• 沒有找到結果。

FDMS-TEOM 和手動採樣器所量測之 PM 2.5 濃度的比對

6 8 10

Cion,Md(N+G) (g/m3)

Temp. v.s. Cion,Md(N+G)

fitted curve

圖 4.8 環境溫度對揮發量(Cion,Md(N+G))的影響 (樣本數: 26)。

60 70 80 90

Relative Humidity (%) 0

2 4 6 8 10

Cion,Md(N+G) (g/m3)

RH v.s. Cion,Md(N+G)

fitted curve

圖 4.9 環境濕度對揮發量(Cion,Md(N+G))的影響(樣本數: 26)。

4.7 FDMS-TEOM 和手動採樣器所量測之 PM

2.5

濃度的比對

FDMS-TEOM 除 了 可 提 供 修 正 SVM 揮 發 損 失 的 PM2.5 質 量 濃 度

(PM2.5,F(b-r)),亦可提供未修正 SVM 揮發損失的 PM2.5基線流質量濃度(PM2.5,Fb)。

圖 4.10 為 FDMS-TEOM 基線流的 PM2.5測值與 PM2.5,W及 PM2.5,D的比對結果,

可發現 PM2.5Fb與 PM2.5,W及 PM2.5,D相當接近。而修正 SVM 揮發的 PM2.5,F(b-r) 和

26

PM2.5,W及 PM2.5,D的比對結果如圖 4.11 所示。由於上述採樣過程及濾紙調理過程

中所造成的 SVM 揮發損失,PM2.5,W及 PM2.5,D均低於 PM2.5,F(b-r)。Grover et al. (2005) 於美國加州比對 FRM 採樣器和另一型號之 FDMS-TEOM (Model 8500, Rupprecht

& Patashnick, Co., Inc.)的量測結果,也發現類似的情形。結果顯示,PM2.5,W及

圖 4.10 FDMS-TEOM 基線流測值與 WINS(樣本數:44)及 Dichot(樣本數:44)的 PM2.5採樣結果之比對。

27

Grover et al. (2005)

± 10 %

PM2.5,MT1修正以 PMD 所測得的微粒揮發量(Cion,Md(N+G))後,如圖所示 PM2.5,Mcorr

接近但略為高出 PM2.5,F(b-r)約 5.4 ± 7.0 %。因 PMD 所測得之無機鹽類揮發量為 denuded 濾紙上的微粒揮發量,此揮發量會高於 non-denuded PM2.5,MT1樣本上的 揮發量,因此本造成 PM2.5,Mcorr略高於 PM2.5,F(b-r)的原因應為 PMD 高估 PM2.5,MT1

樣本上之微粒揮發量所致。

28

PM2.5,Mcorr v.s. PM2.5,F(b-r)

PM2.5,MT1 v.s. PM2.5,F(b-r)

29

0 2 4 6 8 10

PM2.5,Fr (g/m3) 0

2 4 6 8 10

Cion,Md(N+G) (g/m3)

fitted curve y = 0.88 x - 0.03 R2 = 0.93

± 10 %

1:1 line

圖 4.13 MFPPS 中之 PMD 所測得之採樣過程無機鹽類揮發量和 FDMS-TEOM 所 測得之微粒揮發量的比對(樣本數: 26)。

30

五、結論與建議

本研究以 MFPPS 和 Dichot、WINS 及 FDMS-TEOM 進行並列採樣,以探討 採樣及後續濾紙調理過程中 PM2.5質量及無機鹽濃度所產生之採樣干擾。研究結 果顯示於採樣過程中,正向干擾對於 PM2.5質量的影響不大,但會影響 NO3-濃度 之量測結果,此正向干擾占實際 NO3-濃度的 11.0 ± 23.2 %。NH4+、NO3-及 Cl-揮發損失分別占各自 Cion,actual濃度的 46.4 ± 19.2、66.9 ± 18.5 及 74.4 ± 14.0 %。

將這些揮發離子濃度加總可算出採樣過程之總離子揮發濃度平均占 PM2.5,Mcorr的 16.8 ± 8.0 %。在濾紙調理的部分,當濾紙調理 24 小時後,以採樣後立即將濾紙 進行萃取以及調理 24 小時之後再進行萃取之離子濃度差異所計算出之微粒揮發 損失約占 PM2.5,Mcorr的 3.5 ± 1.8 %。當濾紙調理時間延長至 48、72、96 及 120 小 時之後,以秤重分析所評估出的揮發損失占 PM2.5,Mcorr的比例則分別為 5.1 ± 1.7、

6.2 ± 2.5 及 8.5 ± 3.2 %。

本研究也另外評估了濾紙過濾速度以及濾紙上微粒負荷量對揮發程度的影 響。研究結果顯示,PMDW (20 cm/s)和 PMDD (36 cm/s)所測得之微粒揮發量平均 分別高出 PMD (10 cm/s)所測得之結果 16.3 ± 10.5 和 33.4 ± 11.7 %,顯示微粒揮 發程度會隨著 Vf增加而提高。評估微粒負荷量影響的結果則顯示,受到 Sh 的影 響,微粒揮發比率會呈現隨著 PM2.5,MT1 降低而提高的趨勢。此外,本研究也發 現相較於濾紙上的微粒負荷量,Vf對於揮發程度的影響較為顯著。

在本研究中,環境溫度會影響微粒的揮發量,當環境溫度上升,微粒的揮發 量有增加的趨勢。而由於採樣環境濕度普遍大於 NH4NO3的潮解點,使的環境濕 度對微粒揮發量的影響並不顯著。

FDMS-TEOM 和手動濾紙採樣器比對的結果則顯示,由於採樣過程以及濾 紙後續調理過程微粒揮發損失的影響,WINS、Dichot 及 MFPPS 所測得之 PM2.5 濃度平均會分別較 FDMS-TEOM 之量測結果低了 16.6 ± 9.0、15.2 ± 10.6 及 12.5 ± 8.8 %。當 MFPPS 的數據以 PMD 所測得之微粒揮發量加以修正之後,其測值會

31

和 FDMS-TEOM 接近。最後本研究也發現由於 PMD 之 Vf較 FDMS-TEOM 低的 關係,使前者所量測到的微粒揮發量會較後者低了約 11.0 ± 8.1 %。

未來類似的採樣研究可於氣膠成分含有較多無機物質的採樣點如都會區、交 通繁忙之道路旁、甚至隧道內(Chen et al. 2010b)進行,以探討 SVOM 揮發對 PM2.5

量測結果的影響。此外,由於濾紙面速度、濾紙上之微粒負荷量以及過濾氣體的 特性(經過固器分離器之氣體或是被過濾後不含任何微粒之氣體)等,這些影響因 素常同時影響著微粒的揮發程度,僅以實驗的方式很難有效地釐清各個影響因素 對揮發量的貢獻程度,因此未來也需要以理論模式對此議題加以探討。

32

六、參考文獻

Arhami, M., Kuhn, T., Fine, P. M., Delfino, R. J. and Sioutas, C. (2006). Effects of sampling artifacts and operating parameters on the performance of a semi-continuous particulate EC/OC monitor. Environ. Sci. Technol.,40: 945-954.

Ashbaugh, L. L., Eldred, R. A. (2004). Loss of particle nitrate from Teflon sampling filters: Effects on measured gravimetric mass in California and in the IMPROVE network. J. Air Waste Manage. Assoc., 54: 93-104.

Cao, J., Chow, J. C., Lee, F. C., Watson, J. G. (2013). Evolution of PM2.5 Measurement and Standards in U.S. and Future Perspective for China. Aerosol

Air Qual. Res., 13: 1197-1211.

Chen, S. C., Tsai, C. J., Chou, C. C. K., Roam, G. D., Cheng, S. S., Wang, Y. N.

(2010a). Ultrafine particles at three different sampling locations in Taiwan.

Atmos. Environ., 44: 533-540.

Chen, S. C., Tsai, C. J., Huang, C. Y., Chen, H. D., Chen, S. J., Lin, C. C., Tsai, J. H., Chou, C. C. K., Lung, C., Huang, W. R., Roam, G. D., Wu, W. Y., Smolik, J., Dzumbova, L. (2010b). Chemical Mass Closure and Chemical Characteristic of Ambient Ultrafine Particles and other PM Fractions. Aerosol Sci. Technol., 44:

713–723.

Cheng, Y. H. and Tsai, C. J. (1997). Evaporation Loss of Ammonium Nitrate Particles during Filter Sampling. J. Aerosol Sci., 28: 1553-1568.

Cheng, Y., Duan, F. K., He, K. B., Du, Z. Y., Zheng, M., Ma, Y. L. (2012). Sampling artifacts of organic and inorganic aerosol: Implication for the speciation measurement of particulate matter. Atmos. Environ., 55: 229-233.

Chow, J. C., John, P. D., Watson, J. G., Chen, L. W. A., Ho, S. S. H., Sodeman, D. A.

(2008). Advanced in integrated and continuous measurement for particle mass and chemical composition, J. Air Waste Manage. Assoc., 58: 141-163.

Chow, J.C. (1995). Critical Review: Measurement Methods to Determine Compliance with Ambient Air Quality Standards for Suspended Particles. J. Air Waste

Manage. Assoc., 45: 320-382.

Eatough, D. J., Eatough, N. L., Obeidi, F., Pang, Y., Modey, W., Long, R. (2001).

Continuous determination of PM2.5 mass, Including Semi-Volatile Species,

Aerosol Sci. Technol., 34: 1–8.

Grover, B. D., Kleinman, M., Eatough, N. L., Eatough, D. J., Hopke, P. K., Long, R.

33

W., Wilson, W. E., Meyer, M. B., Ambs, J. L. (2005). Measurement of Total PM2.5 Mass (Nonvolatile Plus Semivolatile) with the Filter Dynamic Measurement System Tapered Element Oscillating Microbalance Monitor. J.

Geophys. Res., 110: D07-S03. doi: 10: 10.1029/2004JD004995.

Harrison, R. M., Sturges, W. T., Kitto, A. M. N., Li, Y. (1990). Kinetics of evaporation of ammonium chloride and ammonium nitrate aerosols. Atmos. Environ., 24:

1883-1888.

Hering, S. and Cass, G. (1999). The Magnitude of Bias in the Measurement of PM2.5

Arising from Volatilization of Particulate Nitrate from Teflon Filters. J. Air

Waste Manage. Assoc., 49: 725-733.

Hering, S., Fine, P. M., Sioutas, C., Jaques, P. A., Ambs, J. L., Hogrefe, O., Dermerjian, K. L. (2004). Field assessment of the dynamics of particulate nitrate vaporization using differential TEOM and automated nitrate monitors. Atmos.

Environ., 38: 5183-5192.

Huang, C. H., Tsai, C. J., Shih, T. S. (2001). Particle collection efficiency of an inertial impactor with porous metal substrates. J. Aerosol Sci., 32: 1035-1044.

Intergovernmental Panel on Climate Change (IPCC) (2007). IPCC Fourth Assessment Report 2007, Cambridge University Press, London.

Jaques, P. A., Ambs, J. L., Grant, W. L., Sioutas, C. (2004). Field evaluation of the differential TEOM monitor for continuous PM2.5 mass concentrations. Aerosol

Sci. Technol., 38: 49-59.

Koutrakis, P., Sioutas, C., Ferguson, S. T., Wolfson, J. M. (1993). Development and evaluation of a glass honeycomb denuder/filter pack system to collect atmospheric gases and particles. Environ. Sci. Technol., 27: 2497–2501.

Liu, C. N., Awasthi, A., Hung, Y. H., Gugamsetty, B., Tsai, C. J., Wu, Y. C., Chen, C.

F. (2013). Difference in 24-h average PM2.5 concentrations between the beta attenuation monitor (BAM) and the dichotomous sampler (Dichot). Atmos.

Environ., 75: 341-347.

Liu, C. N., Chen, S. C., Tsai, C. J. (2011). A Novel Multifilter PM10–PM2.5 Sampler (MFPPS). Aerosol Sci. Technol., 45: 1480-1487.

Meyer, M. B., Patashnick, H., Ambs, J. L., Rupprecht, E. (2000). Development of a sample equilibration system for the TEOM continuous PM monitor. J. Air Waste

Manage. Assoc., 50: 1345-1349.

Molhave, L. (2001). Inflammatory and allergic responses to airborne office dust in

34

five human provocation experiments. Indoor Air., 18: 261–270

Padgett, P. E. and Bytnerowicz, A. (2001). Deposition and adsorption of the Air Pollutant HNO3 Vapor to Soil Surfaces. Atmos. Environ., 35:2405-2415.

Patashnick, H. and Repprecht, E. G. (1991). Continuous PM10 measurements using the tapered element oscillating microbalance. J. Air Waste Manage. Assoc., 41:

1079-1083.

Patashnick, H., Rupprecht, G., Ambs, J. L., Meyer, M. B. (2001). Development of a reference standard for particulate matter mass in ambient air. Aerosol Sci.

Technol., 34: 42-45.

Peters, T. M., Vanderpool, R. W., Wiener, R. W. (2001). Design and Calibration of the EPA PM2.5 Well Impactor Ninety-Six (WINS). Aerosol Sci. Technol., 34:

389-397.

Pope, C. A., Burnett, R. T., Thun, M. J., Calle, E. E., Krewski, D., Ito, K., Thurston, G.

D. (2002). Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA-J. Am. Med. Assoc., 287: 1132-1141.

Possanzini, M., Febo, A., Liberti, A. (1983). New Design of a high-performance denuder for the sampling of atmospheric pollutants. Atmos. Environ., 17:

2605–2610.

Pui, D. Y. H., Lewis, C. W., Tsai, C. J., Liu, B. Y. H. (1990). A compact coiled denuder for atmospheric sampling. Environ. Sci. Technol., 24: 307–312.

Schaap, M., Spindler, G., Schulz, M., Acker, K., Maenhaut, W., Berner, A., Wieprecht, W., Streit, N., Muller, K., Bruggemann, E., Chi, X., Putaud, J. P., Hitzenberger, R., Puxbaum, H., Baltensperger, U., Brink, U. (2004). Artefacts in the sampling of nitrate studied in the ‘‘INTERCOMP’’ campaigns of EUROTRAC-AEROSOL.

Atmos. Environ., 38: 6487–6496.

Schwab, J. J., Felton, H. D., Rattigan, O. V., Demerjian, K. L. (2006). New York State Urban and Rural Measurements of Continuous PM2.5 Mass by FDMS, TEOM, and BAM. J. Air Waste Manage. Assoc., 56: 372-383.

Seinfeld, J. H. (1986). Atmospheric Chemistry and Physics of Air Pollution. Wiley, New York .

Subramanian, R., Khlystov, A. Y., Cabada, J. C., Robinson, A. L. (2004). Positive and negative artifacts in particulate carbon measurements with denuded and undenuded sampler cofigurations special issue of aerosol science and technology on findings from the fine particulate matter supersite program. Aerosol Sci.

35

Technol., 38: 27-48.

Tsai, C. J. and Cheng, Y. H. (1995). Solid particle collection characteristics of impaction surfaces of different designs. Aerosol Sci. Technol., 23: 96-106.

Tsai, C. J. and Perng, S. N. (1998). Artifacts of inorganic species for Hi-vol PM10 and PM10 Dichotomous sampler. Atmos. Environ., 32: 1605-1613.

Tsai, C. J., Huang, C. H., Lin, Y. C., Shih, T. S., Shih, B. H. (2003). Field test of a porous-metal denuder sampler. Aerosol Sci. Technol., 37: 967-974.

Tsai, C. J., Huang, C. H., Wang, S. H. (2001b). Collection efficiency and capacity of three samplers for acidic and basic gases. Environ. Sci. Technol., 35: 2572-2575.

Tsai, C. J., Huang, C. H., Wang, S. H., Shih, T.S. (2001a). Design and testing of a porous metal denuder. Aerosol Sci. Technol., 35: 611-616.

Tsai, C. J., Shih, T. S., Sheu, R. N. (1997). Characteristics of lead aerosols in different work environments. Am. Ind. Hyg. Assoc. J., 58: 650-656.

U.S EPA, (2011). National Ambient Air Quality Standards (NAAQS). December 1, 2011. http://www.epa.gov/air/criteria.html.

Vanderpool, R. W., Peters, T. M., Natarajan, S., Tolocka, M. P., Gemmill, D. B., Wiener, R. W. (2001). Sensitivity Analysis of the U.S. Environmental Protection Agency WINS PM2.5 Separator. Aerosol Sci. Technol., 34: 465-476.

Vecchi, R., Valli, G., Fermob, P., D’Alessandro, A., Piazzalunga, A., Bernardoni, V.

(2009). Organic and inorganic sampling artefacts assessment. Atmos. Environ., 43:1713–1720.

Watson, J. G. and Chow, J. C. (2011). Ambient Aerosol Sampling, In Aerosol Measurement: Principles, Techniques and Applications, Third Edition, 3,

Kulkarni, P., Baron, P.A. and Willeke, K. (Eds.), John Wiley & Sons, Inc., Hoboken, NJ, USA , p. 591–614.

Wilson, W. E., Grover, B. D., Long, R. W., Eatough, N. L., Eatough, D. J. (2006) . The Measurement of Fine Particulate Semivolatile Material in Urban Aerosols. J.

Air Waste Manage. Assoc., 56: 384-397.

Witz, S., Eden, R. W., Wadley, M. W., Dunwoody, C., Papa, R. P., Torre, K. J. (1990).

Rapid loss of particulate nitrate, chloride and ammonium on quartz fiber filters during storage. J. Air Waste Manage. Assoc., 40: 53-61.

Yu, X. Y., Lee, T., Ayrees, B., Kreidenweis, S. M., Jr, J. L. C. (2005). Particulate Nitrate Measurement Using Nylon Filters. J. Air Waste Manage. Assoc.,

36

55:1100-1110.

Zhang, X. Q. and McMurry, P. H. (1991). Theoretical analysis of evaporative losses of adsorbed or absorbed species during atmospheric aerosol sampling. Environ. Sci.

Technol., 25: 456–459.

Zhu, C. S., Tsai, C. J., Chen, S. C., Cao, J. J., Roam, G. D. (2012). Positive sampling artifacts of organic carbon fractions for fine particles and nanoparticles in a tunnel environment. Atmos. Environ., 54: 225-230.

行 政 院 環 境 保 護 署 - 細 懸 浮 微 粒 管 制

http://air.epa.gov.tw/Public/suspended_particles.aspx

相關文件