• 沒有找到結果。

References

1. W. M. Thomas, E. D. Nicholas, J. C. Needham, M. G. Church, P. Templesmith and C. J.

Dawes: The Welding Institute, TWI, International Patent Application No.

PCT/GB92/02203 and GB Patent Application No. 9125978.8, 1991.

2. R. S. Mishra, M. W. Mahoney, S. X. McFadden, N. A. Mara and A. K. Mukherjee, Scripta Materialia, 42 (2000), pp. 163-168.

3. R. S. Mishra, Z. Y. Ma and I. Charit, Materials Science and Engineering, A341 (2003), pp. 307-310.

4. H. Friedrich and S. Schumann, Journal of Materials Processing Technology, 117 (2001), pp. 276-281.

5. 葉圳轍,工業材料,186 期 (2002),pp. 82-85.

6. 范元昌、蘇健忠、翁震灼、陳俊沐,工業材料,186 期 (2002),pp.131-138.

7. T. Lyman, H. E. Boyer, P. M. Unterwesier, J. E. Foster, J. P. Hontans and H. Lawton, in Metals Handbook (ASM International, Metals Park, Ohio, 1975), p. 8‧1

8. R. W. Cahn, P. Hassen and E. J. Kramer, Materials Science and Technology Structure and Properties of Nonferrous Alloys, VCH, New York, 1996.

9. R. E. Reed-Hill and R. Abbaschian, in Physical Metallurgy Principles, 3rd (PWS Publishing Company, 20 Park Plaza, Boston, 1994), pp. 192-194.

10. T. Narutani and J. Takamura, Acta Materialia, 39 (1991), pp. 2037-2049.

11. 吳信輝,“電子束或電弧銲接鎂合金之微織構與機性分析”國立中山大學碩士論文 (2003).

12. H. K. Lin and J. C. Huang, Materials Transactions JIM, 43 (2002), p.2424-2434.

13. G. Nussbaum, P. Sainfort and G. Regazzoni, Scripta Materialia, 23(1989), pp.

1079-1084.

14. A. Bussiba, A. Ben Artzy, A Shtechman, S. Ifergan and M. Kupiec, Materials Science and Engineering A, 302 (2001), pp. 56-62.

15. 林鉉凱,“析出型 AZ91 鎂合金低溫超塑性之研究”,國立中山大學碩士論文(2001).

16. G. E. Eieter, in Mechanical Metallurgy (McGraw-Hill Book Company, Singapore, 1988), pp. 616-634.

17. T. C. Chang, J. Y. Wang, C. M. O and Shyong Lee, Journal of Materials Processing Technology, 140 (2003), p. 588-591.

18. W. J. Kim, S. W. Chung, C. S. Chung and D. Kum, Acta Materialia, 49 (2001), pp.

3337-3345.

19. Y. Iwahashi, Z. Horita, M. Nemoto and T. G. Langdon, Acta Materialia, 45 (1997), pp.

4733-4741.

20. 瘐忠義,“超細晶鋁之機械性質”,國立中山大學博士論文 (2003).

21. M. Mabuchi, H. Iwasaki, K. Yanase and K. Higashi, Scripta Materialia, 36 (1997), p.

681-686.

22. 林鉉凱,“經高比率擠型 AZ31 鎂合金之低溫高速超塑性研發與變形機構之分析”,

國立中山大學博士論文(2005).

23. S. Spangel, E. M. Schulz, A. Schulz, H. Vetters and P. Mayr, Materials Science and Engineering, A326 (2002), pp. 26-39.

24. C. Y. Chen and C. Y. A. Tsao, Materials Science and Engineering, A383 (2004), pp.21-29.

25. M. T. Perez-Prado, J. A. del Valle and O. A. Ruano, Scripta Materialia, 51 (2004), pp.

1093-1097.

26. 張榮桂,“利用往復式擠型法製作超塑性 AZ91 鎂合金之研究”,國立清華大學材料 科學研究所碩士論文 (2000).

27. U. Andrade, M. A. Meyers, K. S. Vecchio and A. H. Chokshi, Acta Materialia, 42 (1994), pp. 3183-3195.

28. G. Garces, P. Perez and P. Adeva, Journal of Alloys and Compounds, 333 (2002), p.219-224.

29. Y. N. Wang and J. C. Huang, Materials Transactions JIM, 44 (2003), pp. 2276-2281.

30. W. J. Kim, S. I. Hong, Y. S. Kim, S. H. Min, H. J. Jeong and J. D. Lee, Acta Materialia, 51 (2003), pp. 3293-3307.

31. D. Hull and T. W. Clyne, in An Introduction to Composite Materials (Cambridge University Press, Second edition, 1996)

32. A. J. Ardell, Metallurgical and Materials Transactions, 16A (1985), pp. 2131-2165.

33. T. D. Wang and J. C. Huang, Materials Transactions JIM, 42 (2001), pp. 1781-1789.

34. R. A. Saravanan and M. K. Surappa, Materials Science and Engineering, A276 (2000), pp. 108-116.

35. A. Bochenek and K. N. Braszczynska, Materials Science and Engineering, A290 (2000), pp. 122-127.

36. M. Manoharan, S. C. V. Lim and M. Gupta, Materials Science and Engineering, A333 (2002), pp. 243-249.

37. Q. C. Jiang, X. L. Li and H. Y. Wang, Scripta Materialia, 48 (2003), pp.713-717.

38. L. Hu and E. Wang, Materials Science and Engineering, A278 (2000), pp. 267-271.

39. M. Y. Zheng, K. Wu, M. Liang, S. Kamado and Y. Kojima, Materials Science and Engineering, A372 (2004), pp. 66-74.

40. M. Zheng, K. Wu and C. Yao, Materials Science and Engineering, A318 (2001), pp.

50-56.

41. B. Q Han and D. C. Dunand, Materials Science and Engineering, A277 (2000), pp.

297-304.

42. J. Lan, Y. Yang and X. Li, Materials Science and Engineering, A386 (2004), pp.

284-290.

43. H. Z. Ye and X. Y. Liu, Journal of Materials Science, 39 (2004), pp. 6153-6171.

44. D. M. Lee, B. K. Suh, B. G. Kim, J. S. Lee and C. H. Lee, Materials Science and Technology, 13 (1997), pp. 590-595.

45. H. Y. Wang, Q. C. Jiang, Y. Wang, B. X. Ma and F. Zhao, Materials letters, 58 (2004), pp. 3509-3513.

46. Q. C. Jiang, H. Y. Wang, B. X. Ma, Y. Wang and F. Zhao, Journal of Alloys and Compounds, 386 (2005), pp. 177-181.

47. S. F. Hassan, M. Gupta, Materials Science and Engineering, A392 (2005), pp. 163-168.

48. P. L. Ratnaparkhi and J. M. Howe, Scripta Metallurgical., 27 (1992), pp. 133-137.

49. Guobin Li, Jibing Sun, Quanmei Guo and Yuhui Wu, Journal of Materials Processing Technology, 161 (2005), pp. 445-448.

50. S. M. Lee editor, in Handbook of Composite Reinforcements (VSH publisher, 1993) 51. M. Mabuchi, K. Kubota and K. Higashi, Scripta Metallurgica et Materialia, 33 (1995),

pp. 331-335.

52. Y. P. Hung, K. J. Wu, Chi. Y. A. Tsao, J. C. Hung, P . J. Hsieh and J. S. C. Jang, Key Engineering Materials, 313 (2006), pp. 77-82.

53. Y. P. Hung, J. C. Huang, K. J. Wu and Chi Y. A. Tsao, Materials Transactions JIM, 47 (2006), pp. 1985-1993.

54. T. D. Wang and J. C. Huang, Materials Science Forum, 357-359 (2001), pp. 515-520.

55. P. M. Ajayan, O. Stephan, C. Colliex and D. Tranth, Science, 265 (1994), pp.

1212-1214.

56. M. Narkis, A. Ram and F. Flashner, Journal of Applied Polymer Science, 22 (1978), pp.1163-1166.

57. B. Poulaert and J. P. Issi, Polymer, 24 (1983), pp. 841-845.

58. S. Balabanov and Krezhov, Journal of Physics. D: Applied Physics, 32 (1999) p. 2573.

59. M. T. Connor, S. Roy, T. A. Ezquerra and F. J. B. Calleja, Physical Review B, 57 (1998), pp. 2286-2294.

60. T. G. Nieh, J. Wadsworth and O. D. Sherby, in Superplasticity in metals and ceramics (Cambridge University Press, 1997)

61. M. F. Ashby and R. A. Verrall, Acta Metallurgica, 21 (1973), pp.149-163.

62. A. K. Mukherjee, Materials Science and Engineering, 8A (1971), p. 83.

63. R. C. Gifkins, Metallurgical and Materials Transactions, 7A (1976), pp. 1225-1232.

64. J. R. Spingarn and W. D. Nix, Acta Metallurgica, 26 (1978), pp. 1389-1398.

65. A. K. Ghosh and R. Raj, Acta Metallurgica, 29 (1981), pp. 607-616.

66. M. Mabuchi, K. Higashi and T. G. Langdon, Acta Metallurigca Materialia, 42 (1994), pp.

1739-1745.

67. K. Higashi, T. G. Nieh and J. Wadsworth, Acta Metallurgica Materialia, 43 (1995). pp.

3275-3282.

68. M. Mabuchi and K. Higashi, Acta Materialia, 47 (1999), pp. 1915-1922.

69. T. G. Nieh and J. Wadsworth, Scripta Metallurgica Materialia, 32 (1995), pp. 1133-1137.

70. M. Mabuchi, K. Kubota and K. Higashi, Scripta Metallurgica Materialia, 33 (1995), pp.

331-335.

71. M. Mabuchi and K. Higashi, Philosophical Magazine A, 74 (1996), pp. 887-905.

72. T. G. Nieh, A. J. Schwartz and J. Wadsworth, Materials Science and Engineering A, A208 (1996), pp. 30-36.

73. S. W. Lim, T. Imai and Y. Nishida, Scripta Metallurgica et Materialia 32 (1995), pp.

1713-1717.

74. T. Imai, S.- W. Lim, D. Jiang and Y. Nishida, Scripta Materialia 36 (1997), pp. 611-615.

75. M. Mabuchi, K. Shimojima, Y. Yamada, C. E. Wen, M. Nadkamura, T. Asahina, H.

Iwaski, T. Aizawa and K. Higashi, Materials Science Forum, 357-359 (2001), p. 327.

76. 李敬仁,“鎂合金超塑變形之裂孔成核成長研究”,國立中山大學碩士論文(2003).

77. M. Mabuchi, H. Iwasaki, K. Yanase and K. Higashi, Scripta Materialia, 36 (1997), pp.

681-686.

78. M. Mabuchi, K. Ametama, H. Iwasaki and K. Higashi, Acta Materialia, 47 (1999), pp.

2047-2057.

79. H. K. Lin, J. C. Huang and T. G. Langdon, Materials Science and Engineering A, 402 (2005), pp. 250-257.

80. H. Watanabe, T. Mukai, K. Ishikawa, M. Mabuchi and K. Higashi, Materials Science and Engineering, A307 (2001), pp. 119-128.

81. H. J. Frost and M. F. Ashby, in Deformation-Mechanism Maps (Pergamon, Oxford, 1982), pp. 44-45.

82. H. Watanabe, T. Mukai, T. G. Nieh and K. Higashi, Scripta Materialia, 42 (2000), pp.

249-255.

83. M. Mabuchi, T. Asahina, H. Iwasaki and K. Higashi, Materials Science and Technology, 13 (1997), pp. 825-831.

84. H. Watanabe, T. Mukai, K. Ishikawa and K. Higashi, Materials Transactions JIM, 43 (2002), p. 78

85. H. Watanabe, T. Mukai, M. Mabuchi and K. Higashi, Scripta Materialia, 41 (1999), pp.

209-213.

86. H. Watanabe, T. Mukai, K. Ishikawa and K. Higashi, Scripta Materialia, 46 (2002), pp.

851-856.

87. 王振欽,“銲接學”,登文書局,1985.

88. A. Sanderson, C. S. Punshon and J. D. Russell, Fusion Engineering and Design, 49-50 (2000), pp. 77-87.

89. R. S. Mishra and Z. Y. Ma, Materials Science and Engineering R, 50 (2005), pp. 1-78.

90. W. M. Thomas, E. D. Nicholas, S. D. Smith, in S. K. Das, J. G. Kaufman, T. J. Lienert (Eds.), Aluminum 2001-Proceedings of the TMS 2001 Aluminum Automotive and Joining Sessions, TMS, 2001, p. 213.

91. Y. J. Kwon, I. Shigematsu and N. Saito, Scripta Materialia, 49 (2003), pp. 785-789.

92. Y. M. Thomas, K. I. Johnson and C. S. Wiesner, Advanced Engineering Materials, 7 (2003), pp. 485-490.

93. 張志溢,“摩擦旋轉攪拌製程對 AZ31 鎂合金晶粒細化之研究”,國立中山大學碩士 論文 (2004).

94. Y. S. Sato, M. Urata and H. Kokawa, Metallurgical and Materials Transactions, 33A (2002), pp. 624-635.

95. A. A. Hassan, P. B. Prangnell, A. F. Norman, D. A. Price and S. W. Willams, Science and Technology of Welding and Joining, 8 (2003), pp. 257-267.

96. Y. G. Kim, H. Fujii, T. Tsumura, T. Komazaki and K. Nakata, Materials Science and Engineering A, 415 (2006), pp. 250-254.

97. K. Cooigan, Welding Research, 65 (1999), pp. 229-237.

98. B. London, M. Mahoney, W. Bingel, M. Calabrese, R. H. Bossi and D. Waldron, in: K.

V. Jata, M. W. Mahoney, R. S. Mishra, S. L. Semiatin and T. Lienert (Eds.), Friction Stir Welding and Processing Ⅱ, TMS, 2003, pp. 3-12.

99. T. U. Seidel and A. P. Reynolds, Metallurgical and Materials Transactions, 32A (2001), pp. 2879-2884.

100. M. Guerra, C. Schmidt, J. C. McClure, L. E. Murr, A. C. Nunes, Materials Characterization, 49 (2003), pp. 95-101.

101. J. H. Quyang and R. Kovacevic, Journal of Materials Engineering and Performance, 11 (2002), pp.51-63.

102. Y. Li, L. E. Murr and J. C. McClure, Scripta Materialia, 40 (1999), pp. 1041-1046.

103. Y. Li, L. E. Murr and J. C. McClure, Materials Science and Engineering, A271 (1999), pp. 213-223.

104. P. Colegrove and H. Shercliff, in: K. V. Jata, M. W. Mahoney, R. S. Mishra, S. L.

Semiatin and T. Lienert (Eds.), Friction Stir Welding and Processing Ⅱ, TMS, 2003, pp.

13-22.

105. R. L. Goetz, K. V. Jata, in: K. V. Jata, M. W. Mahoney, R. S. Mishra, S. L. Semiatin and D. P. Filed (Eds.), Friction Stir Welding and Processing, TMS, 2001, pp. 35-46.

106. W. J. Arbegast, in: Z. Jin, A. Beaudoin, T. A. Bieler and B. Radhakrishnan (Eds.), Hot Deformation of Aluminum Alloys Ⅲ, TMS, 2003, pp. 313-328.

107. H. Schmidt, J. Hattel and J. Wert, Modelling and Simulation in Materials Science and Engineering, 12 (2004), pp. 143-157.

108. O. Frigaard, O. Grong and O. T. Midling, Metallurgical and Materials Transactions A, 32A (2001), pp. 1189-1200.

109. K. N. Krishnan, Materials Science and Engineering, A 327 (2002), pp. 246-251.

110. K. V. Jata and S. L. Semiatin, Scripta Materialia, 43 (2000), pp. 743-749.

111. J. Q. Su, T. W. Nelson, R. Mishra and M. Mahoney, Acta Materialia, 51 (2003), pp.

713-729.

112. C. G. Rhodes, M. W. Mahoney, W. H. Bingel and M. Calabrese, Scripta Materialia, 48 (2003), pp. 1451-1455.

113. D. P. Field, T. W. Nelson, Y. Hovanski and K. V. Jata, Metallurgical and Materials Transactions, 32A (2001), pp. 2869-2877.

114. H. G. Salem, Scripta Materialia, 49 (2003), pp. 1103-1110.

115. P. B. Prangnell and C. P. Heason, Acta Materialia, 53 (2005), pp. 3179-3192.

116. R. W. Fonda, J. F. Bingert and K. J. Colligan, Scripta Materialia, 51 (2004), pp.

243-248.

117. M. A. Sutton, B. Yang, A. P. Reynolds and R. Taylor, Materials Science and Engineering A, A323 (2002), pp. 160-166.

118. B. C. Yang, J. H. Yan, M. A. Sutton and A. P. Reynolds, Materials Science and Engineering, A364 (2004), pp. 55-65.

119. M. A. Sutton, B. C. Yang, A. P. Reynolds and J. H. Yan, Materials Science and Engineering, A364 (2004), pp. 66-74.

120. M. A. Sutton, A. P. Reynolds, B. C. Yang and R. Taylor, Materials Science and Engineering, A354 (2003), pp. 6-16.

121. M. A. Sutton, A. P. Reynolds, B. C. Yang and R. Taylor, Engineering Fracture Mechanics, 70 (2003), pp. 2215-2234.

122. Y. S. Sato, H. Kokawa, M. Enomoto and S. Jogan, Metallurgical and Materials Transactions A, 30A (1999), pp. 2429-2437.

123. M. W. Mahoney, C. G. Rhodes, J. G. Flintoff, R. A. Spurling and W. H. Bingel, Metallurgical and Materials Transactions A, 29A (1999), pp. 1955-1964.

124. C. Genevois, A. Deschamps, A. Denquin and B. Doisneau-cottignies, Acta Materialia, 53 (2005), pp. 2447-2458.

125. D. P. Field, T. W. Nelson, Y. Hovanski and K. V. Jata, Metallurgical and Materials Transactions A, 32A (2001), pp. 2869-2877.

126. S. H. C. Park, Y. S. Sato and H. Kokawa, Metallurgical and Materials Transactions A, 34A (2003), pp. 987-994.

127. W. Woo, H. Choo, D. W. Brown, P. K. Liaw, Z. Feng, Scripta Materialia, 54 (2006), pp.

1859-1864.

128. R. S. Mishra, Advanced Materials and Process, 161 (2003), pp. 43-46.

129. Z. Y. Ma, R. S. Mishra and M. W. Mahoney, Acta Materialia, 50 (2002), pp.4419-4430.

130. I. Charit and R. S. Mishra, Materials Science and Engineering A, A359 (2003), pp.

290-296.

131. Z. Y. Ma, R. S. Mishra, M. W. Mahoney and R. Grimes, Materials Science and Engineering A, A351 (2003), pp. 148-153.

132. Z. Y. Ma, R. S. Mishra and M. W. Mahoney, Scripta Materialia, 50 (2004), pp. 931-935.

133. Z. Y. Ma and R. S. Mishra, Scripta Materialia, 53 (2005), pp. 75-80.

134. I. Charit and R. S. Mishra, Acta Materialia, 53 (2005), pp. 4211-4223.

135. A. Dutta, I. Charit, L. B. Johannes and R. S. Mishra, Materials Science and Engineering,

A 395 (2005), pp. 173-179.

136. J. Q. Su, T. W. Nelson and C. J. Sterling, Journal of Materials Research, 18 (2003), pp.

1757-1760.

137. J. Q. Su, T. W. Nelson and C. J. Sterling, Scripta Materialia, 52 (2005), pp. 135-140.

138. 胡哲明,“摩擦攪拌製程之應變率對奈米氧化鋁粉均勻分佈與機械性質的影響”,國 立中山大學碩士論文 (2004).

139. S. M. Howard, B. K. Jasthi, W. J. Arbegast, G. J. Grant and D. R. Herling, in: K. V. Jata, M. W. Mahoney, R. S. Mishra and T. Lienert (Eds.), Friction Stir Welding and

Processing Ⅲ TMS, 2005, pp. 139-146.

140. C. J. Hsu, P. W. Kao and N. J. Ho, Scripta Materialia, 53 (2005), pp. 341-345.

141. C. J. Lee and J. C. Huang, “Fabrication of Mg base nanocomposites fabricated by friction stir processing” patent application to R.O.C.

142. http://www.lasurface.com/database/element.php

143. C. I. Chang, C. J. Lee and J. C. Huang, Scripta Materialia, 51 (2004), pp. 509-514.

144. M. S. Sahota, E. L. Short and J. Beynon, Journal of Non-Crystalline Solids, 195 (1996), pp. 83-88.

145. M. Brause, B. Braun, D. Ochs, W. Maus-Friedrichs and V. Kempter, Surface Science, 398 (1998), pp. 184-194.

146. T. R. Chen and J. C. Huang, Metallurgical and Materials Transactions A, 30A (1999), pp.

53-64.

147. A. Couret and D. Caillard, Acta Metallurgica, 33 (1985), pp. 1447-1454.

148. Y. N. Wang, C. I. Chang, C. J. Lee, H. K. Lin and J. C. Huang, Scripta Materialia, 55 (2006), pp. 637-640.

149. George E. Dieter, in Mechanical Metallurgy (McGraw-Hill Book Company, Singapore, 1988).

150. H. J. Frost and M. F. Ashby: Deformation Mechansim Maps (Pergamon Press, Oxford,

1982), p. 44.

151. H. Watanabe, T. Mukai, M. Mabuchi and K. Higashi: Acta Mater. 49 (2001), pp.2027-2037.

152. H. K. Kim and W. J. Kim, Materials Science and Engineering, A385 (2004), pp.

300-308.

Table 1-1 Comparison among the Mg alloys, Al alloys, Ti alloys, steels and plastics

Material Cast Mg

Wrought

Mg Steel Cast Al

Wrought

Al Ti Plastics (PC/ABS) Alloy/

Grade AZ91 AZ31 -H24

Galva-nized A356-T6 6061-T6 Ti-3Al

Dow Pulse 2000 Process/

Product Die cast Sheet Sheet Die cast Extrusion Injection molding Density

(g/cm3) 1.81 1.77 7.80 2.76 2.70 4.2 1.13

Elastic Modulus

(GPa)

45 45 210 72 70 140 2.3

Yield Strength

(MPa)

160 220 200 186 275 925 53 Ultimate

Tensile Strength

(MPa)

240 290 320 262 310 1000 55

Elongation

(%) 3 15 40 5 12 16

5 at yield and 125 at

break Melting

Temp.

(oC)

598 630 1515 615 652 1600 143 (softening

temp.)

Table 1-2

The standard four-part ASTM designation system of alloy and temper for the magnesium system [7]

First part Second part Third part Fourth part

Statement

Indicates the two principal alloying element

Indicates the amount of the two principal elements

Distinguishes between different alloys with the same percentage of the two principal alloying elements

Indicates condition (temper)

Method

Consists of two code letters representing the two main alloying elements arranged in order of decreasing percentage (or alphabetically if percentage are equal)

Consists of two numbers corresponding to rounded-off

percentage of the two main alloying

elements and arranged in same designation in first part

Consists of a letter of the alphabet assigned in order as

compositions become standard

Consists of a letter followed by a number ( separated from the third part of the designation by a hyphen

Example

A- Al E- rare earth H- Th K- Zr M- Mn Q- Ag S- Si T-Sn W- Y Z- Zn

Whole numbers Letters of alphabet except I and O

F- as fabricated O- annealed H10 and H11-strain hardened

H23, H24 and H26- strain hardened and partially annealed T4- solution heat treated

T5- artificially aged only

T6- solution heat treated and artificially aged

Table 1-3

The effect of separate solute addition on the mechanical properties [8]

Alloying element

Melting and casting behavior Mechanical and technological properties

Corrosion behavior I/M produced

Ag Improves elevated temperature tensile

and creep properties in the presence of rare earths

Detrimental influence on corrosion behavior

Al Improves castability, tendency to microporosity

Solid solution hardener, precipitation hardening at low temperature (<

120oC)

Minor influence

Be Significantly reduces oxidation of melt surface at very low concentration (< 30 ppm), leads to coarse grains

Ca Effective grain refining effect, slight suppression of oxidation of the molten metal

Improve creep properties Detrimental influence on corrosion behavior

Cu System with easily forming metallic glasses, improves castability

Detrimental influence on corrosion behavior, limitation necessary

Fe Magnesium hardly reacts with mild steel crucibles

Detrimental influence on corrosion behavior, limitation necessary

Li Increases evaporation and burning behavior, melting only in protected and sealed furnaces

Solid solution and precipitation hardening at ambient temperatures, reduce density, enhances ductility

Decreases corrosion properties strongly, coating to protect from humidity is necessary

Mn Control of Fe content by precipitating Fe-Mn compound, refinement of precipitates

Increases creep resistivity Improves corrosion properties due to iron control effect

Ni System with easily forming metallic glasses

Detrimental influence on corrosion behavior, limitation necessary

Rare earth

Improve castability, reduce microporosity

Solid solution and precipitation hardening at ambient and elevated temperatures; improve elevated temperature tensile and creep properties

Improve corrosion behavior

Si Decreases castability, forms stable silicide compounds with many other alloying elements, compatible with Al, Zn and Ag, weak grain refiner

Improve creep properties Detrimental influence

Th Suppresses microporosity Improves elevated temperature tensile and creep properties, improves ductilities, most efficient alloying element

Y Grain refining effect Improves elevated temperature tensile and creep properties

Improves corrosion behavior

Zn Increases Fluidity of the melt, weak grain refiner, tendency to

microporostiy

Precipitation hardening, improves strength at ambient temperatures, tendency to brittleness and hot shortness unless Zn refined

Minor influence, sufficient Zn content compensates for the detrimental effect of Cu

Zr Most effective grain refiner, incompatible with Si, Al and Mn, removes Fe, Al, and Si from the melt

Improves ambient temperature tensile properties slightly

Table 1-4 Mechanical properties of magnesium matrix composites by various liquid-state processing methods Magnesium matrix

composites Processing D

(μm) d (μm)

E (GPa)

σ0.2

(MPa)

UTS (MPa)

Hardness (HV)

Elongation

(%) Reference

Pure Mg; 30 vol% SiC casting + extruded 20 40 59 229 258 -- 2 [34]

Pure Mg; 4.3 vol% SiC casting -- 25 45 112 191 -- 0.057 [36]

ZK51A; 15 vol% SiCw (whiskers with diameter of 0.3~1 μm and

lengths of 15~50 μm)

squeeze casting -- -- 58 305 325 -- 1.2 [38]

AZ91; Al18B4O33(whiskers with diameter of 0.5~1 μm and lengths

of 10~30 μm)

squeeze casting + 250oC annealing

100 hours -- -- 71 270 368 -- 0.96 [39]

AZ91; 20 vol% SiC with Al(PO3)3

binder (whiskers with diameter of 0.1~1 μm and lengths of 30~100

μm,)

squeeze casting -- -- 85 220 355 175 1.38 [40]

AZ91; 20 vol% SiC without Al(PO3)3 binder (whiskers with diameter of 0.1~1 μm and lengths

of 30~100 μm,)

squeeze casting -- -- 77 202 314 174 1.29 [40]

Pure Mg; 30 vol% Y2O3 casting -- 0.33 -- 268 363 -- 15 [41]

Pure Mg; 30 vol% Y2O3 casting + extruded 0.88 0.33 65 344 455 -- 0 [41]

AZ91; 10 vol% TiC semi-solid slurry stirring -- 5 -- -- 214 83 4 [37]

AZ91; 5 wt% SiC ultrasonic -- 0.03 -- -- -- 135 -- [42]

**D: grain size, d: particle size

Table 1-5 Mechanical properties of magnesium matrix composites by various solid-state processing methods Magnesium matrix

composites Processing D

(μm) d (μm)

E (GPa)

σ0.2

(MPa)

UTS

(MPa) Hardness Elongation

(%) Reference

AZ91; 10 vol% SiC PM + extrusion 17.2 8 58 271 360 -- 3 [44]

AZ91; 10 vol% SiC PM + extrusion 24 30 58 243 350 -- 3 [44]

AZ91; 10 vol% SiC PM + extrusion 28.2 50 58 236 350 -- 2 [44]

Pure Mg; 10 vol % TiB2 PM -- 10 -- -- -- 45 HB -- [45]

Pure Mg; 20 vol % TiB2 PM -- 10 -- -- -- 66 HB -- [45]

Pure Mg; 20 vol % TiB2 PM -- 10 -- -- -- 90 HB -- [45]

Pure Mg; 10 vol % B4C ball milling + PM -- 6 -- -- -- 44 HB -- [46]

Pure Mg; 10 vol % B4C ball milling + PM 6 -- -- -- 133 HB -- [46]

Pure Mg; 0.5 wtl% Al2O3 PM 61 0.05 42.5 169 232 44 HV 6.5 [47]

Pure Mg; 2.5 wt% Al2O3 PM 31 0.05 44.5 194 250 70 HV 6.9 [47]

**D: grain size, d: particle size

Table 1-6 Microstructure-Mechanical property-fracture correlations for metal matrix composites [50]

Microstructure condition Mechanical property response

Addition of reinforcement Increase in strength, modulus, fatigue life, creep properties, abrasion resistance, impact strength, high temperature strength, decrease in ductility (elongation to failure), and fracture toughness

Reinforcement type In general, fibrous reinforcements give higher mechanical properties than particulate at equal volume fraction. Particulate reinforcement, however, gives higher elongation to failure and fracture toughness.

Reinforcement orientation Fibrous reinforcement aligned along test axis gives approximately 25%

higher strength than particulate or transverse fibrous reinforcement.

Fatigue and creep properties are improved in aligned fibrous composites.

Ductility and fracture toughness is generally lower in the aligned material.

Reinforcement distribution Banding and or clustering enhances crack initiation and growth, and hence lowers strength, ductility, and toughness.

Particle size Mp effect on modulus; strength properties decrease with particle size increase

Aspect ratio Influence modulus, strength, fracture toughness, ductility and fracture mechanism

Interface condition Strong bonding increases modulus and strength but decreases ductility.

Can be embrittled as a of excessive result of excessive precipitation and/or diffusion of alloying ingredients or impurities to interface

Matrix phases Normal precipitate phases increase yield and ultimate strength. Impurity particles and preferential precipitation decrease strength, fracture toughness, fatigue, creep, and ductility

Heat treatment Heat treatment increases mechanical properties; however, overaging minimizes the benefits. Precipitation kinetics can be altered by the addition of reinforcement; hence time and temperature for peak aging may differ

Secondary processing Secondary processing affects microstructure and hence mechanical properties. Extrusion aligns fibrous reinforcements but induces banding or reinforcements-free areas. Rolling homogenizes microstructure, giving higher properties, but can damage matrix-reinforcement bonds and lead to overaging. Material must be heat-treated to regain properties.

z These comments assume well-bonded reinforcements.

Table 1-7 HSRSP and LTSP in the magnesium alloys

Material Grain size, (μm)

Temperature, (oC)

Strain rate, (s-1)

Elongation,

(%) Reference

PM AZ91 1 300 1x10-2 280 [77]

270 1x10-2 140

IM AZ91 4.1 300 2x10-2 250

275 2x10-2 330

PM ZK61 1.2 250 1x10-2 350

300 1x10-1 420

250 1x10-1 310

IM ZK61 2.2 300 1x10-2 400

250 1x10-2 250

300 1x10-1 150

250 1x10-1 200

AZ91 1.7 275 1x10-2 300 [78]

PM ZK61 0.6 300 1x10-2 300 [70]

IM ZK60 1.2 1x10-2 360

AZ31 2 300 1x10-2 1000 [71]

2 250 1x10-2 405 [71]

0.7 200 1x10-2 233 [22]

AZ91 0.7 200 6x10-5 661 [72,73]

1 175 6x10-5 326

3.1 200 7x10-5 956

ZK61 0.5 200 1x10-3 640 [79]

ZK60 1.4 200 1x10-5 1083 [80]

AZ31 0.7 150 1x10-4 461 [22]

Table 1-8 HSRSP and LTSP of magnesium matrix composites

Matrix d, μm Reinforcement Processing

Size of reinforcement,

μm

Vf,

% T, K T/Tm

a ε&, s-1 σ,

MPa

Elong.

%

m-

value Ref.

Mg-4Al 1.4 Mg2Si Rapid Solidification +

Extrusion 0.7 28 788 0.85 1x10-1 8 368 0.5 [69]

Mg-4Zn 0.9 Mg2Si Rapid Solidification +

Extrusion 0.8 28 713 0.77 1x10-1 10.0 290 0.5 [69]

Mg-4Al 1.4 Mg2Si Rapid Solidification +

Extrusion 1 20 773 0.84 1x10-1 10.8 336 0.3 [68]

ZK60 0.3 SiC PM + Extrusion 2 17 723 0.78 1.3 -- 360 0.33 [67]

ZK60 0.5 SiC PM + Extrusion 2 17 673 0.73 1 35.9 350 0.5 [70]

Mg-5Zn -- TiC Vortex casting +

Extrusion + rolling 2-5 10 743 0.8 1.67x10-2 9.4 205 0.33 [71]

Mg-5Zn 2 TiC Vortex casting +

Extrusion 2-5 20 743 0.8 6.67x10-2 8.0 295 0.43 [71]

Mg-5Al <2 AlN Vortex casting +

Extrusion 0.72 15 673 0.73 5x10-1 33.8 236 0.39 [72]

Table 1-9 Superplasticity application of Al alloys modified by friction stir processing

Al Alloy

Rotational speed,

rpm

Advancing speed

Grain size,

μm

Temp.,

oC

Strain rate,

s-1

Elong.

% Ref.

7075 T651 -- 150

mm/min 3.3 490 1x10-2 1000 [2]

7075 400 4 ipm 7.5 500 3x10-3 1042 [126]

7075 350 6 ipm 3.8 480 1x10-2 1250 [126]

2024 T4 300 25.4

mm/min 3.9 430 1x10-2 525 [127]

Al-4Mg-1Zr -- -- 1.5 525 1x10-1 1280 [128]

A356 700 203

mm/min 3 530 1x10-3 650 [129]

Al-4Mg-1Zr 350 25.4

mm/min 0.7 175 1x10-4 240 [130]

Al-8.9Zn-2.6Mg-

0.09Sc 400 25.4

mm/min 0.68 310 1x10-2 1165 [131]

Al-8.9Zn-2.6Mg-

0.09Sc 400 25.4

mm/min 0.68 220 1x10-2 525 [131]

Table 2-1

Chemical compositions of the AZ61 Mg alloy (in wt%)

Mg Al Zn Mn Si Fe Cu Cl Ni

AZ61B Bal. 6.14 0.88 0.21 0.038 0.0035 0.0027 0.0022 0.0004

Table 2-2 The sample designation for the FSP modified Mg alloys Processing parameters

Sample

name Rotational speed, rpm

Advancing speed, mm/min

Tilt angle,

o

Pass number,

#

Subsequent compression

along ND after FSP

1P45 800 45 1.5 1 X

4P45 800 45 1.5 4 X

1P90 800 90 1.5 1 X

4P45-cp 800 45 1.5 4 O

Table 2-3 The sample designation for the FSP Mg based composites Processing parameters

Sample

name Groove number, #

Rotational speed, rpm

Advancing speed, mm/min

Tilt angle,

o

Pass number,

#

1D1P 1 800 45 1.5 1

1D2P 1 800 45 1.5 2

1D3P 1 800 45 1.5 3

1D4P 1 800 45 1.5 4

2D1P 2 800 45 1.5 1

2D2P 2 800 45 1.5 2

2D4P 2 800 45 1.5 4

Table 3-1 The recrystallized grain size of the modified AZ61 Mg alloy made by FSP

AZ61 billet 1P45 4P45 1P90

Average grain

size, μm 75 7.0 7.8 3.4

Table 3-2 Summary of the average SiO2 cluster size and the average AZ61 matrix grain size in the 1D (with Vf~5%) and 2D (with Vf~10%) FSP specimens.

1D1P 1D2P 1D3P 1D4P

SiO2 cluster size, nm 600 210 210 190

Ave grain size, μm 3.1 2.8 2.0 1.8

Pred. grain size, μm 2 0.7 0.7 0.6

2D1P 2D2P -- 2D4P

SiO2 cluster size, nm 300 200 -- 120

Ave grain size, μm 1.5 1.5 -- 0.8

Pred. grain size, μm 0.7 0.5 -- 0.3

* Predicted grain size is according to the Eq. (3), and the particle size is the cluster size.

Table 3-3 XRD results for the 1P45, 4P45, and 4P45-cp modified alloy samples

[(1010)/(1011)]sample

/

[((1010)/(1011)]random

[(0002)/(1011)]sample

/

[(0002)/(1011)]random

[(1012)/(1011)]sample

/

[(1012)/(1011)]random

[(1120)/(1011)]sample

/

[(1120)/(1011)]random

[(1013)/(1011)]sample

/

[(1013)/(1011)]random

Random Mg powders 0.35 / 0.35 = 1 0.41 / 0.41 = 1 0.20 / 0.20 = 1 0.18 / 0.18 = 1 0.18 / 0.18 = 1 1P45, T plane 0.13 / 0.35 = 0.37 1.16 / 0.41 = 2.83 0.34 / 0.20 = 1.7 0.08 / 0.18 = 0.44 0.71 / 0.18 = 3.94 1P45, H Plane 1.50 / 0.35 = 4.29 0.07 / 0.41 = 0.17 0.04 / 0.20 = 0.20 0.71 / 0.18 = 3.94 0.02 / 0.18 = 0.11 1P45, L-center plane 0.50 / 0.35 = 1.43 0.09 / 0.41 = 0.22 0.06 / 0.20 = 0.30 0.24 / 0.18 = 1.33 0.04 / 0.18 = 0.22 1P45, L-retreating 0.17 / 0.35 = 0.49 0.68 / 0.41 = 1.66 0.35 / 0.20 = 1.75 0.08 / 0.18 = 0.44 0.71 / 0.18 = 3.94 4P45, T plane 0.12 / 0.35 = 0.34 1.73 / 0.41 = 4.22 0.18 / 0.20 = 0.90 0.06 / 0.18 = 0.33 0.32 / 0.18 = 1.78 4P45, H Plane 0.40 / 0.35 = 1.14 0.03 / 0.41 = 0.07 0.00 / 0.20 = 0 0.22 / 0.18 = 1.22 0.01 / 0.18 = 0.06 4P45, L-center plane 0.50 / 0.35 = 1.43 0.09 / 0.41 = 0.22 0.06 / 0.20 = 0.30 0.28 / 0.18 = 1.56 0.04 / 0.18 = 0.22 4P45, L-retreating 0.25 / 0.35 = 0.71 0.85 / 0.41 = 2.07 0.30 / 0.20 = 1.50 0.13 / 0.18 = 0.72 0.90 / 0.18 = 5.00 4P45-com, T plane 0.68 / 0.35 = 1.94 0.89 / 0.41 = 2.17 0.24 / 0.20 = 1.20 0.34 / 0.18 = 1.89 0.34 / 0.18 = 1.89 4P45-com, H plane 0.5 / 0.35 = 1.43 4.88 / 0.41 = 11.90 0.03 / 0.20 = 0.15 0.23 / 0.18 = 1.28 0.16 / 0.18 = 0.89 4P45-com, L-center 1.46 / 0.35 = 4.17 0.08 / 0.41 = 0.20 0.06 / 0.20 = 0.30 0.75 / 0.18 = 4.17 0.06 / 0.18 = 0.33

4P45-com,

L-retreating 0.29 / 0.35 = 0.82 0.25 / 0.41 = 0.61 0.30 / 0.20 = 1.50 0.33 / 0.18 = 1.83 0.30 / 0.18 = 1.67

Table 3-4 XRD results for the Mg based composites of the 1D samples

[(1010)/(1011)]sample

/

[((1010)/(1011)]random

[(0002)/(1011)]sample

/

[(0002)/(1011)]random

[(1012)/(1011)]sample

/

[(1012)/(1011)]random

[(1120)/(1011)]sample

/

[(1120)/(1011)]random

[(1013)/(1011)]sample

/

[(1013)/(1011)]random

Random Mg powders 0.35 / 0.35 = 1 0.41 / 0.41 = 1 0.20 / 0.20 = 1 0.18 / 0.18 = 1 0.18 / 0.18 = 1 1D1P, T plane 0.16 / 0.35 = 0.46 3.14 / 0.41 = 7.66 0.29 / 0.20 = 1.45 0.04 / 0.18 = 0.22 0.69 / 0.18 = 3.83 1D1P, H plane 1.19 / 0.35 = 3.40 0.23 / 0.41 = 0.56 0.10 / 0.20 = 0.50 0.68 / 0.18 = 3.78 0.09 / 0.18 = 0.50 1D1P, L-center plane 1.91 / 0.35 = 5.46 0.26 / 0.41 = 0.63 0.07 / 0.20 = 0.35 0.97 / 0.18 = 5.39 0.09 / 0.18 = 0.50 1D1P, L-retreating 0.28 / 0.35 = 0.80 0.51 / 0.41 = 1.24 0.44 / 0.20 = 2.2 0.08 / 0.18 = 0.44 0.97 / 0.18 = 5.39 1D2P, T plane 0.22 / 0.35 = 0.63 1.91 / 0.41 = 4.66 0.28 / 0.20 = 1.40 0.07 / 0.18 = 0.39 0.47 / 0.18 = 2.61 1D2P, H plane 2.53 / 0.35 = 7.23 0.16 / 0.41 = 0.39 0.05 / 0.20 = 0.25 1.31 / 0.18 = 7.28 0.04 / 0.18 = 0.22 1D2P, L-center plane 2.18 / 0.35 = 6.23 0.55 / 0.41 = 1.34 0.10 / 0.20 = 0.50 1.38 / 0.18 = 7.67 0.13 / 0.18 = 0.72 1D2P, L-retreating 0.24 / 0.35 = 0.69 0.18 / 0.41 = 0.44 0.39 / 0.20 = 1.95 0.06 / 0.18 = 0.33 0.21 / 0.18 = 1.17 1D3P, T plane 0.18 / 0.35 = 0.51 2.66 / 0.41 = 6.49 0.18 / 0.20 = 0.90 0.13 / 0.18 = 0.72 0.37 / 0.18 = 2.06 1D3P, H plane 0.91 / 0.35 = 2.60 0.03 / 0.41 = 0.07 0.03 / 0.20 = 0.15 0.44 / 0.18 = 2.44 0.02 / 0.18 = 0.11 1D3P, L-center plane 0.97 / 0.35 = 2.77 0.15 / 0.41 = 0.37 0.09 / 0.20 = 0.45 0.32 / 0.18 = 1.78 0.08 / 0.18 = 0.44 1D3P, L-retreating 0.08 / 0.35 = 0.23 0.10 / 0.41 = 0.24 0.20 / 0.20 = 1.00 0.02 / 0.18 = 0.11 0.11 / 0.18 = 0.61 1D4P, T plane 0.22 / 0.35 = 0.63 1.38 / 0.41 = 3.37 0.20 / 0.20 = 1.00 0.13 / 0.18 = 0.72 0.28 / 0.18 = 1.56 1D4P, H plane 0.43 / 0.35 = 1.23 0.10 / 0.41 = 0.24 0.09 / 0.20 = 0.45 0.26 / 0.18 = 1.44 0.07 / 0.18 = 0.07 1D4P, L-center plane 0.37 / 0.35 = 1.06 0.08 / 0.41 = 0.20 0.08 / 0.20 = 0.40 0.18 / 0.18 = 1.00 0.06 / 0.18 = 0.33 1D4P, L-retreating 0.21 / 0.35 = 0.60 0.67 / 0.41 = 1.63 0.13 / 0.20 = 0.65 0.10 / 0.18 = 0.56 0.18 / 0.18 = 1.00