• 沒有找到結果。

We have improved the LHPG system with a LabVIEW automatic program. The power feedback control and camera monitor functions were integrated with the stage control program. Efficient and user-friendly growth control increased the repeatability and reliability of the Cr4+:YAG crystal fiber grown by the LHPG technique. The core-reduction process of Cr4+:YAG crystal fiber was realized with CDLHPG method to obtain a DCF structure. This novel cladding technique was developed by our group [1.13]. But the core uniformity of Cr4+:YAG DCF was not good enough and still impaired the optical performance. An innovating method for suppressing the fluctuation of heating power, sapphire tube assisted CDLHPG technique, was developed and combined with power feedback control program. By this technique, a 10-μm-core Cr4+:YAG DCF which meets the adiabatic criterion was fabricated. A factor of 3 improvement in core uniformity with the use sapphire tube assisted CDLHPG method was achieved. Compared with those fibers grown without the use of sapphire tube, the propagation loss was improved from 0.6 dB/cm to 0.02 dB/cm for the 10-μm-core fiber.

We had established the numerical model to analyze the ASE and gain performances. The cross sections of pump absorption, emission, and ESAs of pump and signal were determined with many curves fittings of ASE and gain experimental data. For our fibers, these parameters derived from curve fitting are 22×10-19 cm2, 1.6×10-19 cm2, 4.18×10-19 cm2, and 0.32×10-19 cm2, respectively. The experimental and simulation results all indicate that the pump ESA loss is the fundamental problem for ASE and gain performances. Cladding pump scheme must be applied instead of the core pump scheme to alleviate the influence of pump ESA loss. Another solution for the problem is the pump wavelength shifting. The ratio of ESA to GSA is around 9%

at 925 nm that is smaller than the 19 % at 1064 nm.

An ultra-low threshold Cr4+:YAG DCF laser was achieved at room temperature.

The laser output power vs. absorbed pump power curve had two slopes in the low and high absorbed pump power regions. The threshold pump powers were 2.5 mW and 96 mW in the low and high absorbed pump powers with the same output coupler

transmittance of 3.8%, respectively. The threshold is the lowest compared with any published literatures. The slope efficiencies of the fiber laser were 0.4% and 6.9%, respectively. The simulation indicated that 56% slope efficiency can be achieved with a length of 7 cm and an output reflectance of 80%. The application of ASE light source, for being the probe light source of OCT system, have demonstrated an axial resolution of 3.5 μm, which is in good agreement with the theoretical estimation.

In the future, we will confront some challenges in the fabrication processes of Cr4+:YAG DCF. First of all, we have obtained emission and absorption cross sections, the ratio of

σ

e

σ

a is around 0.073. With such small ratio of

σ

e

σ

a , it is needed to lengthen the fiber length to enhance the optical gain. But the longest pumped fiber length is limited by large loss of pump ESA. Cladding pump scheme must be adopted to improve the optical performance. Considering DCFs with 40- to 50-μm in inner-clad diameter, simulation show that the necessary fiber length could be shortened by several folds and still maintain good performance. By estimation, around 35-μm single crystal fiber should be grown to inserted into a 40-μm inner diameter of silica capillary, then around 50-μm inner-clad diameter DCF could be obtained. The 35-μm single crystal fiber needs a very stable heating power and growth environment.

Secondly, the fiber length needs to be lengthened to meter order. Our LHPG system can grow around 40 cm fiber length that is limited by the motion stage length. The fiber splicing technique can be used to increase the fiber length. Thirdly, the few-mode or single-mode DCF should be developed to solve the multimode interference (MMI), and pump and signal overlapping ratio [6.1]. It is also necessary to combine with SMF in optical communication system in the future. We had doped some high refractive index material (TiO2) into the inner cladding layer of DCF to raise the refractive index. Figure 6.1 shows the comparison of refractive index profiles of DCFs with and without TiO2 in the inner cladding layer. The refractive index of inner cladding near the interface between core and inner cladding was increased from 1.64 to 1.72. The difference of refractive index between core and inner cladding was reduced from around 10% to 5%. Finally, a series important breakthroughs in the growth process of Cr4+:YAG crystal fibers were already realized, but there are still some crucial challenges in the future. When we fully understand Cr4+:YAG DCF and

overcome the problems, Cr4+:YAG will have the great impacts in the future optical communications.

20 30 40 50 60 70 80

1.4 1.5 1.6 1.7 1.8 1.9 2.0

Ref ractive index

Percent diameter (%) w/ TiO2 deposition w/o deposition

Fig. 6.1. Refractive index profiles of Cr4+:YAG DCF with and without high refractive index material (TiO2) deposition in the inner cladding layer.

References:

Chapter 1

[1.1] T. Ono and Y. Yano, “Key technologies for terabit/second WDM systems with high spectral efficiency of over 1 bit/s/Hz,” IEEE J. Quantum Electron.

34, 2080 (1998).

[1.2] B. R. Wu, C. F. Lin, L. W. Laih, and T. T. Shih, “Extremely broadband InGaAsP/InP superluminescent diodes,” Electron. Lett. 36, 2093 (2000).

[1.3] J. W. Lou, T. J. Xia, O. Boyraz, C. X. Shi, G. A. Nowak, and M. N. Islam,

“Broader and flatter suppercontinuum spectra in dispersion-tailored fibers,”

Technical Digest, 32 (1997).

[1.4] R. J. Mears, L. Reekie, I. M. Jauncey, and D. N. Payne, “Low-noise erbium-doped fiber amplifier operating at 1.54 μm,” Electron. Lett. 23, 1026 (1987).

[1.5] J. F. Massicott, J. R. Armitage, R. Wyatt, B. J. Ainslie, and S. P. Craig-Ryan,

“High gain, broadband, 1.6-μm Er3+ doped silica fiber amplifier,” Electron.

Lett. 26, 1645 (1990).

[1.6] C. A. Millar and P. W. France, “Diode-laser pumped erbium-doped fluorozirconate fiber amplifier for the 1530 nm communications window,”

Electron. Lett. 26, 634 (1990).

[1.7] Y. Ohishi, A. Mori, M. Yamada, H. Ono, Y. Nishida, and K. Oikawa, “Gain characteristics of tellurite-based erbium-doped fiber amplifiers for 1.5-μm broadband amplification,” Opt. Lett. 23, 274 (1998)

[1.8] T. Komukai, T. Yamamoto, T. Sugawa, and Y. Miyajima, “1.47 μm band Tm3+ doped fluoride fiber amplifier using a 1.064 μm upconversion pumping scheme,” Electron. Lett. 29, 110 (1993).

[1.9] A. Cucinotta, F. Poli, and S. Selleri, “Gain characteristics of thulium-doped tellurite fiber amplifiers by dual-wavelength (800 nm + 1064 nm) pumping,”

OFC. 2, 625 (2003).

[1.10] E. Taylor, L. Nilsson, R. Caponi, A. Pagano, M. Potenza, and B. Sordo,

“Thulium-doped tellurite fiber amplifier,” IEEE Photon. Technol. Lett. 16, 777 (2004).

[1.11] Y. Ohishi, T. Kanamori, T. Kitagawa, S. Takahashi, E. Snitzer, and G. H.

Sigel, Jr., “Pr3+-doped fluoride fiber amplifier operating at 1.31 μm,” Opt.

Lett. 16, 1747 (1991)

[1.12] M. M. Fejer, J. L. Nightingale, G. A. Magel, and R. L. Byer, “Laser-heated miniature pedestal growth apparatus for single-crystal optical fibers,” Rev.

Sci. Instrum. 55, 1791 (1984).

[1.13] C. Y. Lo, K. Y. Huang, J. C. Chen, S. Y. Tu, and S. L. Huang, “Glass-clad Cr4+:YAG crystal fiber for the generation of superwideband amplified spontaneous emission,” Opt. Lett. 29, 439 (2004).

[1.14] K. Y. Huang, K. Y. Hsu, D. Y. Jheng, W. J. Zhuo, P. Y. Chen, P. S. Yeh, and S.

L. Huang, “Low-loss propagation in Cr4+:YAG double-clad crystal fiber fabricated by sapphire tube assisted CDLHPG technique,” to appear in Opt.

Exp. (2008).

Chapter 2

[2.1] S. Kuck, J. Koetke, K. Petermann, U. Pohlmann, and G. Huber,

“Spectroscopic and laser studies of Cr4+:YAG and Cr4+:Y2SiO5,” OSA Proc.

Adv. Solid-State Lasers 15, 334, (1993).

[2.2] W. Koechner, Solid-State Laser Engineering (Springer-Verlag, Berlin, 1996).

[2.3] S. Kuck, K. Petermann, U. Pohlmann, and G. Huber, “Near-infrared emission of Cr4+-doped garnets: lifetimes, quantum efficiencies, and emission cross sections,” Phys. Rev. B 51, 323, (1995).

[2.4] A. Sennaroglu, “Broadly tunable Cr4+-doped solid-state lasers in the near infrared and visible,” Prog. Quantum Electron. 26, 287 (2002).

[2.5] Y. Kalisky, “Cr4+-doped crystals: their use as lasers and passive Q switches,”

Prog. Quantum Electron. 28, 249 (2004).

[2.6] S. Kuck, “Laser-related spectroscopy of ion-doped crystal for tunable solid-state lasers,” Appl. Phys. B: Lasers and Optics 72, 515 (2001).

[2.7] S. A. Markgraf, M. F. Pangborn, and R. Dieckmann, “Influence of different divalent co-dopant on the Cr4+ content of Cr-doped Y3Al5O12,” J. Cryst.

Growth 180, 81 (1997).

[2.8] A. Sugimoto, Y. Nobe, and K. Yamagishi, “Crystal growth and optical characterization of Cr,Ca:Y3Al5O12,” J. Cryst. Growth 140, 349 (1994).

[2.9] J. C. Chen, C. Y. Lo, K. Y. Huang, F. J. Kao, S. Y. Tu, and S. L. Huang,

“Fluorescence mapping of oxidation states of Cr ions in YAG crystal fibers,”

J. Cryst. Growth 274, 522 (2005).

[2.10] C. N. Tsai, Y. S. Lin, K. Y. Huang, Y. S. Lin, C. C. Lai, and S. L. Huang.

“Enhancement of Cr4+ concentration in Y3Al5O12 crystal fiber with pre-growth perimeter deposition,” to appear in Jap. J. Appl. Phys. (2008).

[2.11] B. Henderson, H. G. Gallagher, T. P. Han, and M. A. Scott, “Optical spectroscopy and optimal crystal growth of some Cr4+-doped garnets,” J.

Phys.: Condens. 12, 1927 (2000).

[2.12] R. Feldman, Y. Shimony, and Z. Burshtein, “Dynamics of chromium ion valence transformations in Cr,Ca:YAG crystals used as laser gain and passive Q-switching media,” Opt. Mater. 24, 333 (2003).

[2.13] Z. Burshtein, P. Blau, Y. Kalisky, Y. Shimony, and M. R. Kokta,

“Excited-state absorption studies of Cr4+ ions in several garnet host crystals,”

IEEE J. Quantum Electron. 34, 292 (1998).

[2.14] G. Xiao, J. H. Lim, S. Yang, E. Van. Stryland, M. Bass, and L. Weichman,

“Z-scan measurement of the ground and excited state absorption cross sections of Cr4+ in yttrium aluminum garnet,” IEEE J. Quantum Electron. 35, 1086 (1999).

[2.15] A. Sennaroglu, “Analysis and optimization of lifetime thermal loading in continuous-wave Cr4+-doped solid-state lasers,” J. Opt. Soc. Am. B 18, 1578 (2001).

[2.16] P. C. Becker, N. A. Olsson, and J. R. Simpson, Erbium-Doped Fiber Amplifiers: Fundamentals and Technology (Academic Press, New York, 1999).

[2.17] C. E. Chryssou, F. D. Pasquale, and C. W. Pitt, “Improved gain performance in Yb3+-sensitized Er3+-doped alumina (Al2O3) channel optical waveguide amplifiers,” IEEE J. Lightwave Technol. 19, 345 (2001).

[2.18] C. Barnard, P. Myslinski, J. Chrostowski, and M. Kavehrad, “Analytical model for rare-earth-doped fiber amplifiers and lasers,” IEEE J. Quantum Electron. 30, 1817 (1994).

[2.19] M. Hofer, M. E. Fermann, A. Galvanauskas, D. Harter, and R. S. Windeler,

“Low-noise amplification of high-power pulses in multimode fibers,” IEEE Photon. Technol. Lett. 11, 650 (1999).

[2.20] C. W. Wang, Y. L. Weng, P. L. Huang, H. Z. Cheng, and S. L. Huang,

“Passively Q-switched quasi-three-level laser and its intracavity frequency doubling,” Appl. Opt. 41, 1075 (2002).

[2.21] S. Kuck, K. Petermann, and G. Huber, “Spectroscopic investigation of the Cr4+-center in YAG,” OSA Proc. Adv. Solid-State Lasers 10, 92 (1991).

Chapter 3

[3.1] J. L. Stevenson and R. B. Dyott, “Optical fiber waveguide with a single-crystal core,” Electron. Lett. 10, 449 (1974).

[3.2] B. Chalmers, H. E. Labelle, Jr., and A. I. Mlavsky, “Edge-defined, film-fed crystal growth,” J. Cryst. Growth 13/14, 84 (1972).

[3.3] N. Ohnish and T. Yao, “A novel growth technique for single-crystal fibers:

the micro-Czochralski (μ-CZ) method,” Jap. J. Appl. Phys. 28, L278 (1989).

[3.4] D. H. Yoon, I. Yonenaga, T. Fukuda, and N. Ohnishi, “Crystal growth of dislocation-free LiNbO3 single crystals by micro pulling down method,” J.

Cryst. Growth 142, 339 (1994).

[3.5] C. Y. Lo, K. Y. Huang, J. C. Chen, C. Y. Chuang, C. C. Lai, S. L. Huang, Y.

S. Lin, and P. S. Yeh, “Double-clad Cr4+:YAG crystal fiber amplifier,” Opt.

Lett. 30, 129 (2005).

[3.6] L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816 (2003).

[3.7] C. W. Lan and C. Y. Tu, “Three-dimensional simulation of facet formation and the coupled heat flow and segregation in Bridgman growth of oxide crystals,” J. Cryst. Growth 233, 523 (2001).

Chapter 4

[4.1] M. A. Gulgun, W. Y. Ching, Y. N. Xu, and M. Rühle, “Electron states of YAG probed by energy-loss near-edge spectrometry and Ab Initio calculations,”

Phil. Mag. B 79, 921 (1999).

[4.2] L. P. You, C. L. Heng, S. Y. Ma, Z. C. Ma, W. H. Zong, Z. L. Wu, and G. G.

Qin, “Precipitation and crystallization of nanometer Si clusters in annealed Si-rich SiO2 films,” J. Cryst. Growth 212, 109 (2000).

[4.3] O. Conde, A. G. Rolo, M. J. M. Gomes, C. Ricolleau, and D. J. Barber,

“HRTEM and GIXD studies of CdS nanocrystals embedded in Al2O3 films produced by magnetron RF-sputtering,” J. Cryst. Growth 247, 371 (2003).

[4.4] Y. J. Bai, Z. G. Liu, X. G. Xu, D. L. Cui, X. P. Hao, X. Feng, and Q. L.

Wang, “Precipitation of InN nanocrystals by solvo-thermal method,” J.

Cryst. Growth 241, 189 (2002).

[4.5] Z. Sun, D. Yuan, X. Duan, X. Wei, H. Sun, C. Luan, Z. Wang, X. Shi, D. Xu, and M. Lv, “Preparation and characterization of Co2+-doped Y3Al5O12

nano-crystal powders by sol-gel technique,” J. Cryst. Growth 260, 171 (2004).

[4.6] F. Yun, B. J. Hinds, S. Hatatani, S. Oda, Q. X. Zhao, and M. Willander,

“Study of structural and optical properties of nanocrystalline silicon embedded in SiO2,” Thin Solid Films 375, 137 (2000).

[4.7] W. T. Young, L. K. Falk, H. Lemercier, V. Peltier-Baron, Y. Menke, and S.

Hampshire, “The crystallization of the yttrium-sialon glass:

Y15.2Si14.7Al18.7O54.1N7.4,” J. Non-Crystalline Solids 270, 6 (2000).

[4.8] L. Kepinski, D. Hreniak, and W. Strek, “Microstructure and luminescence properties of nanocrystalline cerium silicates,” J. Alloys and Compounds

341, 203 (2002).

[4.9] P. Mutti, G. Ghislotti, S. Bertoni, L. Bonoldi, G. F. Cerofolini, L. Meda, E.

Grilli, and M. Guzzi, “Room-temperature visible luminescence from nanocrystals in silicon implanted SiO2 layers,” Appl. Phys. Lett. 66, 851 (1995).

[4.10] M. Aparicio, R. Moreno, and A. Duran, “Colloidal stability and sintering of yttria-silica and yttria-silica-alumina aqueous suspensions,” J. Euro. Ceramic Soc. 19, 1717 (1999).

[4.11] K. Sato, T. Izumi, M. Iwase, Y. Show, H. Morisaki, T. Yaguchi, and T.

Kamino, “Nucleation and growth of nanocrystalline silicon studied by TEM, XPS and ESR,” Appl. Surface Sci. 216, 376 (2003).

[4.12] A. M. Tonejc, I. Djerdj, and A. Tonejc, “Evidence from HRTEM image processing, XRD and EDS on nanocrystalline iron-doped titanium oxide powders,” Mater. Sci. Engin.: B 85, 55 (2001).

[4.13] L. Kepinski, and M. Wolcyrz, “Nanocrystalline rare earth silicates: structure and properties,” Mater. Chem. Phys. 81, 396 (2003).

[4.14] J. Dutkiewicz, L. Stoch, J. Morgiel, G. Kostorz, and P. Stoch, “Analytical and HREM study of the early stages of SiO2-Al2O3-(Mg, Zn)O glass crystallization,” Mater. Chem. Phys. 81, 411 (2003).

[4.15] J. M. McHale, A. Auroux, A. J. Perrotta, and A. Navrotsky, “Surface energies and thermodynamic phase stability in nanocrystalline aluminas,”

Science 277, 788 (1997).

[4.16] Y. R. Shen and K. L. Bray, “Effect of pressure and temperature on the lifetime of Cr3+ in yttrium aluminum garnet,” Phys. Rev. B 56, 10882 (1997).

[4.17] M. Yamaga, B. Henderson, and K. P. O’Donnell, “Line shape of the Cr3+

luminescence in garnet crystals,” Phys. Rev. B 46, 3273 (1992).

[4.18] X. Wu, S. Huang, U. Hommerich, W. M. Yeh, B. G. Aitken, and M.

Newhouse, “Spectroscopy of Cr4+ in MgCaBa aluminate glass. The coupling of 3T2 and 1E states,” Chem. Phys. Lett. 233, 28 (1995).

[4.19] V. Felice, B. Dussardier, J. K. Jones, G. Monnom, and D. B. Ostrowsky,

“Chromium-doped silica optical fibres: influence of the core composition on the Cr oxidation states and crystal field,” Opt. Mater. 16, 269 (2001).

[4.20] T. Murata, M. Torisaka, H. Takebe, and K. Morinaga, “Compositional dependence of the valency state of Cr ions in oxide glasses,” J.

Non-Crystalline Solids 220, 139 (1997).

[4.21] V. V. Dvoyrin, V. M. Mashinsky, V. B. Neustruev, E. M. Dianov, A. N.

Guryanov, and A. A. Umnikov, “Effective room-temperature luminescence in annealed chromium-doped silicate optical fibers,” J. Opt. Soc. Of Amer. B

20, 280 (2003).

[4.22] X. Feng and S. Tanabe, “Spectroscopy and crystal-field analysis for Cr(IV) in alumino-silicate glasses,” Opt. Mater. 20, 63 (2002).

[4.23] J. C Chen, Y. S. Lin, C. N. Tsai, K. Y. Huang, C. C. Lai, W. Z. Su, R. C. Shr, F. J. Kao, T. Y. Chang, and S. L. Huang, “400-nm-bandwidth emission from a Cr-doped glass fiber,” IEEE Photon. Technol. Lett. 19, 595 (2007).

[4.24] J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F.

Gonthier, “Tapered single-mode fibres and devices,” IEE Proc. J.

Optoelecton. 138, 343 (1991).

[4.25] T. A. Birks and Y. W. Li, “The shape of fiber tapers,” IEEE J. Lightwave Technol. 10, 432 (1992).

[4.26] D. Marcuse, “Mode conversion caused by surface imperfections of a dielectric slab waveguide,” Bell Syst. Technol. J. 48, 3187 (1969).

[4.27] C. T. Lee, M. L. Wu, L. G. Sheu, P. L. Fan, and J. M. Hsu, “Design and analysis of completely adiabatic tapered waveguides by conformal mapping,”

IEEE J. Lightwave Technol. 15, 403 (1997).

[4.28] D. Marcuse, Theory of Dielectric Optical Waveguides (Academic Press, New York, 1991).

[4.29] F. P. Payne and J. P. R. Lacey, “A theoretical analysis of scattering loss from planar optical waveguide,” Opt. Quantum Electron. 26, 977 (1994).

[4.30] C. G. Poulton, C. Koos, M. Fujii, A. Pfrang, T. Schimmel, J. Leuthold, and W.

Freude, “Radiation modes and roughness loss in high index-contrast waveguides,” IEEE J. Sel. Top. Quantum Electron. 12, 1306 (2006).

Chapter 5

[5.1] G. M. Davis, I. Yokohama, S. Sudo, and K. Kubodera, “1.3-μm Nd:YAG crystal fiber amplifiers,” IEEE Photon. Technol. Lett. 3, 459 (1991).

[5.2] C. J. Koester and E. Snitzer, “Amplification in a fiber laser,” Appl. Opt. 3, 1182 (1964).

[5.3] N. I. Borodin, V. A. Zhitnyuk, A. G. Okhrimchuk, and A. V. Shestakov,

“Oscillation of a Y3Al5O12:Cr4+ laser in wavelength region of 1.34-1.6 μm,”

Bull. Acad. Sci. USSR, Phys. Ser. 54, 54 (1990).

[5.4] H. Eilers, K. R. Hoffman, W. M. Dennis, S. M. Jacobsen, and W. M. Yen,

“Saturation of 1.064 μm absorption in Cr,Ca:Y3Al5O12 crystals,” Appl. Phys.

Lett. 61, 2958 (1992).

[5.5] K. Spariosu, W. Chen, R. Stultz, M. Birnbaum, and A. V. Shestakov, “Dual Q switching and laser action at 1.06 and 1.44 μm in a Nd3+:YAG-Cr4+:YAG oscillator at 300 K,” Opt. Lett. 18, 814 (1993).

[5.6] E. Eilers, U. Hommerich, S. M. Jacobsen, and W. M. Yen, “Spectroscopy and dynamics of Cr4+:Y3Al5O12,” Phys. Rev. B. 49, 15505 (1994).

[5.7] Y. Shimony, Z. Burshtein, and Y. Kalisky, “Cr4+:YAG as passive Q-switch and Brewster plate in a pulsed Nd:YAG laser,” IEEE J. Quantium Electron.

31, 1738 (1995).

[5.8] S. Camacho-Lopez, R. P. M. Green, G. J. Crofts, and M. J. Damzen,

“Intensity-induced birefringence in Cr4+:YAG,” J. Mod. Opt. 44, 209 (1997).

[5.9] J. C. Diettrich, I. T. McKinnie, and D. M. Warringtion, “The influence of active ion concentration and crystal parameters on pulsed Cr:YAG laser performance,” Opt. Commun. 167, 133 (1999).

[5.10] M. M. Liu, Principles and Applications of Optical Communications (Irwin, Chicago, 1996).

[5.11] E. Sorokin, S. Naumov, and T. Sorokina, “Ultrabroadband infrared solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 11, 690 (2005).

[5.12] D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W.

Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto,

“Optical coherence tomography,” Science 254, 1178 (1991).

[5.13] http://www-atom.fysik.lth.se/MedOpt/index_files/innehall_files/lectures/Intro

%20Med%20Optics.pdf

[5.14] Y. Gottesman, E. V. K. Rao, H. Sillard, and J. Jacquet, “Modeling of optical low coherence reflectometry recorded Bragg reflectograms: Evidence to a decisive role of Bragg spectral selectivity,” IEEE J. Lightwave Technol. 20, 489 (2002).

Chapter 6

[6.1] S. Ming, D. J. Feng, Y. C. Huang, T. S. Lay, S. L. Huang, P. Yeh, and W. H.

Cheng, “Mode matching and insertion loss in ultra-broadband Cr-doped multimode fibers,"Opt. Lett. 33, 785 (2008).

Biography

姓名

:

黃光瑤

(Kuang-Yao Huang)

性別

:

出生日期

:

民國

67

7

4

日 出生地

:

高雄縣

學歷

:

國立中山大學電機工程學系 學士

國立中山大學光電工程研究所 碩士

國立中山大學光電工程研究所 博士

得獎記錄:

2003

國科會碩士論文獎

2006

虛擬儀控應用徵文比賽學術組第一名

博士論文題目

:

中文:摻鉻釔鋁石榴石晶體光纖之生長系統改良與特性研究 英文:

Growth system improvement and characterization of

Chromium-doped YAG crystal fiber

指導教授:國立台灣大學光電所 黃升龍 博士 共同指導教授:國立中山大學光電所 鄭木海 博士

Publication List

SCI listed paper:

1.

K. Y. Huang, K. Y. Hsu, D. Y. Jheng, W. J. Zhuo, P. Y. Chen, P. Yeh, and S. L.

Huang, “Adiabatic wave propagation in Cr4+:YAG double-clad crystal fiber fabricated by sapphire tube assisted CDLHPG technique,” to appear in Opt. Exp.

(2008).

2.

K. Y. Huang, K. Y. Hsu, and S. L. Huang, “Analysis of ultra-broadband

amplified spontaneous emissions generated by Cr4+:YAG single and glass-clad crystal fibers,” IEEE J. of Lightwave Technol. 26, 1632 (2008)

3. C. N. Tsai, Y. S. Lin, K. Y. Huang, Y. S. Lin, C. C. Lai, and S. L. Huang,

“Enhancement of Cr4+ concentration in Y3Al5O12 crystal fiber with pre-growth perimeter deposition,” to appear in Jap. J. of Appl. Phys. (2008).

4. C. N. Tsai, K. Y. Huang, H. J. Tsai , J. C. Chen , Y. S. Lin, S. L. Huang, and Y. S.

Lin, “Distribution of oxidation states of Cr ions in Ca or Ca/Mg co-doped Cr:Y3Al5O12 single crystal fibers with nitrogen or oxygen annealing environments,” J. of Cryst. Growth 310, 2774 (2008).

5. J. C Chen, Y. S. Lin, C. N. Tsai, K. Y. Huang, C. C. Lai, W. Z. Su, R. C. Shr, F. J.

Kao, T. Y. Chang, and S. L. Huang, “400-nm-bandwidth emission from a Cr-doped glass fiber,” IEEE Photon. Technol. Lett. 19, 595 (2007).

6. J. C. Chen, K. Y. Huang, C. Nan Tsai, Y. S. Lin, C. C. Lai, G. Y. Liu, F. J. Kao, S.

L. Huang, C. Y. Lo, Y. S. Lin, and P. Shen, “Composition dependence of the micro-spectroscopy of Cr ions in double-clad Cr:YAG crystal fiber,” J. of Appl.

Phys. 99, 093113 (2006).

7. Y. S. Lin, C. C. Lai, K. Y. Huang, J. C. Chen, C. Y. Lo, S. L. Huang, T. Y. Chang, J. Y. Ji, P. Shen, “Nanostructure formation of double-clad Cr4+:YAG crystal fiber grown by co-drawing laser-heated pedestal,” J. of Cryst. Growth 289, 515 (2006).

8. J. C. Chen, C. Y. Lo, K. Y. Huang, F. J. Kao, S. Y. Tu, and S. L. Huang,

“Fluorescence mapping of oxidation states of Cr ions in YAG crystal fibers,” J. of Cryst. Growth 274, 522 (2005).

9. C. Y. Lo,

K. Y. Huang, J. C. Chen, C. Y. Chuang, C. C. Lai, S. L. Huang, Y. S.

Lin, and P. S. Yeh, “Double-clad Cr4+:YAG crystal fiber amplifier,” Opt. Lett. 30, 129 (2005).

10. C. Y. Lo, K. Y. Huang, J, C. Chen, S. Y. Tu, and S. L. Huang, “Glass-clad Cr4+:YAG crystal fiber for the generation of superwideband amplified spontaeous emission,” Opt. Lett. 29, 439 (2004).

Conference & proceeding paper:

1. C. C. Lai,

K. Y. Huang, Y. S. Lin, and S. L. Huang, “Strain analysis on the

interface of double-clad Cr4+:YAG crystal fibers,” Conference on Lasers and Electro-Optics, paper JTuA88, San Jose, California, USA (2008).

2. C. N. Tsai, Y. S. Lin, K. Y. Huang, Y. S. Lin, C. C. Lai, and S. L. Huang, “Study of the side deposition enhanced Cr4+ concentration in Cr4+:YAG crystal fiber as an ultra broadband amplified spontaneous emission,” Conference on Lasers and Electro-Optics, paper CTuMM6, San Jose, California, USA (2008).

3. C. C. Lai, K. Y. Huang, H. J. Tsai, Z. W. Lin K. D. Ji, and S. L. Huang,

“Ultralow-threshold room-temperature continuous-wave double-clad Cr4+:YAG crystal fiber laser,” Conference on Lasers and Electro-Optics, paper CThL3, San Jose, California, USA (2008).

4.

K. Y. Huang, K. Y. Hsu, R. C. Shr, Y. D. Huang, S. L. Huang, and Y. S. Lin,

“Uniform growth of 10-μm-core double-clad Cr4+:YAG crystal fiber,”

Conference on Lasers and Electro-Optics, paper JTuA102, Baltimore, Maryland, USA (2007).

5. J. Y. Yi, K. Y. Huang, C. C. Lai, H. Peng, L. H. Chen, J. C. Chen, and S. L.

Huang, “Compact multi-pass ring laser using LHPG-grown Yb:YAG crystal fiber,” Conference on Lasers and Electro-Optics, paper CFJ2, Baltimore, Maryland, USA (2007).

6. Z. W. Lin, C. C. Lai, K. Y. Huang, K. Y. Hsu, K. D. Ji, C. Y. Lo, and S. L.

Huang, “Low-threshold room-temperature continuous-wave double-clad Cr4+:YAG crystal fiber laser,” Optics and Photonics Taiwan, paper CO-010, Taichung, Taiwan (2007).

7. C. C. Lai, K. Y. Huang, Y. S. Lin, and S. L. Huang, “Study on the core/cladding interface in double-clad Cr4+:YAG crystal fibers,” Optics and Photonics Taiwan, paper AO-027, Taichung, Taiwan (2007).

8. J. C. Chen, Y. S. Lin, C. N. Tsai, K. Y. Huang, W. Z. Su, R. C. Shr, F. J. Kao, Y.

S. Lin, and S. L. Huang, ”400-nm-bandwidth emission from Cr-doped alumino-silicate fiber,” OptoElectronics and Communication Conference, paper

S. Lin, and S. L. Huang, ”400-nm-bandwidth emission from Cr-doped alumino-silicate fiber,” OptoElectronics and Communication Conference, paper

相關文件