• 沒有找到結果。

Chapter 5 Conclusion and Future Work

5.2 Future Work

In this dissertation, it shows that the bang-bang sliding mode control is effective in designing the switching controllers for buck DC-DC converters and a specific class of switched systems. Nevertheless, there still exist some issues worthy of further studies.

In Chapter 3, the work of determining the coefficients of the sliding function and the PI-type compensator are separated in two independent steps. However, it can integrate these steps into one step by designing the original sliding function with the integral term of output voltage error. Without separately designing the sliding function and the PI-type compensator, the overall system dynamics in the sliding mode can be properly assigned and it can be referred to the work in [20].

A unified approach has been proposed to design the PWM-based sliding mode voltage controllers for boost and buck-boost DC-DC converters [22]. However, it is still difficult to design a static sliding mode without the integral term. Therefore, the work in Chapter 4 has the potentiality of being extended to the converters having un-negligible bilinear terms in their large-signal models.

The existence of stable sliding motions in Chapter 4 is only guaranteed for second-order switched systems. However, for high-order switched system, there may exist unstable hyper-switching motions, i.e., the system trajectories switch along both of s(x)=0 and ρ(x)=0, and then become unstable. In order to apply the bang-bang

sliding mode control in high-order switched systems, the conditions for the existence of stable hyper-switching motion and the exclusion of hyper-switching motion are both deserving of further research.

Bibliography

1. V. I. Utkin, Sliding Regimes and Their Applications in Variable Structure Systems, MIR, Moscow, 1978.

2. J.-J. E. Slotine and W. Li, Applied Nonlinear Control, Ch. 7, Prentice-Hall, New York, 1991.

3. R. A. DeCarlo, S. H. Zak and G. P. Mattews, “Variable structure control of nonlinear multivariable systems: a tutorial,” IEEE Proc., Vol. 76, No. 3, pp.

212−232, 1988.

4. J. Y. Huang, W. Gao, and J. C. Hung, “Variable structure control: a survey,” IEEE Trans. on Ind. Electron., Vol. 40, No. 1, pp. 2−22, 1993.

5. W. Gao and J. C. Hung, “Variable structure control of nonlinear systems: a new approach,” IEEE Trans. on Ind. Electron., Vol. 40, No. 1, pp. 45−55, 1993.

6. K. D. Young, V. I. Utkin, and U. Ozguner, “A control engineer’s guide to sliding mode control,” IEEE Trans. on Cont. Syst. Technol., Vol. 7, No. 3, pp. 328−342, 1999.

7. V. I. Utkin, J. Guldner, and J. Shi, Sliding Mode Control in Electromechanical Systems, Taylro & Francis Press, London, 1999.

8. W. Perruquetti and J.-P. Barbot, Sliding Mode Control in Engineering, Marcel Dekker, New York, 2002.

9. A. Sabanovic, N. Sabanovic, and K. Ohnishi, “Sliding modes in power converters and motion control systems,” Int. J. of Cont., Vol. 57, No. 5, pp. 1237−1259, 1993.

10. A. Sabanovic, K. Jezernik, and N. Sabanovic, Variable Structure Systems: Towards the 21st Century, LNCIS, Vol. 274, pp. 223−251, 2002.

11. R.R. Mohler, Nonlinear Systems, Volume II, Applications to Bilinear Control,

Prentice-Hall, New York, 1991.

12. H. Sira-Ramirez, “Sliding motions in bilinear switched networks”, IEEE Trans. on Circuits and Syst., Vol. 34, No. 8, pp. 919–933, 1987.

13. Yon-Ping Chen, Jeang-Lin Chang, and Kuo-Ming Lai, “Stability Analysis and Bang–Bang Sliding Control Class of Single-Input Bilinear Systems,” IEEE Trans.

on Auto. Cont., Vol. 45, No. 11, pp. 2150−2154, 2000.

14. H. Sira-Ramirez, “Differential geometric methods in variable structure control,”

Int. J. of Cont., Vol. 48, No. 4, pp. 1359−1391, 1988.

15. H. Sira-Ramirez and M. Ilic, “A geometric approach to the feedback control of switch mode dc-to-dc power supplies”, IEEE Trans. on Circuits and Syst., Vol. 35, No. 10, pp. 1291−1298, 1988.

16. R.O. Caceres and I. Barbi, “A Boost DC-AC Converter: Analysis, Design, and Experimentation,” IEEE Trans. on Power Electron., Vol. 14, No. 1, pp. 134−141, 1999.

17. M. Carpita and M. Marchesoni, “Experimental study of a power conditioning system using sliding mode control”, IEEE Trans. on Power Electon., Vol. 11, No.

5, pp. 731–742, 1996.

18. G. Escobar, R. Ortega, H. Sira-Ramirez, J.P. Vilain, and I. Zein, “An experimental comparison of several nonlinear controllers for power converters”, IEEE Cont.

Syst. Magazine, Vol. 19, pp. 66−82, 1999.

19. S. C. Tan, Y. M. Lai, M. K. H. Cheung, and C. K. Tse, “On the practical design of a sliding mode voltage controlled buck converter,” IEEE Trans. on Power Electron., Vol. 20, No. 2, pp. 425−437, 2005.

20. S. C. Tan, Y. M. Lai, C. K. Tse, and M. K. H. Cheung, “A fixed-frequency pulsewidth modulation based quasi-sliding-mode controller for buck converters,”

IEEE Trans. on Power Electron., Vol. 20, No. 6, pp. 1379−1392, 2005.

21. S. C. Tan, Y. M. Lai, C. K. Tse, and M. K. H. Cheung, “Adaptive feedforward and feedback control schemes for sliding mode controlled power converters,” IEEE Trans. on Power Electron., Vol. 21, No. 1, pp. 182−192, 2006.

22. S. C. Tan, M. K. H. Cheung, C. K. Tse, and Y. M. Lai, “A unified approach to the design of PWM-based sliding-mode voltage controllers for basic DC-DC converters in continuous conduction mode,” IEEE Trans. on Circuits and Syst.−I, Vol. 53, No. 8, pp. 1816−1827, 2006.

23. Y. He and F. L. Luo, “Sliding-mode control for dc-dc converters with constant switching frequency,“ IEE Proc. on Cont. Theory and Applicat., Vol. 153, pp.

37−45, 2006.

24. Y. He and F. L. Luo, “Design and analysis of adaptive sliding-mode-like controller for DC-DC converters,“ IEE Proc. on Cont. Theory and Applicat., Vol. 153, pp.

401−410, 2006.

25. P. Mattavelli, L. Rossetto, G. Spiazzi, and P. Tenti, "General-purpose sliding-mode controller for DC/DC converter applications, " Proc. of IEEE Power Electronics Specialists Conf. (PESC), pp. 609−615, 1993.

26. G. Spiazzi, P. Mattavelli, and L. Rossetto, "Sliding-mode control of dc-dc converters, " IEEE 4th Brasilian Power Electronics Conf. (COBEP), pp. 59−68, 1997.

27. N. Mohan, T. M. Undeland, and W. P. Robbins, Power Electronics: Converters, Applications, and Design, 2nd edn, John Wiley & Sons, New York, 1995.

28. S. C'uk and R. D. Middlebrook, "A general unified approach to modeling switching DC-to-DC converters in discontinuous conduction mode," Proc. of IEEE Power Electronics Specialists Conf. (PESC), pp. 18−34, 1977.

29. P. Gupta and A. Patra, “Hybrid Mode-Switched Control of DC-DC Boost Converter Circuits, ” IEEE Trans. on Circuit and Syst.−II, Vol. 52, No. 11,

pp.734−738, 2005.

30. R. Leyva, L. Martínez-Salamero, H. Valderrama-Blavi, J. Maixé, R. Giral, and F.

Guinjoan, “Linear State-Feedback Control of a Boost Converter for Large-Signal Stability, “ IEEE Trans. on Circuit and Syst.−I, Vol. 48, No. 4, pp. 418-424, 2001.

31. Daniel Liberzon, Switching in Systems and Control, Birkhauser, Boston, 2003.

32. D. Liberzon and A. S. Morse, “Basic problems in stability and design of switched systems,” IEEE Contr. Syst. Magazine, Vol. 19, No. 5, pp. 59–70, 1999.

33. M. A. Wicks, P. Peleties, and R. DeCarlo, “Construction of piecewise Lyapunov functions for stabilizing switched systems,” Proc. 33rd IEEE Conf. Decision Cont., Lake Buena Vista, FL, pp. 3492–3497, 1994.

34. M. A. Wicks, P. Peleties, and R. DeCarlo, “Switched controller synthesis for the quadratic stabilization of a pair of unstable linear systems,” European J. of Cont., Vol. 4, No. 2, pp. 140–147, 1998.

35. R. A. Decarlo, M. S. Branicky, S. Pettersson, and B. Lennartson, “Perspectives and results on the stability and stabilizability of hybrid systems,” IEEE Proc., Vol.

88, No. 7, pp. 1069−1082, 2000.

36. X. Xu and P.J. Antasklis, “Stabilization of second-order LTI switched systems,”

Int. J. of Cont., Vol. 73, No. 14, pp. 1261−1279, 2000.

37. A. Bacciotti, “Stabilization by means of state space depending switching rules,”

Syst. and Cont. Letter, Vol. 53, pp. 195–201, 2004.

38. V. Jurdjevic and J. P. Quinn, “Controllability and Stability,” J. Diff. Equation, Vol.

28, No.3, pp 381–389, 1978.

39. A. Bacciotti and F. Ceragioli, “Closed loop stabilization of planar bilinear switched systems,” Int. J. of Cont., Vol. 79, No. 1, pp. 14–23, 2006.

40. H. Lin and P.J. Antasklis, “Switching Stabilizablility for Continuous-Time Uncertain Switched Linear Systems,” IEEE Trans. on Auto. Cont., Vol. 52, No. 4,

pp. 633−646, 2007.

41. V. I. Utkin and K. D. Young, “Methods for constructing discontinuity planes in multidimensional variable structure systems,” Automation Remote Cont., Vol. 39, pp. 1466−1470, 1979.

42. O. M. E. Elghezawi, A. S. I. Zinober, and S. A. Billings, “Alalysis and design of variable structure systems using a geometric approach,” Int. J. of Cont., Vol. 38, pp. 657−671, 1983.

43. W. C. Su, S. V. Drakunov, and Ü. Özgüner, “Constructing discontinuity surface for variable structure system: a Lyapunov approach,” Automatica, Vol. 32, pp.

925−928, 1996.

44. S. Banerjee and G.C. Verghese, Nonlinear Phenomena in Power Electronics:

Attractors, Bifurcations, Chaos, and Nonlinear Control, Ch. 8, IEEE Press, New York, 2001.

45. V. S. C. Raviraj and P. C. Sen, “Comparative study of proportional-integral, sliding mode, and fuzzy logic controller for power converters,” IEEE Trans. Ind.

Applicat., Vol. 33, No. 2, pp. 518−524, 1997.

46. Jeang-Lin Chang and Yon-Ping Chen, “Sliding Vector Design Based on the Pole-Assignment Method,” Asian J. of Cont., Vol. 2, No. 1, pp. 10−15, 2000.

VITA

學經歷資料 姓名 : 蔡建峰

性別 : 男

生日 : 民國 65 年 11 月 28 號 出生地 : 高雄市

論文題目 :

中文 : Bang-Bang 順滑控制在切換式電源轉換器之設計

英文 : Bang-Bang Sliding Mode Control in Switching Power Converters 學歷

1. 民國 84 年 9 月~民國 88 年 6 月 國立清華大學動力機械工程學系

2. 民國 88 年 9 月~民國 90 年 6 月 國立清華大學動力機械工程學系碩士班 3. 民國 90 年 9 月~民國 96 年 10 月 國立交通大學電機與控制工程學系博士班

PUBLICATION LIST

著作目錄 姓名 : 蔡建峰 (Jian-Feng Tsai)

期刊論文:

[1] Jian-Feng Tsai, Yon-Ping Chen, “Design and Performance Analysis of an Axial-Flux Disk-Type Switched Reluctance Motor for Hybrid Scooters,” JSME, Series C, vol. 49, No. 3, pp. 882-889, Sept. 2006.

[2] Jian-Feng Tsai, Yon-Ping Chen, “Sliding Mode Control and Stability Analysis of Buck DC-DC Converter,” International Journal of Electronics, Vol. 94, No. 3, pp.

209-222, March 2007.

研討會 :

[1] 蔡建峰,陳永平, 2004, “Stability Analysis and Sliding Mode Control of Buck Dc-Dc Converter with Parasitic Resistance,”中華民國自動控制研討會, 2004.

[2] Y.-H. Hung, J.-F. Tsai, and C.-T. Hsu, “An Optimized on-Line Control Strategy for A PEM Fuel Cell Battery Hybrid Electric Scooter”, 8th International Symposium on Advanced Vehicle Control, Taipei, 2006.

相關文件