• 沒有找到結果。

Chapter 1. Introduction

1.5 Research Motivation

The motivation of this research is to explore the efficient conversion of sunlight into chemical fuels through photoelectrochemical water splitting, which has the potential to generate sustainable hydrogen fuel. Our research focuses on the various strategies to improve the performance of the photoelectrochemical water splitting for ZnO nanorod-array-based photoanodes.

ZnO is chosen as a semiconductor material in the phototelectrochemical cell based on several reasons. First, our research proposes that a photoelectrode in the photoelectrochemical cell can achieve the overall water-splitting reaction. The CB and valence band position of the semiconductor should straddle the hydrogen (0 V vs. NHE) and oxygen (1.23 V vs. NHE) redox potential. The commonly used semiconductors for overall water splitting in photoelectrochemical cells are TiO2

and ZnO. The CB of ZnO is at a more negative position than that of TiO2, such that the photogenerated electrons are better able to reduce protons because they can obtain a larger driving force, resulting in greater solar energy conversion

33

efficiency. Second, ZnO may become an alternative to TiO2 for fabricating photoelectrodes because of its higher carrier mobility and high chemical stability in the neutral condition. Third, the morphology of ZnO can be easily controlled through adjusting synthesis conditions. Tuning the nanostructure of the ZnO may increase light absorbance and charge carrier separation.

Three main approaches are employed to improve the performance of photoelectrochemical water splitting. First, CdTe and InP quantum dots are used to sensitize the ZnO photoanode. Second, doping strategies are used to narrow the bandgap of the ZnO. Third, plasmic nanoparticles are placed on the ZnO to investigate the plasmonic-enhanced photoelectrochemical water-splitting reaction.

The 1D nanostructure of the ZnO can be a potential solution for the following reasons: (1) light absorption is raised because of the increasing light path in the photoelectrode; (2) the surface area of the photoelectrode is dramatically increased, resulting in an increased loading amount of quantum dots or nanoparticles; and (3) an electronic transport pathway is provided to improve electron transfer efficiency.

Chapter 2 describes all the analysis techniques used in this study.

Chapter 3 discusses a QD-sensitized nanowire photodevice based on the photosensitization of ZnO nanowires with CdTe and InP QDs through different strategies. CdTe with a more favorable CB energy (ECB= 1.0 V vs. NHE) can inject more energetic electrons into ZnO faster than CdSe (ECB= -0.6 V vs. NHE).

Additionally, InP QDs are typically more stable than chalcogenides because an oxide layer forms in air on the surface of the InP nanocrystal. The InP is also a non-toxic nanomaterial. We expect to harvest more visible-light regions using quantum dots in the solar spectrum to enhance the photoelectrochemical water-splitting reaction.

Chapter 4 examines the homogeneous doped ZnOxS1-x photoelectrochemical

34

water splitting. Traditional doping methods and alternative sensitization methods for solar hydrogen generation are provided to considerably enhance photocurrents.

Chapter 5 discusses the ZnO nanorod-array photoelectrode decorated with gold nanoparticles, and investigates the plasmon-induced effect in the photoelectrochemical cell. Measurement methods (described in Chapter 2) will be attempted to analyze the contribution of each plasmon-induced effect in the photoelectrochemical water-splitting reaction.

Chapter 6 using gold nanorods to decorate on the surface of the ZnO nanorod-array as photocathode, combining with the CdTe quantum dots sensitized TiO2

nanorods array as photoanode to investigate the plasmon-induced effect in the photocathode reaction.

In Chapter 7, the ZnO nanorod array was grown on the silver nanoparticle pattern. The usage of silver metallic nanostructures can support the desired surface plasmon effects to increase absorbance and achieve efficient charge-carrier collection inside the photoelectrode; moreover, the surface plasmon resonance of spherical silver nanostructures commonly occurs in a near-ultraviolet region to couple with the photoexcitaion of ZnO nanorods.[69] Both localized surface plasmon resonance in metal nanoparticles and plasmon polaritons propagating at the metal/semiconductor interface can improve the capture of sunlight and the collection of charge carriers.

Chapter 8 presents the NIR-driven photoelectrochemical water splitting using ZnO nanorod array decorated with CdTe quantum dots and plasmon-enhanced UCNs, which were employed to harvest and convert NIR light into high-energy photons. The high-energy photons excited the CdTe QDs to generate high-energy electron–hole pairs. These excited electrons are transferred to the conduction band

35

(CB) of ZnO nanorods, conducted to the Pt foil through the external circuit, and made to react with water to generate hydrogen, thereby producing the photocurrent.

The photogenerated holes are oxidized with water to form oxygen.

The associated fabrication and the factors that affect the photoelectrochemical performance of these strategies will also be discussed in each chapter. The controlling parameters connected with the strategies of each chapter are summarized in Figure 1-11.

Figure 1-11. Strategies of controlling parameters for this study.

36

References (Chapter 1)

[1] Blankenship, R. E.; Tiede, D. M.; Barber, J.; Brudvig, G. W.; Fleming, G.;

Ghirardi, M.; Gunner, M. R.; Junge, W.; Kramer, D. M.; Melis, A.; Moore, T.

A.; Moser, C. C.; Nocera, D. G.; Nozik, A. J.; Ort, D. R.; Parson, W. W.; Prince, R. C.; Sayre, R. T. “Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement” Science 2011, 332, 805.

[2] Barber, J. “Photosynthetic energy conversion: Natural and artificial” Chem.

Soc. Rev. 2009, 38, 185.

[3] van de Krol, R.; Liang, Y. Q.; Schoonman, J. “Solar hydrogen production with nanostructured metal oxides” J. Mater. Chem. 2008, 18, 2311.

[4] Atwater, H. A.; Polman, A. “Plasmonics for improved photovoltaic devices”

Nat. Mater. 2010, 9, 205.

[5] Gratzel, M. “Photoelectrochemical cells” Nature 2001, 414, 338.

[6] Yang, F.; Sun, K.; Forrest, S. R. “Efficient solar cells using all-organic nanocrystalline networks” Adv. Mater. 2007, 19, 4166.

[7] Kudo, A.; Miseki, Y. “Heterogeneous photocatalyst materials for water splitting” Chem. Soc. Rev. 2009, 38, 253.

[8] Fujishima, A.; Honda, K. “Electrochemical photolysis of water at a semiconductor electrode” Nature 1972, 238, 37.

[9] Bolton, J. R.; Strickler, S. J.; Connolly, J. S. “Limiting and realizable efficiencies of solar photolysis of water” Nature 1985, 316, 495.

[10] Turner, J. A. “A realizable renewable energy future” Science 1999, 285, 687.

[11] Sivula, K.; Le Formal, F.; Graetzel, M. “Solar water splitting: Progress using hematite (-Fe2O3) photoelectrodes” Chemsuschem 2011, 4, 432.

[12] Rodriguez, I.; Ramiro-Manzano, F.; Atienzar, P.; Martinez, J. M.; Meseguer, F.;

Garcia, H.; Corma, A. “Solar energy harvesting in photoelectrochemical solar cells” J. Mater. Chem. 2007, 17, 3205.

[13] Minggu, L. J.; Daud, W. R. W.; Kassim, M. B. “An overview of photocells and photoreactors for photoelectrochemical water splitting” Int. J. Hydrogen Energy 2010, 35, 5233.

[14] Khaselev, O.; Turner, J. A. “A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting” Science 1998, 280, 425.

[15] Buhbut, S.; Itzhakov, S.; Tauber, E.; Shalom, M.; Hod, I.; Geiger, T.; Garini, Y.; Oron, D.; Zaban, A. “Built-in quantum dot antennas in dye-sensitized solar cells” ACS Nano 2010, 4, 1293.

[16] Wolcott, A.; Smith, W. A.; Kuykendall, T. R.; Zhao, Y. P.; Zhang, J. Z.

“Photoelectrochemical water splitting using dense and aligned TiO2 nanorod arrays” Small 2009, 5, 104.

37

[17] Liu, M. Z.; Snapp, N. D.; Park, H. “Water photolysis with a cross-linked titanium dioxide nanowire anode” Chem. Sci. 2011, 2, 80.

[18] Mor, G. K.; Shankar, K.; Paulose, M.; Varghese, O. K.; Grimes, C. A.

“Enhanced photocleavage of water using titania nanotube arrays” Nano Lett.

2005, 5, 191.

[19] Paulose, M.; Shankar, K.; Yoriya, S.; Prakasam, H. E.; Varghese, O. K.; Mor, G. K.; Latempa, T. A.; Fitzgerald, A.; Grimes, C. A. “Anodic growth of highly ordered TiO2 nanotube arrays to 134 mu m in length” J. Phys. Chem. B 2006, 110, 16179.

[20] Hartmann, P.; Lee, D. K.; Smarsly, B. M.; Janek, J. “Mesoporous TiO2: Comparison of classical sol-gel and nanoparticle based photoelectrodes for the water splitting reaction” ACS Nano 2010, 4, 3147.

[21] Wolcott, A.; Smith, W. A.; Kuykendall, T. R.; Zhao, Y. P.; Zhang, J. Z.

“Photoelectrochemical study of nanostructured ZnO thin films for hydrogen generation from water splitting” Adv. Funct. Mater. 2009, 19, 1849.

[22] Ahn, K. S.; Yan, Y.; Shet, S.; Jones, K.; Deutsch, T.; Turner, J.; Al-Jassim, M.

“ZnO nanocoral structures for photoelectrochemical cells” Appl. Phys. Lett.

2008, 93

[23] Qiu, Y. C.; Yan, K. Y.; Deng, H.; Yang, S. H. “Secondary branching and nitrogen doping of ZnO nanotetrapods: Building a highly active network for photoelectrochemical water splitting” Nano Lett. 2012, 12, 407.

[24] Berglund, S. P.; Flaherty, D. W.; Hahn, N. T.; Bard, A. J.; Mullins, C. B.

“Photoelectrochemical oxidation of water using nanostructured BiVO4 films”

J. Phys. Chem. C 2011, 115, 3794.

[25] Iwase, A.; Kudo, A. “Photoelectrochemical water splitting using visible-light-responsive BiVO4 fine particles prepared in an aqueous acetic acid solution” J.

Mater. Chem. 2010, 20, 7536.

[26] Chakrapani, V.; Thangala, J.; Sunkara, M. K. “WO3 and W2N nanowire arrays for photoelectrochemical hydrogen production” Int. J. Hydrogen Energy 2009, 34, 9050.

[27] Alexander, B. D.; Kulesza, P. J.; Rutkowska, L.; Solarska, R.; Augustynski, J.

“Metal oxide photoanodes for solar hydrogen production” J. Mater. Chem.

2008, 18, 2298.

[28] Sivula, K.; Zboril, R.; Le Formal, F.; Robert, R.; Weidenkaff, A.; Tucek, J.;

Frydrych, J.; Gratzel, M. “Photoelectrochemical water splitting with mesoporous hematite prepared by a solution-based colloidal approach” J. Am.

Chem. Soc. 2010, 132, 7436.

[29] Le Formal, F.; Graetzel, M.; Sivula, K. “Controlling photoactivity in ultrathin

38

hematite films for solar water-splitting” Adv. Funct. Mater. 2010, 20, 1099.

[30] Morrish, R.; Rahman, M.; MacElroy, J. M. D.; Wolden, C. A. “Activation of hematite nanorod arrays for photoelectrochemical water splitting”

Chemsuschem 2011, 4, 474.

[31] Su, J. Z.; Guo, L. J.; Yoriya, S.; Grimes, C. A. “Aqueous growth of pyramidal-shaped BiVO4 nanowire arrays and structural characterization: Application to photoelectrochemical water splitting” Cryst. Growth Des. 2010, 10, 856.

[32] Cristino, V.; Caramori, S.; Argazzi, R.; Meda, L.; Marra, G. L.; Bignozzi, C. A.

“Efficient photoelectrochemical water splitting by anodically grown WO3

electrodes” Langmuir 2011, 27, 7276.

[33] Kim, J. K.; Shin, K.; Cho, S. M.; Lee, T. W.; Park, J. H. “Synthesis of transparent mesoporous tungsten trioxide films with enhanced photoelectrochemical response: Application to unassisted solar water splitting”

Energ Environ Sci 2011, 4, 1465.

[34] Su, J. Z.; Feng, X. J.; Sloppy, J. D.; Guo, L. J.; Grimes, C. A. “Vertically aligned WO3 nanowire arrays grown directly on transparent conducting oxide coated glass: Synthesis and photoelectrochemical properties” Nano Lett. 2011, 11, 203.

[35] Mohapatra, S. K.; John, S. E.; Banerjee, S.; Misra, M. “Water photooxidation by smooth and ultrathin alpha-Fe2O3 nanotube arrays” Chem. Mater. 2009, 21, 3048.

[36] Brillet, J.; Gratzel, M.; Sivula, K. “Decoupling feature size and functionality in solution-processed, porous hematite electrodes for solar water splitting”

Nano Lett. 2010, 10, 4155.

[37] Duret, A.; Gratzel, M. “Visible light-induced water oxidation on mesoscopic alpha-Fe2O3 films made by ultrasonic spray pyrolysis” J. Phys. Chem. B 2005, 109, 17184.

[38] Heller, A. “Hydrogen-evolving solar-cells” Science 1984, 223, 1141.

[39] Chen, X. B.; Shen, S. H.; Guo, L. J.; Mao, S. S. “Semiconductor-based photocatalytic hydrogen generation” Chem. Rev. 2010, 110, 6503.

[40] Hochbaum, A. I.; Yang, P. D. “Semiconductor nanowires for energy conversion”

Chem. Rev. 2010, 110, 527.

[41] Hambourger, M.; Moore, G. F.; Kramer, D. M.; Gust, D.; Moore, A. L.; Moore, T. A. “Biology and technology for photochemical fuel production” Chem. Soc.

Rev. 2009, 38, 25.

[42] Rajeshwar, K.; de Tacconi, N. R. “Solution combustion synthesis of oxide semiconductors for solar energy conversion and environmental remediation”

Chem. Soc. Rev. 2009, 38, 1984.

[43] Chen, H. M.; Liu, R. S. “Architecture of metallic nanostructures: Synthesis

39

strategy and specific applications” J. Phys. Chem. C 2011, 115, 3513.

[44] Zeng, H. C. “Synthetic architecture of interior space for inorganic nanostructures” J. Mater. Chem. 2006, 16, 649.

[45] Miller, E. L. “Solar hydrogen production by photoelectrochemical water splitting: The promise and challenge”; John Wiley & Sons, Ltd: 2010, 1.

[46] Liu, G.; Wang, L. Z.; Yang, H. G.; Cheng, H. M.; Lu, G. Q. “Titania-based photocatalysts-crystal growth, doping and heterostructuring” J. Mater. Chem.

2010, 20, 831.

[47] Hoang, S.; Guo, S. W.; Hahn, N. T.; Bard, A. J.; Mullins, C. B. “Visible light driven photoelectrochemical water oxidation on nitrogen-modified TiO2

nanowires” Nano Lett. 2012, 12, 26.

[48] Wang, P.; Zakeeruddin, S. M.; Moser, J. E.; Humphry-Baker, R.; Comte, P.;

Aranyos, V.; Hagfeldt, A.; Nazeeruddin, M. K.; Gratzel, M. “Stable new sensitizer with improved light harvesting for nanocrystalline dye-sensitized solar cells” Adv. Mater. 2004, 16, 1806.

[49] Li, L.; Duan, L. L.; Xu, Y. H.; Gorlov, M.; Hagfeldt, A.; Sun, L. C. “A photoelectrochemical device for visible light driven water splitting by a molecular ruthenium catalyst assembled on dye-sensitized nanostructured TiO2Chem. Commun. 2010, 46, 7307.

[50] Brimblecombe, R.; Swiegers, G. F.; Dismukes, G. C.; Spiccia, L. “Sustained water oxidation photocatalysis by a bioinspired manganese cluster” Angew.

Chem. Int. Ed. 2008, 47, 7335.

[51] Algar, W. R.; Susumu, K.; Delehanty, J. B.; Medintz, I. L. “Semiconductor quantum dots in bioanalysis: Crossing the valley of death” Anal. Chem. 2011, 83, 8826.

[52] Wolcott, A.; Kuykendall, T. R.; Chen, W.; Chen, S. W.; Zhang, J. Z. “Synthesis and characterization of ultrathin WO3 nanodisks utilizing long-chain poly(ethylene glycol)” J. Phys. Chem. B 2006, 110, 25288.

[53] Wang, G. M.; Yang, X. Y.; Qian, F.; Zhang, J. Z.; Li, Y. “Double-sided CdS and CdSe quantum dot co-sensitized ZnO nanowire arrays for photoelectrochemical hydrogen generation” Nano Lett. 2010, 10, 1088.

[54] Chen, H. M.; Chen, C. K.; Lin, C. C.; Liu, R. S.; Yang, H.; Chang, W. S.; Chen, K. H.; Chan, T. S.; Lee, J. F.; Tsai, D. P. “Multi-bandgap-sensitized zno nanorod photoelectrode arrays for water splitting: An x-ray absorption spectroscopy approach for the electronic evolution under solar illumination” J. Phys. Chem.

C 2011, 115, 21971.

[55] Chen, H. M.; Chen, C. K.; Liu, R. S.; Zhang, L.; Zhang, J. J.; Wilkinson, D. P.

“Nano-architecture and material designs for water splitting photoelectrodes”

40

Chem. Soc. Rev. 2012, 41, 5654.

[56] Badescu, V.; Badescu, A. M. “Improved model for solar cells with up-conversion of low-energy photons” Renew Energ 2009, 34, 1538.

[57] Wang, F.; Liu, X. G. “Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals” Chem. Soc. Rev. 2009, 38, 976.

[58] Wang, F.; Han, Y.; Lim, C. S.; Lu, Y. H.; Wang, J.; Xu, J.; Chen, H. Y.; Zhang, C.; Hong, M. H.; Liu, X. G. “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping” Nature 2010, 463, 1061.

[59] Wang, Y.; Chen, G.; Yang, M. X.; Silber, G.; Xing, S. X.; Tan, L. H.; Wang, F.;

Feng, Y. H.; Liu, X. G.; Li, S. Z.; Chen, H. Y. “A systems approach towards the stoichiometry-controlled hetero-assembly of nanoparticles” Nat. Commun.

2010, 1

[60] Zhang, H.; Li, Y. J.; Ivanov, I. A.; Qu, Y. Q.; Huang, Y.; Duan, X. F. “Plasmonic modulation of the upconversion fluorescence in NaYF4:Yb/Tm hexaplate nanocrystals using gold nanoparticles or nanoshells” Angew. Chem. Int. Ed.

2010, 49, 2865.

[61] Zhang, W. H.; Ding, F.; Chou, S. Y. “Large enhancement of upconversion luminescence of NaYF4:Yb3+/Er3+ nanocrystal by 3d plasmonic nano-antennas”

Adv. Mater. 2012, 24, Op236.

[62] Qin, W. P.; Zhang, D. S.; Zhao, D.; Wang, L. L.; Zheng, K. Z. “Near-infrared photocatalysis based on YF3 : Yb3+, Tm3+/TiO2 core/shell nanoparticles” Chem.

Commun. 2010, 46, 2304.

[63] Wang, H. Q.; Batentschuk, M.; Osvet, A.; Pinna, L.; Brabec, C. J. “Rare-earth ion doped up-conversion materials for photovoltaic applications” Adv. Mater.

2011, 23, 2675.

[64] Dang, X.; Qi, J.; Klug, M. T.; Chen, P. Y.; Yun, D. S.; Fang, N. X.; Hammond, P. T.; Belcher, A. M. “Tunable localized surface plasmon-enabled broadband light-harvesting enhancement for high-efficiency panchromatic dye-sensitized solar cells” Nano Lett. 2013, 13, 637.

[65] Zhang, Z. H.; Zhang, L. B.; Hedhili, M. N.; Zhang, H. N.; Wang, P. “Plasmonic gold nanocrystals coupled with photonic crystal seamlessly on TiO2 nanotube photoelectrodes for efficient visible light photoelectrochemical water splitting”

Nano Lett. 2013, 13, 14.

[66] Linic, S.; Christopher, P.; Ingram, D. B. “Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy” Nat. Mater. 2011, 10, 911.

[67] Liu, Z. W.; Hou, W. B.; Pavaskar, P.; Aykol, M.; Cronin, S. B. “Plasmon resonant enhancement of photocatalytic water splitting under visible illumination” Nano Lett. 2011, 11, 1111.

41

[68] Nozik, A. J. “Quantum dot solar cells” Physica E-Low-Dimensional Systems

& Nanostructures 2002, 14, 115.

[69] Tao, A. R.; Habas, S.; Yang, P. D. “Shape control of colloidal metal nanocrystals” Small 2008, 4, 310.

42

Chapter 2. Materials Preparation and Characterization