• 沒有找到結果。

Chapter 8 Conclusions

8.2 Recommended Future Studies

There is still has something to make the PDSC complete. The diagram of recommended future studies is shown in Fig. 2.4 and described in the following:

1. To develop hybrid mesh code in PDSC. This can be a hybrid code with structured/unstructured and tetrahedral/hexahedral mesh system, which can save the cell number and reduce the time of tracking particle;

2. To couple with other numerical solves which can extend its capability of simulate complex flows. Combining with computational fluid dynamics (CFD) solver can solve the flow has continuum flow region. Combining with particle-in-cell (PIC) method can simulate flows with plasma. Incorporating with particle flux method (PFM ) can simulate inviscid flow.

References

1. Lee, Y. K. and Lee, J. W., “Direct simulation of compression characteristics for a simple drag pump model”, Vacuum, 47, pp. 807-809, 1996.

2. Lee, Y. K. and Lee, J. W., “Direct simulation of pumping characteristics for a model diffusion pump”, Vacuum, 47, pp. 297-306, 1996.

3. Chang, Y. W., et al., “Pumping performance analyses of a turbo booster pump by direct simulation M onte Carlo method”, Vacuum, 60, pp. 291-298, 2001.

4. Plimpton, S. and Bartel, T., “Parallel particle simulation of low-density fluid flows,” U.S. Department of Energy Report No. DE94-007858, 1993.

5. Yang, X. and Yang, J. M ., “M icromachined membrane particle filters”, Sensors and Actuators A, 73(1-2), pp. 184-191, 1999.

6. Piekos, E. S. and Breuer, K. S., “Numerical modeling of micromechanical devices using the direct simulation M onte Carlo method”, Transaction for ASM E Journal of Fluids Engineers, 118(3), pp. 464-469, 1996.

7. Nance, R. P., et al., “Role of boundary conditions in Monte Carlo simulation of microelectromechanical systems”, AIAA Journal, 12(3), pp. 447-449, 1998.

8. Tseng, K.-C., “Analysis of M icro-scale Gas Flows with Pressure Boundaries Using The Direct Simulation M onte Carlo M ethod”, M echanical Engineering, National Chiao-Tung University, Taiwan, M aster Thesis, 2000.

9. Schaff, S. and Chambre, P., Fundamentals of Gas Dynamics, Princeton University Press, Princeton, NJ, 1958, Chapter H.

10. Bird, G. A., M olecular Gas Dynamics, Clarendon Press, Oxford, UK, 1976.

11. Bird, G. A., M olecular Gas Dynamics and the Direct Simulation of Gas Flows, Oxford University Press, New York, 1994.

12. Nanbu, K., “Theoretical Basis on the Direct M onte Carlo M ethod,” Rarefied Gas Dynamics, 1, Boffi, V. and Cercignani, C. (editor), Teubner, Stuttgart, 1986.

13. Wagner, W., “A convergence proof for Bird's direct simulation M onte Carlo method for the Boltzmann equation”, Journal Stat Physics, 66(3/4), pp. 1011-1044, 1992.

14. Alexander, F. J., et al., “Direct Simulation M onte Carlo for Thin-film Bearings”, Physics of Fluids A, 6, pp. 3854-3860, 1994.

15. Stefanov, S. and Cercignani, C., “M onte Carlo simulation of the Taylor-Couette flow of a rarefied gas”, Journal of Fluid M echanics, 256, pp. 199-213, 1993.

16. Golshtein, E. and Elperin, T., “Convective instabilities in rarefied by direct simulation M onte Carlo method”, Journal of Thermophysics and Heat Transfer, 10, pp. 250-256, 1996.

17. Beskok, A. and Karniadakis, G.. E. “A M odel for Flows in Channels, Pipes and Ducts at M icro and Nano Scales”, M icroscale Thermophysical Engineering, 3(1), pp. 43-77, 1999.

18. LeBeau, G. J. and Lumpkin III, F. E., “Application highlights of the DSM C Analysis Code (DAC) software for simulating rarefied flows”, Computer M ethods in Applied M echanics and Engineering, 191(6-7), pp. 595-609, 2001

19. Boyd, I. D., “Vectorization of a M onte Carlo Simulation Scheme for Nonequilibrium Gas Dynamics”, Journal of Computational Physics, 96, pp.

411-427, 1991.

20. Ivanov, M . S., et al., “Statistical simulation of reactive rarefied flows: numerical approach and applications”, AIAA Paper, 98–2669, 1998

21. M erkle, C. L., “New Possibilities and Applications of M onte Carlo M ethods”, 13th International Symposium, Rarefied Gas Dynamics, pp. 333-348, Belotserkovsk, II (editor), 1985.

22. Shimada, T. and Abe, T., “Applicability of the Direct Simulation M onte Carlo M ethod in a Body-fitted Coordinate System”, Progress in Astronautics and Aeronautics, Rarefied Gas Dynamics, pp. 258-270, Muntz, et al (editor), 1989.

23. Olynick, D. P., et al., “Grid Generation and Application for the Direct Simulation M onte Carlo M ethod to the Full Shuttle Geometry”, AIAA Paper, 90-1692, 1990.

24. Robinson, C. D., Particle Simulations on Parallel Computers with Dynamic Load Balancing, Imperial College of Science, Technology and M edicine, UK, Ph.D.

Thesis, 1998.

25. Robinson, C. D. and Harvey, J. K., “A Parallel DSM C Implementation on Unstructured M eshes with Adaptive Domain Decomposition,” Proceeding of 20th International Symposium on Rarefied Gas Dynamics, pp. 227-232, Shen, C.

(editor), Peking University Press, 1996.

26. Robinson, C. D. and Harvey, J. K., “Adaptive Domain Decomposition for Unstructured M eshes Applied to the Direct Simulation M onte Carlo M ethod”, Parallel Computational Fluid Dynamics: Algorithms and Results using Advanced Computers, pp. 469-476, 1997.

27. Boyd, I. D., et al., “Particle simulation of helium microthruster flows”, Journal of

Spacecraft and Rockets, 31, pp. 271-281, 1994.

28. Boyd, I. D., et al., “Experimental and numerical investigations of low-density nozzle plume flows of nitrogen”, AIAA Journal, 30, pp. 2453-2461, 1992.

29. Kannenberg, K. C., “Computational method for the Direct Simulation M onte Carlo technique with application to plume impingement”, Cornell University, Ithaca, New York, Ph.D. Thesis, 1998.

30. Wilmoth, R. G., et al., “DSM C Grid M ethodologies for Computing Low-Density, Hypersonic Flow About Reusable Launch Vehicles”, AIAA Paper, 96-1812, 1996.

31. Wu, J.-S. and Lian, Y.-Y., “Parallel Three-Dimensional Direct Simulation M onte Carlo M ethod and Its Applications”, Computers & Fluids, 32(8), pp. 1133-1160, 2003.

32. Powell K. G., et al., “Adaptive mesh algorithms for computational fluid dynamics”, Algorithmic Trends in Computational Fluid Dynamics, pp. 303-337, Springer Verlag Co, New York, 1992.

33. Rausch, R. D., et al., “Spatial Adaptation Procedures on Unstructured M eshes for Accurate Unsteady Aerodynamics Flow Computation”, AIAA Paper, 91-1106, 1991.

34. Connell, S. D. and Holms, D. G.., “Three-Dimensional Unstructured Adaptive M ultigrid Scheme for the Euler Equations”, AIAA Journal, 32, pp. 1626-1632, 1994.

35. Kallinderis, Y. and Vijayan, P., “Adaptive Refinement-Coarsening Scheme for Three-Dimensional Unstructured M eshes”, AIAA Journal, 31, pp. 1440-1447, 1993.

36. Wang, L. and Harvey, J. K., “The Application of Adaptive Unstructured Grid Technique to the Computation of Rarefied Hypersonic Flows Using the DSM C M ethod”, 19th International Symposium, Rarefied Gas Dynamics, pp. 843-849, Harvey, J. and Lord, G. (editor), 1994.

37. Oh, C. K., et al., “M assive parallelization of DSM C combined with the monotonic Lagrangian grid”, AIAA Journal, 34, pp. 1363-1370, 1996.

38. Garcia, A., et al., “Adaptive M esh and Algorithm Refinement using Direct Simulation M onte Carlo”, Journal of Computational Physics, 154, pp. 134-155, 1999.

39. Kuo, C.-H., “The Direct Simulation M onte Carlo M ethod Using Unstructured Adaptive M esh and Its Application”, M echanical Engineering, National

Chiao-Tung University, Taiwan, M aster Thesis, 2000.

40. Wu, F.-Y., “The Three-Dimensional Direct Simulation M onte Carlo M ethod Using Unstructured Adaptive M esh and Its Applications”, M echanical Engineering, National Chiao-Tung University, Taiwan, M aster Thesis, 2002.

41. Lohern, R. and Parikh, P., “Generation of Three-dimensional Unstructured Grids by Advancing Front M ethod”, AIAA paper, 88-0515, 1988.

42. Baker, T., “Unstructured meshes and surface fidelity for complex shapes,” In AIAA 10th Computational Fluid Dynamics Conference, 1991.

43. Kannenberg, K. and Boyd, I. D., “Strategies for Efficient Particle Resolution in the Direct Simulation M onte Carlo M ethod”, Journal of Computational Physics, 157, pp. 727-745, 2000.

44. M arkelov, G. N. and Ivanov, M . S., “Kinetic Analysis of Hypersonic Laminar Separated Flows for Hollow Cylinder Flare Configurations”, AIAA paper, 2000-2223, 2000.

45. Olynick, D. P., et al., “Grid Generation and Adaptation for the Direct Simulation M onte Carlo M ethod”, Journal of Thermophysics Thermophysics and Heat Transfer, 3(4), pp. 368-373, 1989.

46. Teshima, K. and Usami, M ., “DSM C Calculation of Supersonic Expansion at a Very Large Pressure Ratio”, 22nd Rarefied Gas Dynamics Symposium, Australia, 2000.

47. Wehage, R. A. and Haug, E. J., “Generalized Coordinate Partitioning for Dimension Reduction in Analysis of Constrained Dynamic Systems”, ASM E Journal of M echanical Design, 104, pp. 247-255, 1982.

48. Simon, H., “Partitioning of Unstructured Problems for Parallel Processing”, Computing Systems in Engineering, 2(2/3), pp. 135-148, 1991.

49. Diniz, P., et al., “Parallel Algorithms for Dynamic Partitioning Unstructured Grids”, Proceedings of the 7th SIAM Conference, Parallel Processing for Scientific Computing, In Bailey, D.H., et al. (editor), SIAM , 1995.

50. Vanderstraeten, D., et al., “A retrofit Based M ethodology for the Fast Generation and Optimization of Large-Scale M esh Partitions: Beyond the M inimum Interface Size Criterion”, Computer M ethods in Applied M echanics and Engineering, 133, pp. 133 25-45, 1996.

51. Barnard, S. T. and Simon, H. D. “A Fast M ultilevel Implementation of Recursive Spectral Bisection for Partitioning Unstructured Problems”, Concurrence Practice

Experience, 6(2), pp. 101-117, 1994.

52. Karypis, G.. and Kumar, V., “M etis: Unstructured Graph Partitioning and Sparse M atrix Ordering, Version 2.0 User M anual”, M inneapolis M N55455, Computer Science Department, University of M innesota, U.S.A, 1995.

53. Walshaw, C., et al., “Partitioning and M apping of Unstructured M eshes to Parallel M achine Topologies”, Proc. Irregular Parallel Algorithms for Irregularly Structured Problems, 980, pp. 121-126, Ferreira, A. and Rolim, J. of LNCS Springer (editor), 1995.

54. Walshaw, C., “The jostle user manual: Version 2.1, School of Computation &

M athematical Sciences”, University of Greenwich, London, SE10 9LS, UK, 1999.

55. Bartel, T. J. and Plimpton, S. J., “DSM C Simulation of Rarefied Gas Dynamics on a Large Hypercube Supercomputer”, In 27th AIAA Thermophysics Conference, AIAA Paper, 92-2860, 1992.

56. Walshaw, C., “Parallel Jostle Library Interface: Version 1.2.1, School of Computation & M athematical Sciences”, University of Greenwich, London, SE10 9LS, UK, 2000.

57. Karypis, G., et al., “ParM eTis*, Parallel Graph Partitioning and Sparse M atrix Ordering Library: Version 2.0“, University of M innesota, Department of Computer Science/Army HPC Research Center, M inneapolis, M N 55455.

58. Furlani, T. R. and Lordi, J. A., “Implementation of the Direct Simulation M onte Carlo M ethod for an Exhaust Plume Flowfield in a Parallel Computing Environment”, AIAA Paper, 88-2736, 1988.

59. M atsumoto, Y. and Tokumasu, T., “Parallel Computing of Diatomic M olecular Rarefied Gas Flows”, Parallel Computing, 23, pp. 1249-1260, 1997.

60. Nance, R. P., et al., “Parallel Solution of Three-dimensional Flow Over a Finite Flat Plate”, AIAA Paper, 94-0219, 1994.

61. Ota, M . and Tanaka, T., “On Speedup of Parallel Processing Using Domain Decomposition Technique for Direct Simulation M onte Carlo M ethod”, The Japan Society of M echanical Engineering (B), 57(540), pp. 2696-2700, 1991.

62. Ota, M ., et al., “Parallel Processings for Direct Simulation M onte Carlo M ethod”, The Japan Society of M echanical Engineering (B), 61(582), pp. 496-502, 1995.

63. Dietrich, S. and Boyd, I. D., “Scalar and Parallel Optimized Implementation of the Direct Simulation M onte Carlo M ethod”, Journal of Computational Physics, 126, pp. 328-342, 1996.

64. Ivanov, M ., et al., “Parallel D SM C strategies for 3D computations”, Proceeding of Parallel CFD'96, Schiano, P., et al. (editor), pp. 485-492, North Holland, Amsterdam, 1997.

65. Taylor, S., et al., “The Concurrent Graph: Basic Technology for Irregular Problems”, IEEE Parallel and Distributed Technology, 4(15), pp. 15-25, 1996.

66. Nicol, D. M . and Saltz, J. H., “Dynamic Remapping of Parallel Computations with Varying Resource Demands”, IEEE Transactions on Computers, 37(9), pp.

1073-1087, 1988.

67. LeBeau, G. J., “A Parallel Implementation of the Direct Simulation M onte Carlo M ethod”, Compute M ethods in Applied M echanics and Engineering, 174, pp.

319-337, 1999.

68. Boyd, I. D., “Conservative Species Weighting Scheme for the Direct Simulation M onte Carlo M ethod”, Journal of Thermophysics and Heat Transfer, 10(4), pp.

579-585, 1996.

69. Dogra, V. K., et al., “Aerothermodynamics of a 1.6-M eter-Diameter Sphere in Hypersonic Rarefied Flow”, AIAA Journal, 30(7), 1993.

70. Boyd, I. D., “Analysis of vibration-dissociation-recombination processes behind strong shock waves of nitrogen”, Physics of Fluids A, 4(1), pp. 178-185, 1992.

71. Gimelshein, S. F., et al., “On the use of chemical reaction rates with discrete internal energies in the direct simulation M onte Carlo method”, Physics of Fluids, 16(7), pp. 2442-2451, 2004.

72. Borgnakke, C. and Larsen, P. S., “Statistical Collision M odel for Monte Carlo Simulation of Polyatomic Gas M ixture”, Journal of Computational Physics, 18, pp.

405-420, 1975.

73. Wu, J.-S., “M uST Visual Preprocessor, Version 1.0”, M ulitiscale Science and Technology Laboratory, Department of M echanical Engineering, National Chiao-Tung University, Hsinchu, Taiwan, 2005.

74. Lian, Y.-Y., “Parallel Three-Dimensional Direct Simulation M onte Carlo M ethod and Its Applications”, M echanical Engineering, National Chiao-Tung University, Taiwan, M aster Thesis, 2001.

75. Wu, J.-S. and Hsu Y.-L., “Derivation of Variable Soft Sphere M odel Parameters in Direct-Simulation M onte Carlo M ethod Using Quantum Chemistry Computation”, Japanese Journal of Applied Physics, 42, pp. 7574-7575, 2003.

76. Wu, J.-S., et al., “Pressure Boundary Treatment In M icromechanical Devices

Using Direct Simulation M onte Carlo M ethod”, JSM E International Journal, Series B, 44(3), pp.439-450, 2001.

77. Hsiao, W.-C., “Particle Simulation of a Silicon Deposition in LPCVD”, M echanical Engineering, National Chiao-Tung University, Taiwan, M aster Thesis, 2001.

78. Koura, K. and Takahira, M ., “M onte Carlo Simulation of Hypersonic Rarefied Nitrogen Flow Around a Circular Cylinder”, 19th International Symposium on Rarefied Gas Dynamics, pp. 1236-1242, 1994.

79. Bütefisch, K., “Investigation of Hypersonic Non-equilibrium Rarefied Gas Flow Around a Circular Cylinder by the Electron Beam Technique”, Rarefied Gas Dynamics II, pp. 1739-1748, Academic Press, New York, 1969.

80. Parker, J. G., “Rotational and vibrational relaxation in diatomic gases”, Physics of Fluids, 2, pp. 449-462, 1959.

81. Holden, M . S. and M oselle, J. R., “Theoretical and Experimental Studies of the Shock Wave-Boundary Layer Interaction on Compression Surfaces in Hypersonic Flows”, Technical Report 70-0002, ARL.

82. Russell, D. A., “Density Disturbance ahead of a Sphere in Rarefied Supersonic Flow”, The Physics of Fluids, 11(8), pp. 1679-1685, 1968.

83. Hypermesh Version 2.0, Altair Computing, Inc., M aplelawn, USA,1757.

84. Yang, T.-J., “The Parallel Implementation of The Direct Simulation M onte Carlo M ethod Using Unstructured M esh and Its Applications”, M echanical Engineering, National Chiao-Tung University, Taiwan, M aster Thesis, 2000.

85. Boyd, I. D. and Stark, J. P. W., “Direct Simulation of Chemical Reactions”, Journal of Thermophysiscs and Heat Transfer, 4(3), pp. 391-393, 1990.

86. Vincenti, W. G. and Kruger, C. H., Introduction to Physical Gas Dynamics, Wiley, New York, 1965.

87. Soga, T., et al., “Experimental Study of Interaction of Underexpanded Free Jets”, 14th International Symposium on Rarefied Gas Dynamics, 1, pp. 485-493, 1984.

88. Dagum, L. and Zhu, S. K., “Direct Simulation M onte Carlo Simulation of the Interaction Between Rarefied Free Jets”, Journal of Spacecraft and Rockets, 31(6), pp. 960-964, 1994.

89. Dorothy, B. Lee and Winston, D. G., “The aerothermodynamic environment of the Apollo command module during superorbital entry”, NASA TND-6792, 1072.

Appendix A Derivation of the Probability of Dissociation/Exchange

How to derive the reaction probability of the particle method is the most important issue to process the chemical reaction. For the dissociation and exchange reactions, the total collision energy model (TCE) is used in M ONACO. To make sure the MONACO uses the TCE model as mentions in Bird’s book [11], simple derivation in the following shows the dissociation probability of MONACO is the same as the Eq. (6.10) in Bird’s book.

From \PHYS\col_model.c directory

ETA[iclass]=refcxs*2.0/sqrt(PI)*pow((2.0*GASCONST*Trefvhs)/reducedm[iclass],om

From \PHYS\chem.c directory

ZETArot[iclass] = species[ispec].DOFrot + species[jspec].DOFrot=ζr,1r,2; ZETAvib[iclass] = species[ispec].DOFvib + species[jspec].DOFvib=ζv,1v,2; ZETAc[iclass] = DOFrel + ZETArot[iclass] +ZETAvib[iclass]

=2(2−omega)+ζr,1r,2ζv,1v,2=2(5 2−ω12)+ζr,1r,2v,1v,2

1 12 12 REAphi b REAphi

b− +ω − + −ω +ζ − = +ζ + −

r0 = REAphi2[iclass][ireac]+1.0=(5 2−ω12)+ζ

r1 = REAphi1[iclass][ireac]+1.0=b+ζ +3 2−REAphi3 r2 = ZETAvib[iclass]/2.0=(ζv,1v,2) 2

r3 = r2 + REAphi3[iclass][ireac]= (ζv,1v,2) 2+REAphi3

r4 = REAphi1[iclass][ireac]-REAphi2[iclass][ireac]+REAphi3[iclass][ireac]=b12 −1

For Dissociation Reaction

REAbeta[iclass][ireac] = mc_gamma(r0)/mc_gamma(r1)

*mc_gamma(r2)/mc_gamma(r3)

P[ireac] = REAbeta[iclass][ireac]*pow(Ediff,REAphi1[iclass][ireac])

*pow(Ecoll,-REAphi2[iclass][ireac]) By comparing with Eq. (6.10) of the Bird’s book.

AB AB

So, the probability of dissociation uses the Eq. (6.10) of the Bird’s book. The probability of exchange also uses the same equation expect the constants of the Arrhenis equation.

Appendix B Derivation of the Probability of Recombination

A three-body model for recombination reaction is proposed by Professor Boyd.

The third body is used to provide the energy to process recombination reaction. The detail of this method is described in Section 6.1.2. The following paragraph is the equation of reaction probability.

From \PHYS\col_model.c directory ETA[iclass] From \PHYS\chem.c directory

REAphi1[iclass][ireac]=REAb[iclass][ireac]-0.5+omega=b−12+omega =χ r0 = 7.0/2.0+species[ireac].DOFrot/2.0-omega=7 2+ζ1 2−omega

r1 = r0 + REAphi1[iclass][ireac]= 72+ζ1 2−omega

Precom=*nobj*volinv * REAbeta[iclass][kspec]

*pow((Ecoll+E3),REAphi1[iclass][kspec])

=

By comparing with Eq. (13) (Recombination probability of binary collision) of the paper of Boyd, Phys.Fluids A 4(1), 1992, pp.178-185.

χ

Table 1. 1 Comparison of some well-known DSM C codes.

a Dynamic Domain Decomposition

b Variable Time-Step Scheme

c Quantum Vibration M odel

d Graphic User Interface

Simulator Coordinate S ystem

Grid S ystem

Parallel

Computing DDD a VTS b Chemistry QVM c GUI d

Visual DS MC Program

2-D/Axis./3-D

Structured Sub-cells Adaptive

No No Yes Yes Yes Yes

DAC 2-D/Axis./3-D

Unstructured 2-level embedded

Cartesian

Yes Yes - Yes - -

MONACO 2-D/Axis./3-D Unstructured

Sub-cell Yes M anual Yes Yes Yes No

S MILE 2-D/Axis./3-D Rectangular

Adaptive Yes Yes Yes Yes Yes Yes

PDSC 2-D/3-D Unstructured

Adaptive Yes Yes Yes Yes Yes Yes

Table 3. 1 The complete listing of physical and VHS parameters of a hypersonic flow over a cylinder.

N2 gas Kn=0.025 n=5.1775E19 (#/m3) U= 1823.149 (m/s) Ma=20 ω=0.74 mref= 4.65E-26 (Kg) dref=4.17E-10 (m) Tref=273 (K) Tw=291.6 (K) T=20 (K) To=1620 (K)

Zr=21 T*=79.8

Table 3. 2 The cell numbers of adaptive mesh with or without cell quality control.

Level 0 1 2 3 4

cell quality control

- No Yes No Yes No Yes No Yes cell no. 7,025 13,916 13,916 33,737 33,773 67,060 67,021 75,305 75,099 (Knc)m in 0.066 0.104 0.104 0.176 0.171 0.300 0.289 0.314 0.321

Table 3. 3 The complete listing of physical and VHS parameters of a hypersonic flow over a 15o-compression ramp.

N2 gas Kn=λ/Xc=2E-4 ReL=1.04E5 ρ=5.221E-4 (kg/m3) p=12.79 (Pa) Ma=14.36 U= 2652.1 (m/s) ω=0.75 mref= 4.65E-26 (Kg) dref=4.17E-10 (m) Tref=273 (K) Tw=294.4 (K)

T=84.83 (K) Zr=5

Table 3. 4 The cell numbers of adaptive mesh with or without cell quality control.

Level 0 1 2

cell quality control

- No Yes No Yes

cell no. 15,063 30,219 30,219 83,398 83,776

Table 3. 5 The complete listing of physical and VHS parameters of a hypersonic flow over a sphere.

N2 gas Kn=λ/D=1.035E-1 ReL=30 n=9.77e20 (#/m3) p=12.79 (Pa) Ma=4.2 U= 697.022 (m/s) ω=0.74 mref= 4.65E-26(Kg) dref=4.17E-10 (m) Tref=273 (K) Tw=300 (K)

To=300 (K) T=66.25 (K) Zr=5

Table 3. 6 The cell numbers of adaptive mesh with or without cell quality control.

Level 0 1 2

cell quality control

- No Yes No Yes

cell no. 5,353 22,510 22,510 151,732 164,276

Table 4. 1 Comparisons of the parallel machines at NCHC.

System Hardware Configuration

IBM -SP2 IBM -SM P

CPU

1 per node P2SC –160 -M Hz

(64 cpu)

4 per node Power3-II 375-M Hz

(128 cpu) M emory 256 -M B (per node) 4 -GB (per node)

L1 Cache (per CPU) 128-KB 32KB/64KB

Table 4. 2 Number of cells and particles for three different problem sizes for the driven cavity flow

Problem size Small M edium Large

Cell numbers 11,250 45,000 180,000

Particle numbers 225,000 900,000 3,600,000

Table 6. 1 The constants of the rate coefficients in chem.dat file.

* Rate constant exp( ) exp( )

kT aT E

aT T

k= b −θ = ba

Reactions a * b * E * a

1. N2 +N2N +N+N2 6.170E-09 -1.6 1.561E-18

2. N2+NN+N+N 1.850E-08 -1.6 1.561E-18

3. N +N+N2N2 +N2 5.691E-40 -1.6 0

4. N +N+NN2 +N 1.706E-39 -1.6 0

5. O2 +O2O+O+O2 4.580E-11 -1.0 8.197E-19

6. O2 +OO+O+O 1.375E-10 -1.0 8.197E-19

7. O+O+O2O2+O2 6.305E-44 -0.5 0.0

8. O+O+OO2+O 1.905E-43 -0.5 0.0

9. NO+N2N+O+ N2 3.830E-13 -0.5 1.043E-18

10. NO+O2N+O+O2 3.830E-13 -0.5 1.043E-18

11. NO+NON+O+NO 3.830E-13 -0.5 1.043E-18

12. NO+NN +O+N 7.660E-13 -0.5 1.043E-18

13. NO+ON+O+O 7.660E-13 -0.5 1.043E-18

14. N +O+N2NO+ N2 1.583E-43 -0.5 0.0

15. N +O+O2NO+O2 1.583E-43 -0.5 0.0

16. N +O+NONO+NO 1.583E-43 -0.5 0.0

17. N+O+NNO+N 3.180E-43 -0.5 0.0

18. N +O+ONO+O 3.180E-43 -0.5 0.0

19. N2+ONO+N 5.300E-17 0.10 5.177E-19

20. NO+NN2 +O 2.020E-17 0.10 0.0

21. NO+OO2+N 3.600E-22 1.29 2.719E-19

22. O2+NNO+O 5.200E-22 1.29 4.970E-20

Table 6. 2 Comparison of the reaction probability and rate constant of N2 +N2N +N+N2 reaction

Temp. (oK)

Total collisions between reactants

Number of real reaction

P r

(Simulation)

P r

(Theoretical)

k f

(Simulation)

k f

(Theoretical) 5000 2.008310E+09 1.000000E+01 4.979312E-09 0.290278E-08 1.910565E-24 0.111380E-23 7000 1.005983E+09 1.030000E+02 1.023875E-06 0.999210E-06 4.273378E-22 0.417043E-21 9000 9.993514E+08 2.472600E+04 2.475205E-05 0.227658E-04 1.1000727E-20 0.101180E-19 11000 9.992670E+08 1.687040E+05 1.688278E-04 0.154345E-03 7.889357E-20 0.721257E-19 13000 9.813145E+08 5.963470E+05 6.077022E-04 0.551246E-03 2.960917E-19 0.268585E-18

Table 6. 3 Comparison of the reaction probability and rate constant of N2+NN+N+N reaction

Temp. (oK)

Total collisions between reactants

Number of real reaction

P r

(Simulation)

P r

(Theoretical)

k f

(Simulation)

k f

(Theoretical) 5000 6.722381E+08 2.000000E+00 2.975137E-09 0.409370E-08 2.427084E-24 0.333959E-23 7000 6.790187E+08 8.070000E+02 1.188480E-06 0.140915E-05 1.054633E-21 0.125045E-20 9000 5.994706E+08 1.897000E+04 3.164459E-05 0.321058E-04 2.990167E-20 0.303375E-19 11000 5.729034E+08 1.262960E+05 2.204490E-04 0.217667E-03 2.190240E-19 0.216260E-18 13000 5.446063E+08 4.427480E+05 8.129689E-04 0.777403E-03 8.421626E-19 0.805319E-18

Table 6. 4 Comparison of the reaction probability and rate constant of N +N+N2N2+N2 reaction

Temp. (oK)

Total collisions between reactants

Number of real reaction

P r

(Simulation)

P r

(Theoretical)

k f

(Simulation)

k f

(Theoretical) 5000 2.653486E+08 6.000000E+01 2.261177E-07 0.235230E-06 6.602036E-46 0.686809E-45 7000 2.659365E+08 2.900000E+01 1.090486E-07 0.116441E-06 3.754451E-46 0.400896E-45 9000 2.625208E+08 2.000000E+01 7.618443e-08 0.678132E-07 3.012677E-46 0.268164E-45 11000 2.573439E+08 1.200000E+01 4.663021E-08 0.437044E-07 2.075406E-46 0.194518E-45 13000 5.382297 E+08 2.600000E+01 4.830651e-08 0.301891E-07 2.382503E-46 0.148895E-45

Table 6. 5 Comparison of the reaction probability and rate constant of N +N+NN2 +N reaction

Temp. (oK)

Total collisions between reactants

Number of real reaction

P r

(Simulation)

P r

(Theoretical)

k f

(Simulation)

k f

(Theoretical) 3000 1.058814E+09 1.606000E+03 1.516791E-06 0.141031E-05 2.214313E-45 0.205886E-44 4000 1.064403E+09 7.730000E+02 7.262284E-07 0.698113E-06 1.250171E-45 0.120177E-44 5000 1.050878E+09 4.980000E+02 4.738893E-07 0.406569E-06 9.369865E-46 0.803879E-45 6000 1.031560E+09 3.370000E+02 3.266960E-07 0.262026E-06 7.2702517E-46 0.583110E-45 7000 1.011896E+09 2.590000E+02 2.559552E-07 0.180997E-06 6.311923E-46 0.446344E-45

Table 6. 6 Comparison of the reaction probability and rate constant of O2 +O2O+O+O2 reaction

Temp. (oK)

Total collisions between reactants

Number of real reaction

P r

(Simulation)

P r

(Theoretical)

k f

(Simulation)

k f

(Theoretical)

3000 909944997 224 2.461687E-07 0.127783E-06 7.407696E-23 0.384524E-22

4000 812138012 14664 1.805605E-05 0.125894E-04 5.838560E-21 0.407089E-20

5000 902565292 211049 2.338324E-04 0.185648E-03 7.994987E-20 0.634750E-19

6000 876586710 1116620 1.273827E-03 0.107052E-02 4.558466E-19 0.383093E-18

7000 846974877 3550774 4.192302E-03 0.363173E-02 1.559184E-18 0.135070E-17

Table 6. 7 Comparison of the reaction probability and rate constant of O2 +OO+O+O reaction

Temp. (oK)

Total collisions between reactants

Number of real reaction

P r

(Simulation)

P r

(Theoretical)

k f

(Simulation)

k f

(Theoretical)

3000 433257607 97 2.238853E-07 0.201857E-06 1.280387E-22 0.115441E-21

4000 437929163 9191 2.098741E-05 0.198873E-04 1.289762E-20 0.122216E-19

5000 429199928 139810 3.257456E-04 0.293266E-03 2.116688E-19 0.190564E-18

6000 417020964 790388 1.895320E-03 0.169109E-02 1.289010E-18 0.115011E-17

7000 402801642 2608729 6.476461E-03 0.573701E-02 4.577705E-18 0.405505E-17

Table 6. 8 Comparison of the reaction probability and rate constant of O+O+O2O2 +O2 reaction

Temp. (oK)

Total collisions between reactants

Number of real reaction

P r

(Simulation)

P r

(Theoretical)

k f

(Simulation)

k f

(Theoretical)

3000 186447756 148 7.937880E-07 0.643972E-06 1.419123E-045 0.115128E-44

4000 188588480 120 6.363061E-07 0.488072E-06 1.299858E-045 0.997041E-45

5000 185131710 91 4.915419E-07 0.383242E-06 1.143789E-045 0.891781E-45

6000 179556576 67 3.731414E-07 0.309784E-06 9.805790E-046 0.814081E-45

7000 173254226 51 2.943651E-07 0.256480E-06 8.650219E-046 0.753692E-45

Table 6. 9 Comparison of the reaction probability and rate constant of O+O+OO2+O reaction

Temp. (oK)

Total collisions between reactants

Number of real reaction

P r

(Simulation)

P r

(Theoretical)

k f

(Simulation)

k f

(Theoretical)

3000 746437311 3657 4.899273E-06 0.450826E-05 3.781211E-45 0.347944E-44

4000 755242580 2791 3.695501E-06 0.341685E-05 3.259020E-45 0.301328E-44

5000 741177555 2148 2.898091E-06 0.268297E-05 2.911261E-45 0.269516E-44

6000 718982844 1703 2.368624E-06 0.216870E-05 2.687134E-45 0.246033E-44

7000 694873458 1335 1.921213E-06 0.179554E-05 2.437256E-45 0.227783E-44

Table 6. 10 Comparison of the reaction probability and rate constant of NO+N2N +O+N2 reaction

Temp. (oK)

Total collisions between reactants

Number of real reaction

P r

(Simulation)

P r

(Theoretical)

k f

(Simulation)

k f

(Theoretical)

5000 249626105 464 1.858780E-06 0.194162E-05 1.412561E-21 0.147551E-20

7000 250173393 28670 1.146005E-04 0.113297E-03 9.473233E-20 0.936544E-19

9000 247166816 271610 1.098893E-03 0.103368E-02 9.672819E-19 0.909877E-18

11000 242704757 1077996 4.441594E-03 0.409384E-02 4.110775E-18 0.378892E-17

13000 238343701 2719260 1.140899E-02 0.103942E-01 1.100956E-17 0.100303E-16

Table 6. 11 Comparison of the reaction probability and rate constant of NO+O2N+O+O2 reaction

Temp. (oK)

Total collisions between reactants

Number of real reaction

P r

(Simulation)

P r

(Theoretical)

k f

(Simulation)

k f

(Theoretical)

5000 235424229 628 2.667525E-06 0.205645E-05 1.913965E-21 0.147551E-20

7000 236615349 38244 1.616294E-04 0.119997E-03 1.261472E-19 0.936543E-19

9000 233134814 343420 1.473053E-03 0.109481E-02 1.224226E-18 0.909877E-18

11000 228967220 1315563 5.745639E-03 0.433596E-02 5.020758E-18 0.378892E-17

13000 224779133 3221065 1.432991E-02 0.110090E-01 1.305607E-17 0.100303E-16

Table 6. 12 Comparison of the reaction probability and rate constant of NO+NON+O+NO reaction

Temp. (oK)

Total collisions between reactants

Number of real reaction

P r

(Simulation)

P r

(Theoretical)

k f

(Simulation)

k f

(Theoretical)

5000 493274083 1872 3.795050E-06 0.389306E-05 1.427100E-021 0.146396E-20

7000 494547920 115934 2.344242E-04 0.227166E-03 9.588958E-020 0.929208E-19

9000 488493032 1070455 2.191341E-03 0.207259E-02 9.544769E-019 0.902750E-18

11000 479800926 4259445 8.877525E-03 0.820839E-02 4.065693E-018 0.375925E-17

13000 470268366 10667725 2.268434E-02 0.208411E-01 1.083194E-017 0.995177E-17

Table 6. 13 Comparison of the reaction probability and rate constant of NO+NN +O+N reaction

Temp. (oK)

Total collisions between reactants

Number of real reaction

P r

(Simulation)

P r

(Theoretical)

k f

(Simulation)

k f

(Theoretical)

5000 266760622 980 3.673706E-06 0.363018E-05 2.986411E-21 0.295103E-20

7000 270420558 59722 2.208486E-04 0.211827E-03 1.952863E-19 0.187309E-18

9000 264623436 548760 2.073739E-03 0.193263E-02 1.952618E-18 0.181975E-17

11000 259673553 2150813 8.282757E-03 0.765412E-02 8.200219E-18 0.757785E-17

13000 254694166 5391097 2.116694E-02 0.194338E-01 2.184979E-17 0.200607E-16

Table 6. 14 Comparison of the reaction probability and rate constant of NO+ON+O+O reaction

Temp. (oK)

Total collisions between reactants

Number of real reaction

P r

(Simulation)

P r

(Theoretical)

k f

(Simulation)

k f

(Theoretical)

5000 223358315 978 4.378614E-06 0.433327E-05 2.981911E-021 0.295103E-20

7000 224668576 58772 2.615942E-04 0.252853E-03 1.937843E-019 0.187309E-18

9000 221564005 552839 2.495166E-03 0.230694E-02 1.968229E-018 0.181975E-17

11000 217709070 2156316 9.904576E-03 0.913655E-02 8.214855E-018 0.757785E-17

13000 213956988 5394345 2.521229E-02 0.231977E-01 2.180288E-017 0.200607E-16

Table 6. 15 Comparison of the reaction probability and rate constant of N +O+N2NO+N2 reaction

Temp. (oK)

Total collisions between reactants

Number of real reaction

P r

(Simulation)

P r

(Theoretical)

k f

(Simulation)

k f

(Theoretical)

5000 99122344 40 4.035417E-07 0.304911E-06 2.963733E-045 0.223936E-44

7000 99329520 24 2.416200E-07 0.218537E-06 2.092509E-045 0.189261E-44

9000 98280965 17 1.729735E-07 0.167800E-06 1.720584E-045 0.166912E-44

11000 96350646 10 1.037876E-07 0.134867E-06 1.161857E-045 0.150978E-44

13000 94522664 14 1.481126E-07 0.111954E-06 1.837347E-045 0.138879E-44

Table 6. 16 Comparison of the reaction probability and rate constant of N +O+O2NO+O2 reaction

Temp. (oK)

Total collisions between reactants

Number of real reaction

P r

(Simulation)

P r

(Theoretical)

k f

(Simulation)

k f

(Theoretical)

5000 99223776 32 3.225034E-07 0.304911E-06 2.368562E-045 0.223936E-44

7000 99226239 25 2.519495E-07 0.218537E-06 2.181966E-045 0.189261E-44

9000 98226610 18 1.832497E-07 0.167800E-06 1.822802E-045 0.166912E-44

11000 96373596 15 1.556443E-07 0.134867E-06 1.742370E-045 0.150978E-44

13000 94694018 13 1.372843E-07 0.111954E-06 1.703021E-045 0.138879E-44

Table 6. 17 Comparison of the reaction probability and rate constant of N +O+NONO+NO reaction

Temp. (oK)

Total collisions between reactants

Number of real reaction

P r

(Simulation)

P r

(Theoretical)

k f

(Simulation)

k f

(Theoretical)

5000 99073342 37 3.734607E-07 0.304911E-06 2.742809E-045 0.223936E-44

7000 99355778 21 2.113616E-07 0.218537E-06 1.830461E-045 0.189261E-44

9000 98045441 24 2.447844E-07 0.167800E-06 2.434893E-045 0.166912E-44

11000 96465977 17 1.762279E-07 0.134867E-06 1.972795E-045 0.150978E-44

13000 94639816 15 1.584957E-07 0.111954E-06 1.966150E-045 0.138879E-44

Table 6. 18 Comparison of the reaction probability and rate constant of N +O+NNO+N reaction

Temp. (oK)

Total collisions between reactants

Number of real reaction

P r

(Simulation)

P r

(Theoretical)

k f

(Simulation)

k f

(Theoretical)

5000 222368524 225 1.011834E-06 0.914497E-06 2.476983E-045 0.223870E-44

7000 223682461 170 7.600059E-07 0.655444E-06 2.193882E-045 0.189205E-44

9000 220237391 124 5.630288E-07 0.503272E-06 1.866755E-045 0.166863E-44

11000 216670853 122 5.630661E-07 0.404463E-06 2.101188E-045 0.150933E-44

13000 212511245 74 3.482169E-07 0.335746E-06 1.439954E-045 0.138838E-44

Table 6. 19 Comparison of the reaction probability and rate constant of N +O+ONO+O reaction

Temp. (oK)

Total collisions between reactants

Number of real reaction

P r

(Simulation)

P r

(Theoretical)

k f

(Simulation)

k f

(Theoretical)

5000 222535385 201 9.032271E-07 0.914497E-06 2.211112E-045 0.223870E-44

7000 223472402 185 8.278427E-07 0.655444E-06 2.389704E-045 0.189205E-44

9000 220318540 123 5.582826E-07 0.503272E-06 1.851018E-045 0.166863E-44

11000 216464094 117 5.405054E-07 0.404463E-06 2.016999E-045 0.150933E-44

13000 212461834 65 3.059373E-07 0.335746E-06 1.265119E-045 0.138838E-44

Table 6. 20 Comparison of the reaction probability and rate constant of N2 +ONO+N reaction

Temp. (oK)

Total collisions between reactants

Number of real reaction

P r

(Simulation)

P r

(Theoretical)

k f

(Simulation)

k f

(Theoretical)

5000 448696187 43293 9.648622E-05 0.100183E-03 6.597438E-20 0.685024E-19

7000 450814795 374796 8.313747E-04 0.812581E-03 6.183565E-19 0.604378E-18

9000 444335334 1205511 2.713066E-03 0.257461E-02 2.148765E-18 0.203911E-17

11000 436669803 2480978 5.681588E-03 0.533062E-02 4.731359E-18 0.443909E-17

13000 428279387 4039183 9.431187E-03 0.878537E-02 8.188798E-18 0.762805E-17

Table 6. 21 Comparison of the reaction probability and rate constant of NO+NN2 +O reaction

Temp. (oK)

Total collisions between reactants

Number of real reaction

P r

(Simulation)

P r

(Theoretical)

k f

(Simulation)

k f

(Theoretical)

5000 532736242 33141438 6.220984E-02 0.582376E-01 5.057131E-17 0.473422E-16

7000 534468471 31479363 5.889845E-02 0.553712E-01 5.208119E-17 0.489622E-16

9000 528640226 29895721 5.655211E-02 0.533227E-01 5.324907E-17 0.502083E-16

11000 519066616 28442223 5.479494E-02 0.517416E-01 5.424891E-17 0.512260E-16

13000 509389746 27193371 5.338421E-02 0.504612E-01 5.510638E-17 0.520890E-16

Table 6. 22 Comparison of the reaction probability and rate constant of NO+OO2 +N reaction

Temp. (oK)

Total collisions between reactants

Number of real reaction

P r

(Simulation)

P r

(Theoretical)

k f

(Simulation)

k f

(Theoretical)

5000 446187472 264810 5.934950E-04 0.607356E-03 4.041802E-19 0.413620E-18

7000 448940904 1222346 2.722732E-03 0.265693E-02 2.016951E-18 0.196820E-17

9000 442632876 2987210 6.748731E-03 0.644966E-02 5.323514E-18 0.508760E-17

11000 435020516 5452565 1.253404E-02 0.118315E-01 1.039573E-17 0.981302E-17

13000 426429436 8435851 1.978252E-02 0.185425E-01 1.710737E-17 0.160350E-16

Table 6. 23 Comparison of the reaction probability and rate constant of O2 +NNO+O reaction

Temp. (oK)

Total collisions between reactants

Number of real reaction

P r

(Simulation)

P r

(Theoretical)

k f

(Simulation)

k f

(Theoretical)

5000 446187472 264810 5.934950E-04 0.607356E-03 4.041802E-19 0.413620E-18

7000 448940904 1222346 2.722732E-03 0.265693E-02 2.016951E-18 0.196820E-17

9000 442632876 2987210 6.748731E-03 0.644966E-02 5.323514E-18 0.508760E-17

11000 435020516 5452565 1.253404E-02 0.118315E-01 1.039573E-17 0.981302E-17

13000 426429436 8435851 1.978252E-02 0.185425E-01 1.710737E-17 0.160350E-16

Table 6. 24 M ole percentage of each species by using original chem.dat.

Temp.

(oK)

N2 (Original)

N2 (Fitting)

O2 (Original)

O2 (Fitting)

NO (Original)

NO (Fitting)

N (Original)

N (Fitting)

O (Original)

O (Fitting)

2000 80 80 20 20 0 0 0 0 0 0

3000 78.73293 79.30586 19.04047 19.49159 0.5480151 0.2640975 0.0005548 5.9726E-5 1.678009 0.9383817 4000 58.51967 58.68676 0.2123696 0.2220255 0.4692463 0.938484 1.096412 0.5560535 39.70229 39.59669 6000 25.41407 36.97584 0.0039259 0.0063654 0.1099764 0.2671703 38.56771 25.1045 35.90432 37.64613 8000 0.24792 0.2827485 0.0001338 3.5631E-5 0.0020865 0.0023249 70.51454 70.89766 29.23532 28.81723 10000 0.0164276 0.0224934 2.6668E-5 4.4456E-6 0.0005067 0.0005867 71.36262 71.67037 28.62042 28.30656 12000 0.0039995 0.0045668 9.9989E-6 6.6664E-6 0.0002100 0.0001900 71.63901 71.78274 28.35678 28.2125 14000 0.0016150 0.0016265 5.0041E-6 6.6657E-6 9.4986E-5 5.9992E-5 71.94937 72.16114 28.04892 27.83717 16000 0.0006602 0.0006750 0 1.6665E-6 2.0007E-5 4.5000E-5 72.29124 72.49075 27.70809 27.50853

Figure 1. 1 Effective limits of major approximations in the DSM C method [10, 11].

: vertices of the graph : cell faces

: cut edges

Figure 1. 2 Sketch of graph and mesh.

move all molecules

enter new molecules

print out the data NO

NO reset

sampling data YES

YES sort (index) molecules

reach steady flow?

sufficient sampling?

start

set initial state and read system data

collide molecules

sample flow field

stop

Figure 2. 1 The flowchart of the standard DSM C method.

Figure 2. 2 Schematic diagram of the PDSC.

(a)

(b)

Figure 2. 3 M uST Visual Preprocessor for numerical simulations [73].

(a)

(b)

Figure 2. 4 Important features of the PDSC (a) future PDSC; (b) planned study of PDSC.

L

1

L

2

Cell 1 Cell 2

N

1

W

1

1

u

1

φ

t

N

2

W

2

2 2

φ

t

2

2

1 ,

1 mv mv

φ =

Figure 3. 1 Sketch of the concept of variable-time-step scheme.

move all molecules

enter new molecules

print out the data NO

NO reset

sampling data YES

YES sort (index) molecules

NO

YES reach steady flow?

adapt the mesh?

sufficient sampling?

start

set initial state and read system data

collide molecules

sample flow field

mesh refinement

stop

Figure 3. 2 The flowchart of the DSM C method with mesh adaptation.

Initial grid

Initial grid Initial grid Initial grid

1 hanging node (isotropic)

2 hanging node (isotropic)

3 hanging node (isotropic)

4 hanging node (isotropic)

hanging node removed (anisotropic)

hanging nodes removed (anisotropic)

hanging nodes removed (isotropic)

hanging nodes removed (isotropic)

isotropic ( 1st stage)

isotropic ( 1st stage)