94 Figure 5.4 The lumped circuit for findingt and 21 s ………. 21 97 Figure 5.5 EIT can be represented byRp jXp

 

 and calculate outt without 50 21

Ohm………. 98 Figure 5.6 EIT-like RLC series circuit with switch S , S1 2………. 100 Figure 5.7 EIT-like RLC series circuit with switch S ON and 1 S OFF………….. 102 2 Figure 5.8 EIT-like RLC series circuit with switches S , S both ON………... 105 1 2 Figure 5.9 The circuit analog of the three- and four-level quantum coherent effects... 108 Figure 5.10 The simplified the EIT-like RLC circuit………... 110 Figure 5.11The Matlab simulation results for power absorption in the circuit analog

of two-/three-/four-levelatomicsystem………..

113 Figure 5.12 The ADS stimulation results for the circuit analog of power absorption

in the circuitanalog of two-/three-/four-levelatomicsystem………….. 114 Figure 5.13 The Matlab simulation results for the absorbed power (versus the work-

ing frequency) when the coupling capacitors have different capacitan-

ces……….. 116 Figure 5.14 The absorbed power versus the working frequency (simulated by ADS)

when the coupling capacitors have different capacitances………... 117 Figure 5.15 The active and reactive powers in the circuit analog of the four-level

System……….. 118

Fig. 5.16 Another draw of schematic diagram for a double-control four-level system. 120 Figure 5.16 Two-ports circuit analog of the three- and four-level quantum coherent

effects……… 122 Figure 5.17 Power dips in two/three/four-level EIT-like RLC circuit………. 124

Cx

V12

144

Tables

Table 1 Parameters setting of the bulk EIT material for finding the permittivity… 10 Table 2 Typical physical parameters setting for peridical (D|E) layered structure.. 24 Table 3 The truth table of two-input OR gate (fabricated based on the 4-layer

periodic structure) and two-input NAND gate (fabricated based on the

6-layer periodic structure)………. 55

Table 4 Typical physical parameters setting for peridical (LHM|EIT) layered

Structure……… 63

Table 5 Specification of the electronic components applied in the EIT-Like circuit 114

145

Papers Published

1. Book chapter 7, " EIT-Based Photonic Crystal and Photonic Logic Gate Design" , pp. 133-156, ISBN 978-953-51-0431-5, InTech, March, 2012

2 . "Frequency-Sensitive Optical Response via Tunable Band Structure in an EIT- Based Layered Medium” International Conference onMaterials Science And Engineering Applications (ICMSEA 2011), Advanced MaterialsResearch Vols.160-162 (2011) p1432-1439

3. "The Sensitive Band Structure of an EIT Photonic Crystal and Its Application to Photonic Logic Gate Design ", pp 243-250, ISSN 1971-680X Vol. 4 N. 5, October 2010, International Review of PHYSICS (IREPHY).,

4. ”Photonic analog of Klein paradox in a periodic layered material with composite structure of left handed medium and electromagnetically induced transparency”, pp 43-52, ISSN 1971-680X Vol. 5 N. 2, Apirl 2011, International Review of PHYSICS (IREPHY).,

5. "EIT-based Coherent Control Effect Sensitive to Probe Frequency and Control Field Intensity in a Periodic LayeredMedium”, Progress In Electro-magnetics Research Symposium (PIERS,2011)

6. "Probe frequency- and field-intensity-sensitive coherent control effect in an EIT-based periodic layered medium", pp. 010201 Vol. 10, Issue 01, (2012), Chinesee Optics Letters

7. Extraordinary Ray Responseon LHM and EIT Bi-LayeredMedium”, No.117, D00-8, The15th National Conferenceon Vehicle Engineering

8. "Band Structure of 1D Infinite Periodic Dielectric and EITBi-Layered Medium”, Conference, OPT5-P-032, International Conference on Optics and Photonics in Taiwan (OPT’10)

在文檔中 中華大學 (頁 138-165)

相關文件