• 沒有找到結果。

weaker, resulting in the extract relative substrate hardness Hs decreasing from 1.1 GPa to

0.69 GPa.

(5) For thinner TFMG coatings, the coated film and the substrate have the lowest X and a

smaller relative hardness gap, and the applied load is easier to distribute evenly to the film

and substrate. This will lead to a smoother hardness-βcurve and a lower tendency of

coating cracking. With this aspect, the coatings ~200 nm appear to be more feasible.

Judging from all factors related to hardness/wear improvement, more even load transfer

distribution, and film cracking issues, the optimum coating thickness in this study is

around 200 nm.

References

[1] Y. Kojima, Mater. Sci. Forum 3, 350-351 (2000).

[2] G. V. Raynor, The Physical Metallurgy of Magnesium and Its Alloys, Pergamon Press,

London. (1957).

[3] T. Lyman, H. E. Boyer, P. M. Unterwesier, J. E. Foster, J. P. Hontans and H. Lawton,

Metals Handbook, 8, ASM International, Metal Park, Ohio. (1975),

[4] R. W. Cahn, P. Hassen, E. J. Kramer, in Materials Science and Technology Structure and

Properties of Nonferrous Alloys, VCH, New York. (1996).

[5] A. C. Lund and C. A. Schuh. J. Appl. Phys. 95, 4815-4822 (2004).

[6] M. H. F. Overwijk, F. C. van den Heuvel and C. W. T. Bulle-Lieuwma, Vac. Sci. Technol.

B 11, 2021-2024 (1993).

[7] A. Inoue. Acta Mater. 48, 279-306 (2000).

[8] A. Inoue, A. Kato, T. Zhang, S.G. Kim, and T. Masumoto, Mater. Trans. 32, 606-609

(1991).

[9] J. Schroers, and N. Paton, Adv. Mater. Processes, 61-63 (2006).

[10] T. Fukushige, S. Hata, and A. Shimokohbe, J. Microelectromech. Syst. 14, 243-253

(2005).

[11] S. Bysakh, P.K. Das, and K. Chattopadhyay, Philos. Mag. A 81, 2689-2704 (2001).

[12] R. B. Schwarz, and W.L. Johnson, Phys. Rev. Lett. 51, 415-418 (1983).

[13] S. Hata, K. Sato, and A. Shimokohbe, Proc. SPIE, 97-108 (1999).

[14] J. P. Chu, C.T. Liu, T. Mahalingam, S.F. Wang, M.J. O'Keefe, B. Johnson, and C.H.

Kuo, Phys. Rev. B 69, 133410-1 - 113410-4 (2004).

[15] Y. Liu, S. Hata, K. Wada, and A. Shimokohbe, Jpn. J. Appl. Phys. 40, 5382-5388

(2001).

[16] G.P. Zhang, Y.D. Liu and B. Zhang,Scripta Mater. 54, 897-901 (2006).

[17] H. Hoche, H. Scheerer, D. Probst, E. Broszeit and C. Berger Surf. Coat. Technol.

174–175, 1018-10323 (2003).

[18] H. Friedrich and S. Schumann, J. of Mater. Proc. Technol. 117, 276-281 (2001).

[19] 葉峻轍,工業材料,186 期 82 (2002).

[20] 范元昌、蘇健忠、翁震灼、陳俊沐,工業材料,186 期 131 (2002).

[21] Q. D. Wang, W. D. Chen, X. Q. Zeng, Y.Z. Lu, W. J. Ding, Y. P. Zhu, X. P. Xu, M.

Mabuchi, J. Mater. Sci. 36, 3055 (2001).

[22] P. Li, B. Tang, E. G. Kandalova, Mater. Lett. 59, 671 (2005).

[23] B. L. Mordike, Mater. Sci. Eng. A324 ,103 (2002).

[24] 吳學陞. 工業材料 149, 154-165 (1999).

[25] K. L. Chopra. Thin Film Phenomena. McGraw-Hill, New York, USA. (1985).

[26] P. J. Hsieh. PhD Thesis, Nanocrystallization and Amorphization of Zr Base Alloys

during Accumulative Roll Bonding, National Sun Yat-Sen University, Kaohsiung, Taiwan,

(2004).

[27] W. Buckel. Z. Phys. 138, 136 (1954).

[28] E. J. Cotts, W. J. Meng and W. L. Johnson. Phys. Rev. Lett. 57, 2295-2298 (1986).

[29] J. Dudonis, R. Brucas and A. Miniotas. Thin Solid Films 275, 164-167 (1996).

[30] P. S. Grant. Prog. Mater. Sci. 39, 497-545 (1995).

[31] B. Li, N. Nordstrom and E. J. Lavernia. Mater. Sci. Eng. A 237, 207-215 (1997).

[32] R. S. Liu, J. Y. Li, K. J. Dong, C. X. Zheng and H. R. Liu. Mater. Sci. Eng. B 94,

141-148 (2002).

[33] C. R. M. Afonso, C. Bolfarini, C. S. Kiminami, N. D. Bassim, M. J. Kaufman, M. F.

Amateau, T. J. Eden and J. M. Galbraith. J. Non-Crystalline Solids 284, 134-138 (2001).

[34] W. Klement, R. H. Willens and P. Duwez. Nature 187, 869-870 (1960).

[35] M. S. El-Eskandarany and A. Inoue. Metall. Mater. Trans. A 33, 135-143 (2002).

[36] C. C. Koch, O. B. Kavin, C. G. Mckamey and J. O. Scarbrough. Appl. Phys. Lett. 43,

1017-1019 (1983).

[37] Y. Saito, H. Utsunomiya, N. Tsuji and T. Sakai. Acta Mater. 47, 579-583 (1999).

[38] Z. P. Xing, S. B. Kang and H. W. Kim. Metall. Mater. Trans. A 33A, 1521-1530 (2002).

[39] J. Lee, F. Zhou, K. H. Chung, N. J. Kim and E. J. Lavernia. Metall. Mater. Trans. A 32,

3109-3115 (2001).

[40] A. Sagel, H. Sieber, H. J. Fecht and J. H. Perepezko. Acta Mater. 46, 4233-4241 (1998).

[41] Z. P. Lu and C. T. Liu, Acta Mater. 50, 3501-3512 (2002).

[42] D. E. Polk, Acta Metall. 20, 485-& (1972).

[43] S. R. Nagel and J. Tauc, Phys. Rev. Lett. 35, 380-383 (1975).

[44] H. S. Chen and B. K. Park, Acta Metall. 21, 395-400 (1973).

[45] K. S. Dubey and P. Ramachandrarao, Int.l J. Rapid Solid. 5, 127-135 (1990).

[46] S. H. Whang, Mater. Sci. and Eng. 57, 87-95 (1983).

[47] T. Egami and Y. Waseda, J. of Non-Crystalline Solids 64, 113-134 (1984).

[48] Z. P. Lu, Y. Liu, and C. T. Liu, Evalution of glass-forming ability. Bulk Metallic Glasses,

ed. Michael K. Miller and P. K. Liaw., New York, Springer Science+Business Media. Chapter

4 (2008).

[49] G. J. Fan, H. Choo, and P. K. Liaw, J. of Non-Crystalline Solids 353, 102-107 (2007).

[50] Q. J. Chen, J. Shen, D. L. Zhang, H. B. Fan, J. Sun, and D. G. McCartney, Materials

Science and Engineering a-Structural Materials Properties Microstructure and Processing 433,

155-160 (2006).

[51] Z. P. Lu and C. T. Liu, Phys. Rev. Lett. 91 (2003).

[52] X. H. Du, J. C. Huang, K. C. Hsieh, Y. H. Lai, H. M. Chen, J. S. C. Jang, and P. K. Liaw,

Appl. Phys. Lett. 91 (2007).

[53] R. E. Reed-Hill, R. Abbaschian, Physical Metallurgy Principles, PWS, Boston, USA.

(1994).

[54] A. Inoue. Mater. Trans. JIM 36, 866-875 (1995).

[55] A. Inoue, A. Takeuchi and T. Zhang. Metall. Mater. Trans. A 29, 1779-1793 (1998).

[56] A. Inoue and K. Hashimoto. Amorphous and Nanocrystalline Materials: Preparation,

Properties, and Applications, Springer-Verlag, Berlin and Heidelberg. (2001).

[57] A. Takeuchi and A. Inoue. Mater. Trans. 41, 1372-1378 (2000).

[58] D. M. Mattox. Handbook of Physical Vapor Deposition (PVD) Processing, Noyes

publications, New Jersey. (1998).

[59] K. Wasa, and S. Hayakawa, Handbook of Sputter Deposition Technology. (1992)

[60] A. Sagel, H. Sieber, H. J. Fecht and J. H. Perepezko. Acta Mater. 46, 4233-4241 (1998).

[61] D. Turnbull. Contemp. Phys. 10, 473-488 (1969).

[62] S. Veprek and M. Heintz. Plas. Chem. Plas. Proc. 10, 3-26 (1990).

[63] S. Veprek and M. G. J. Veprek-Heijman. Appl. Phys. Lett. 56, 1766-1768 (1990).

[64] Y. Liu, S. Hata, K. Wada and A. Shimokohbe. 14th IEEE International Conference on

Micro Electro Mechanical Systems, 102-105 (2001).

[65] Y. P. Deng, Y. F. Guan, J. D. Fowlkes, S. Q. Wen, F. X. Liu, G. M. Pharr, P. K. Liaw, C. T.

Liu, and P. D. Rack, Intermetall. 15 1208-1216 (2007).

[66] F. Spaepen. Acta Matall. 25, 407-415 (1977).

[67] A. S. Argon. Acta Matall. 27, 47-58 (1979).

[68] L. H. Dai, M. Yan, L. F. Liu and Y. L. Bai. Appl. Phys. Lett. 87, 141916 (2005).

[69] T. G. Park, S. Yi and D. H. Kim. Scripta Mater. 43, 109-114 (2000).

[70] S. Pang, T. Zhang, K. Asami and A. Inoue. Mater. Trans. JIM 42, 376-379 (2001).

[71] 張志溢,“以摩擦旋轉攪拌製程製作奈米細晶鎂基合金與複材之研發”,國立中山大

學博士論文 (2008)

[72] B. Navinsek, P. Panjan, J. Krusic. Surf. Coat. Tech. 98, 809-815 (1998).

[73] J. H. Ahn, D. Kwon. Mater. Sci. Eng. A 285, 172-179 (2000).

[74] J. R. Tuck, A. M. Korsunsky, D. G. Bhat, S. J. Bull. Surf. Coat. Tech. 139, 63-74 (2001).

[75] L. Qian, M. Li, Z. Zhou, H. Yang, X. Shi. Surf. Coat. Tech. 195, 264-271(2005).

Fourth partt Indicates condition (temper) Consists of a letter followed by a number (separated from the third part of the designation by a hyphen) F-as fabricated O-annealed H10 and H11-strain hardened H23, H24 and H26-strain hardened and partially annealed T4-solutuon heat treatment T5-artificially aged only T6-solution heat treated and artificially aged

Third part Distinguishes between different alloys with the same percentage of the two principal alloying Consists of a letter of the alphabet assigned in order as compositions become standard Letters of alphabet except I and O

Second part Indicates the amount of the two principal elements Consists of two numbers corresponding to rounded-off percentage of the two main alloying elements and arranged in same designation in first part Whole numbers

First part Indicates the two principal alloying element Consists of two code letters representing the two main alloying elements arranged in order of decreasing percentage (or alphabetically if percentage are equal) A-Al E-rare earth H-Th K-Zr M-Mn Q-Ag S-Si T-Sn W-Y Z-Zn

Statement Method Example

Table 1-1 The standard four-part ASTM designation system of alloy and temper for the magnesium alloy[3].

Table 1-2 The effect of separate solute addition on the mechanical properties [4].

Table 1-3 Fundamental properties and application fields of bulk amorphous and nanocrystalline alloys [7].

Table 2-1 Binary amorphous systems and mixing enthalpy values calculated based on Miedema’s macroscopic model [57].

Mg Cu Y Gd Ag B

Mg -3 -6 -10

Cu -3 -22 -22 2 0

Y -6 -22 -29 -50

Gd -22 -50

Ag -10 2 -29

B 0 -50 -50

Table 3-1 Chemical composition of the AZ31 Mg alloy (in wt%).

Material Mg Al Zn Mn Si Fe Cu Ni

AZ31 Bal. 3.02 1.01 0.30 0.0067 0.0028 0.0031 0.0001

Table 4-1 Composition difference between the alloy targets and the as-deposited thin films.

The compositions of the film are analyzed by SEM/EDS.

Sample Atomic composition

Pd-Cu-Si Target Pd77.5Cu6Si16.5

Individual Average Pd79Cu4Si17

Pd78Cu8Si14

Pd77Cu5Si18

Pd75Cu6Si19 As-deposited thin film

Pd77Cu8Si15

Pd77Cu6Si17

Table 4-2 The fitting parameters of the PCS TFMGs deposited on the AZ31 substrate obtained from the nanoindentation data.

Thickness (nm)

Hs

(GPa)

Hf

(GPa) k X

30 0.97±0.10 4.92±0.55 3.34 1.35

50 1.11±0.07 5.53±0.39 5.85 1.52

100 1.14±0.01 5.92±0.21 6.58 1.72

200 1.20±0.05 6.59±0.14 7.08 1.76

300 0.97±0.03 6.72±0.17 10.72 1.85

500 0.85±0.04 6.98±0.18 11.34 1.90

1000 0.70±0.02 7.38±0.26 14.36 1.92

2000 0.69±0.04 7.98±0.31 22.03 2.26

Figure 1-1 The atomic arrangment of long-range-order structure [5].

Figure 1-2 The atomic arrangment of short-range-order structure [5].

Figure 1-3 The shiny and smooth apperance of metallic glasses [6].

Figure 1-4 The frame for the upscale models of the Vertu mobile phone is made of liquid-metal alloy due to its high strength, hardness, and scratch resistance [9].

(a)

(b)

Figure 1-5 (a) Conical spring of microactuator, and (b) a fundamental structure of micro-switch made of thin film metallic glasses [10].

Figure 2-1 Schematic drawing of (a) sputtering and (b) vacuum evaporation [26].

Figure 2-2 Schematic drawing of binary phase diagram [53].

Figure 2-3 Mechanisms for the stabilization of supercooled liquid and the high glass-forming ability [7].

Figure 2-4 Events that occur on a surface being bombarded with energetic atomic-sized particles [58].

Figure 2-5 Schematic illustrations of three basic growth modes for thin film [61].

Figure 2-6 DSC thermography curve of the Pd-TFMG [15].

Figure 2-7 DSC thermography curve of the Zr-TFMG [64].

Figure 2-8 TTT diagram for the onset of crystallization in the Zr-TFMG [64].

Figure 2-9 TTT diagram for the onset of crystallization in the Pd-TFMG [64].

Figure 2-10 (a) Nanoindentation hardness measurement results of the as-deposited and the annealed films as a function of the concentration of Zr-Cu-Al TFMGs; (b) Nanoindentation Young’s modulus measurement results of the as-deposited and the annealed films as a function of the concentration of Zr-based TFMGs [65].

Figure 2-11 Relationship between Vickers hardness (Hv) and Young’s modulus (GPa) for various BMGs [7].

Figure 2-12 The arrangement of atoms in (a) crystalline and (b) amorphous states.

Figure 2-13 The illustration of the shear transformation zones (STZs) (a) before shear deformation and (b) after shear deformation in two-dimensional space.

Figure 2-14 Schematic drawing of the fluid zones of amorphous alloy.

Figure 3-1The flow chart of the experimental procedures in this study.

Figure 3-2 The standard Nano Indenter® XP is a complete, turnkey system consisting of the major components illustrated.

Figure 4-1 XRD pattern of (a) the AZ31 substrate, (b) the Pd77Cu6Si17 thin film deposited on silicon substrate.

0) 1 (10

) 0002 (

) 2 1 10

( (1020)

1) 1 (10 (a)

(b)

Figure 4-2 XRD pattern of the Pd77Cu6Si17 thin film deposited on the AZ31 substrate.

0) 1 (10

(0002) 1) 1 (10

Figure 4-3 (a) AFM image of the AZ31 substrate topography, and the roughness Ra is ~70 nm after diamond paste polishing, (b) OM image of the AZ31 substrate mophology.

(a)

(b)

100 µµµµm

Figure 4-4 (a) AFM image of the AZ31 substrate topography, and the roughness Ra is ~10 nm after SiO2 polishing, (b) OM image of the AZ31 substrate morphology.

100 µµµm µ (a)

(b)

Figure 4-5 The microstructure of the as-received AZ31 billet after etching.

Figure 4-6 The hardness-β curves of the PCS-1000 and PCS-2000, measured from the microhardness tests.

Figure 4-7 The hardness-β curves of the PCS-200, PCS-500, PS-1000, and PCS-2000, measured by nanoindentaiton tests.

Figure 4-8 The combined hardness-β plots for all the experimental data measured from the microhardness and nanoindentaiton tests.

Figure 4-9 The SEI image of the AZ31 substrate at an applied load of 10 g.

Figure 4-10 The SEI image of the Pd77Cu6Si17 TFMG 2000 nm in thickness (a) without obvious shear bands, and (b) with shear bands at an applied load of 10 g.

(a)

(b)

Figure 4-11 The SEI image of the Pd77Cu6Si17 TFMG 2000 nm in thickness at an applied load of 25 g.

Figure 4-12 The SEI image of the Pd77Cu6Si17 TFMG 2000 nm in thickness at an applied load of 50 g.

Figure 4-13 The SEI image of the Pd77Cu6Si17 TFMG 2000 nm in thickness at an applied load of 100 g.

Figure 4-14 (a) The enlarged SEI image taken from Figure 4-13, (b) the enlarged SEI image taken from Figure 4-14 (a).

(a)

(b)

Figure 4-15 The SEI image of the Pd77Cu6Si17 TFMG 1000 nm in thickness at an applied load of 10 g.

Figure 4-16 The SEI image of the Pd77Cu6Si17 TFMG 1000 nm in thickness at an applied load of 25 g.

Figure 4-17 The SEI image of the Pd77Cu6Si17 TFMG 1000 nm in thickness at an applied load of 50 g.

Figure 4-18 The SEI image of the Pd77Cu6Si17 TFMG 1000 nm in thickness (a) with obvious cracks, and (b) without any crack at an applied load of 100 g.

(a)

(b)

Figure 4-19 The SEI image of the Pd77Cu6Si17 TFMG 2000 nm in thickness under nanoindentation testing.

Figure 4-20 (a) The enlarged SEI image (b) the enlarged and rotated SEI image of the Pd77Cu6Si17 TFMG 2000 nm in thickness under nanoindentation testing.

(a)

(b)

Figure 4-21 (a) The SEI image of the Pd77Cu6Si17 TFMG 1000 nm in thickness under nanoindentation testing. (b) the enlarged SEI image taken from Figure 4-23 (a).

(a)

(b)

Figure 4-22 Comparison of the experimental data (in various symbols) and the best fit predictions based on equation 4-3 (in various lines) for the PCS 200, 500, 1000 and 2000 samples under nanoindentaiton. Note that the horizontal axis is presented in log scale.

相關文件