• 沒有找到結果。

第四章 實驗設計及結果分析

4.5 實驗結果討論

‧ 國

立 政 治 大 學

N a tio na

l C h engchi U ni ve rs it y

具有的慣性及速度這兩點因素存在。

雖然在路徑跟隨之導航控制方面本研究所提之方法仍有進步的空間,但 就任務整體系統而言,本研究所提之方法能以一定的穩定度及可靠性完成無人 機的直立柱狀建築物的自主環繞檢視。本研究之兩個評估指標顯示出無人機具 有一定程度的感官認知和行為動作,並且以足夠高的成功率來實現近乎全自動 的自主建築物檢視任務。而這有一部分歸因於行為樹,它既是有用的設計平 台,又是有效的控制體系結構。使用行為樹作為設計平台,我們可以在明確的 邏輯結構中簡單的定義出任務所需之活動和任務過程。而使用行為樹作為控制 體系之結構,系統可以很快速的根據當前任務之目標,偵測並判斷當前環境並 做出因應之行為。整體來說,行為樹提供了能針對特定任務應用的自主程序來 開發自主系統之主要技術框架。

做為環繞目標時,ORB-SLAM 也會出現難以取得目標物之特徵的情 況產生,在未來可以嘗試使用其他類型的 SLAM 或是利用具有深度

[1] International Civil Aviation Organization (ICAO). Unmanned Aircraft Systems (UAS); ICAO: Montreal, QC, Canada, 2011.

[2] C. Stöcker, E. Anette, and K. Pierre, "Measuring gullies by synergetic application of UAV and close range photogrammetry—A case study from Andalusia, Spain."

Catena vol. 132, pp. 1-11, 2015.

[3] C. Yuan, Y. M. Zhang and Z. X. Liu, "A survey on technologies for automatic forest fire monitoring detection and fighting using unmanned aerial vehicles and remote sensing techniques", Canadian Journal of Forest Research published on the web 12, March 2015.

[4] H. Aasen, E. Honkavaara, A. Lucieer, and P. Zarco-Tejada, “Quantitative remote sensing at ultra-high resolution with UAV spectroscopy: A review of sensor

technology, measurement procedures, and data correction workflows,” Remote Sens., vol. 10, no. 7, p. 1091, 2018.

[5] M. Israel, "A UAV-based roe deer fawn detection system", Proc. Int. Conf.

Unmanned Aerial Veh. Geomatics (UAV-g), vol. 38, pp. 1-5, 2011.

[6] M. N. Gillins, D. T. Gillins and C. Parrish, "Cost-effective bridge safety inspections using unmanned aircraft systems (UAS)", Geotechnical and Structural Engineering Congress, 2016.

[7] M. Asim, D. N. Ehsan, and K. Rafique, ‘‘Probable causal factors in Uav accidents based on human factor analysis and classification system,’’ in Proc. 27th Int. Congr.

Aeronaut. Sci., vol. 1905, p. 5, 2005.

[8] N. Hallermann and G. Morgenthal, "Visual inspection strategies for large bridges using unmanned aerial vehicles (uav)", Proc. of 7th IABMAS International Conference on Bridge Maintenance Safety and Management, pp. 661-667, 2014.

[9] S. Omari, P. Gohl, M. Burri, M. Achtelik and R. Siegwart, "Visual industrial inspection using aerial robots", Proceedings of CARPI, 2014.

[10] Y. Song, S. Nuske and S. Scherer, "A multi-sensor fusion MAV state estimation from long-range stereo IMU GPS and barometric sensors", Sensors, vol. 17, no. 1, 2017.

[11] S. Ullman, "The interpretation of structure from motion", Proc. R. Soc. London, vol.

B203, pp. 405-426, 1979.

[12] J. Engel, V. Koltun and D. Cremers, "Direct sparse odometry", IEEE Trans. Pattern

[13] J. Engel, T. Schöps and D. Cremers, "LSD-SLAM: Large-scale direct monocular SLAM", Proc. Eur. Conf. Comput. Vision, pp. 834-849, Sep. 2014.

[14] A. Buyval, I. Afanasyev and E. Magid, "Comparative analysis of ros-based monocular slam methods for indoor navigation", International Conference on Machine Vision (ICMV 2016), vol. 10341, pp. 103411K, 2017.

[15] R. Mur-Artal, J. M. M. Montiel and J. D. Tardós, "ORB-SLAM: A versatile and accurate monocular SLAM system", IEEE Trans. Robot., vol. 31, no. 5, pp. 1147-1163, Oct. 2015.

[16] M. Filipenko and I. Afanasyev, "Comparison of various slam systems for mobile robot in an indoor environment", International Conference on Intelligent Systems, Sep. 2018.

[17] V. De Araujo, A. P. G. S. Almeida, C. T. Miranda, and F. De Barros Vidal, “A parallel hierarchical finite state machine approach to UAV control for search and rescue tasks,” in Proceedings of the 11th International Conference on Informatics in Control, Automation and Robotics (ICINCO '14), pp. 410–415, Sep. 2014.

[18] M. Colledanchise and P. Ögren, "How behavior trees modularize hybrid control systems and generalize sequential behavior compositions the subsumption

architecture and decision trees", IEEE Trans. Robot., vol. 33, no. 2, pp. 372-389, Apr.

2017.

[19] M. Samkuma, Y. Kobayashi, T. Emaru and A. Ravankar, "Mapping of Pier Substructure Using UAV", IEEE/SICE International Symposium on System Integration, 2016.

[20] P. Shanthakumar, K. Yu, M. Singh, J. Orevillo, E. Bianchi, M. Hebdon, et al., "View planning and navigation algorithms for autonomous bridge inspection with uavs", International Symposium on Experimental Robotics, pp. 201-210, 2018.

[21] A. Al-Kaff, F. M. Moreno, L. J. San José, F. García, D. Martín, A. De La Escalera, et al., "Vbii-uav: Vision-based infrastructure inspection-uav", World Conference on Information Systems and Technologies WorldCist'17, pp. 221-231, 2017.

[22] F. Kendoul, "Survey of advances in guidance, navigation, and control of unmanned rotorcraft systems," Journal of Field Robotics, vol. 29, no. 2, pp. 315-378, Mar. 2012.

[23] I. Sa, S. Hrabar and P. Corke, "Outdoor flight testing of a pole inspection UAV incorporating high-speed vision", Springer Tracts Adv. Robot., vol. 105, pp. 107-121, Dec. 2015.

[24] S. A. K. Tareen and Z. Saleem, “A comparative analysis of sift, surf, kaze, akaze, orb, and brisk,” in 2018 International Conference on Computing, Mathematics and

Engineering Technologies (iCoMET), pp. 1–10, March 2018

[25] M. A. Fischler and R. C. Bolles, “Random sample consensus: a paradigm for model fitting with applicatio ns to image analysis and automated cartography,” Conzmun.

ACM, vol. 24, pp. 381-395, June 1981.

[26] G. Shi, X. Xu, and Y. Dai, ‘‘SIFT feature point matching based on improved

RANSAC algorithm,’’ in Proc. 5th Int. Conf. Intell. Hum.- Mach. Syst. Cybern., vol.

1, pp. 474–477, Aug. 2013.

[27] H. Strasdat, J. M. M. Montiel and A. J. Davison, "Scale drift-aware large scale monocular SLAM", Proc. Robot.: Sci. Syst., Jun. 2010.

[28] S. Choi, P. Jaehyun and Y. Wonpil, "Resolving scale ambiguity for monocular Visual Odometry", IEEE International Conference on Ubiquitous Robots and Ambient Intelligence, pp. 604-608, 2013.

[29] J. Heinly, E. Dunn and J.-M. Frahm, "Comparative evaluation of binary features", European Conf. Comput. Vision, pp. 759-773, 2012.

[30] A. Sujiwo et al., "Robust and accurate monocular vision-based localization in outdoor environments of real-world robot challenge", J. Robot. Mechatronics, vol. 29, no. 4, pp. 685-696, 2017.

[31] Parrot Drones SAS (n.d.). Retrieved October 4, 2020, from https://support.parrot.com/global/support/products

[32] Bebop_autonomy. (n.d.). Retrieved October 4, 2020, from https://bebopautonomy.

readthedocs.io/en/latest.

[33] I. Abdel-Qader , O. Abudayyeh, and M. E. Kelly, “Analysis of edge-detection techniques for crack identification in bridges,” J. Comput. Civil Eng. , vol. 17, no. 4, pp. 255–263 , Oct. 2003.

相關文件