• 沒有找到結果。

T6SS-I 與調節壓力相關之轉錄調控因子蛋白之關係 目前相關 研究證實不同菌種之 T6SS 可受不同環境壓力誘導表

3.9 T6SS-I 之表現調控 .1 Hcp 抗體製備

3.9.2 T6SS-I 與調節壓力相關之轉錄調控因子蛋白之關係 目前相關 研究證實不同菌種之 T6SS 可受不同環境壓力誘導表

現,而不同轉錄調控蛋白對 T6SS 的調控機制亦迥異。如圖十三 B 之 左圖顯示,西方墨點法分析rpoS、soxRS、pecS 和pecSpecM 的 全蛋白圖譜與 CG43S3 並無明顯差異;有趣的是fur 的全蛋白圖譜與

24

CG43S3 或其他菌株明顯不同,缺少了 18 kDa 蛋白,並於約 30 kDa 位置出現一未知蛋白;而圖十三 B 右圖結果確認回補 fur 基因後,出 現 18 kDa 蛋白,暗示此抗體會非專一地辨認 Fur 蛋白。為了瞭解 T6SS-I 是否與外膜蛋白或第三型線毛的表現相關,如圖十三 C 的西 方墨點分析結果顯示,Hcp 抗體可以非專一性地分辨 OmpA 外膜蛋 白。如圖十四所示,為了降低非專一性的干擾,將抗體稀釋 30000 倍 後的西方墨點法分析結果顯示,雖然非專一性的蛋白帶明顯減少,此 抗體卻無法偵測出於 CG43S3 中大量表現約 34 kDa 的重組 Hcp 融合 蛋白,顯示此抗體的專一性和靈敏度太低。

25 T6SS-III 的組成不完整,缺少 hcp 基因,顯示可能已喪失功能性。CG43 之 T6SS-I 和 NTUH K-2044、MGH78578 依樣具有分別與 T6SS 的結 構形成和傳遞作用之蛋白生成相關的 vgrG 和 icmF gene cluster[65]。

VgrG 之功能域預測分析結果則在其 C 端發現一功能未知之區域,此 VgrG-I 為一 evolved VgrG(圖二)。

clpV 基因缺失使克雷白氏肺炎桿菌 CG43 在對數增殖期的晚期、

生長減衰期和定常期的早期生長較遲緩(圖六 A),可能因為缺少了 ClpV 的 ATP 水解酶活性,造成生長時能量供給不足,造成菌數增長 較為緩慢、菌落大小不一的現象(圖六 B),而能量不足亦可能是造成

26 為 T6SS 正常運作所必須,亦為 Y. pseudotuberculosis 對抗酸性環境壓 力,於酸性環境中之存活所必須[60]。克雷白氏肺炎桿菌 CG43 缺失

27

一性不足,無法明確辨識 Hcp 蛋白質;大量表現 hcp 或 fur 之菌株也 無法確認 Hcp 的表現。未來可以再純化(re-purification)方式改善抗體 專一性的問題,有鑑於抗體之專一性和敏感度不足,未來可以 q-PCR 方式探討 T6SS-I 之調控途徑,明確反映 hcp、clpV 和 vgrG 之表現量,

進而描繪出 T6SS-I 之調控途徑。

28

1. Topley WWC, Wilson GS, Collier LH, Balows A, Sussman M, et al. (1998) Topley

& Wilson's microbiology and microbial infections. London; New York; Arnold;

Oxford University Press.

2. Podschun R, Ullmann U (1998) Klebsiella spp. as nosocomial pathogens:

epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin Microbiol Rev 11: 589-603.

3. Bergogne-Berezin E (1995) Treatment and prevention of nosocomial pneumonia.

Chest 108: 26S-34S.

4. Carpenter JL (1990) Klebsiella pulmonary infections: occurrence at one medical center and review. Rev Infect Dis 12: 672-682.

5. Wang JH, Liu YC, Lee SS, Yen MY, Chen YS, et al. (1998) Primary liver abscess due to Klebsiella pneumoniae in Taiwan. Clin Infect Dis 26: 1434-1438.

6. Colodner R, Raz R, Chazan B, Sakran W (2004) Susceptibility pattern of extended-spectrum beta-lactamase producing bacteria isolated from inpatients to five antimicrobial drugs in a community hospital in Northern Israel. Int J Antimicrob Agents 24: 409-410.

7. French GL, Shannon KP, Simmons N (1996) Hospital outbreak of Klebsiella pneumoniae resistant to broad-spectrum cephalosporins and beta-lactam-beta-lactamase inhibitor combinations by hyperproduction of SHV-5 beta-lactamase. J Clin Microbiol 34: 358-363.

8. Hirsch EB, Tam VH (2010) Detection and treatment options for Klebsiella pneumoniae carbapenemases (KPCs): an emerging cause of multidrug-resistant infection. J Antimicrob Chemother 65: 1119-1125.

9. Nordmann P, Cuzon G, Naas T (2009) The real threat of Klebsiella pneumoniae carbapenemase-producing bacteria. Lancet Infect Dis 9: 228-236.

10. Kumarasamy KK, Toleman MA, Walsh TR, Bagaria J, Butt F, et al. (2010) Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study. Lancet Infect Dis 10: 597-602.

11. Yong D, Toleman MA, Giske CG, Cho HS, Sundman K, et al. (2009) Characterization of a new metallo-beta-lactamase gene, bla(NDM-1), and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob Agents Chemother 53: 5046-5054.

12. Amako K, Meno Y, Takade A (1988) Fine structures of the capsules of Klebsiella pneumoniae and Escherichia coli K1. J Bacteriol 170: 4960-4962.

13. Mizuta K, Ohta M, Mori M, Hasegawa T, Nakashima I, et al. (1983) Virulence for mice of Klebsiella strains belonging to the O1 group: relationship to their

29

capsular (K) types. Infect Immun 40: 56-61.

14. Pan YJ, Fang HC, Yang HC, Lin TL, Hsieh PF, et al. (2008) Capsular polysaccharide synthesis regions in Klebsiella pneumoniae serotype K57 and a new capsular serotype. J Clin Microbiol 46: 2231-2240.

15. Podschun R, Fischer A, Ullmann U (1992) Siderophore production of Klebsiella species isolated from different sources. Zentralbl Bakteriol 276: 481-486.

16. Williams P, Lambert PA, Brown MR, Jones RJ (1983) The role of the O and K antigens in determining the resistance of Klebsiella aerogenes to serum killing and phagocytosis. J Gen Microbiol 129: 2181-2191.

17. McCallum KL, Schoenhals G, Laakso D, Clarke B, Whitfield C (1989) A high-molecular-weight fraction of smooth lipopolysaccharide in Klebsiella serotype O1:K20 contains a unique O-antigen epitope and determines resistance to nonspecific serum killing. Infect Immun 57: 3816-3822.

18. Domenico P, Schwartz S, Cunha BA (1989) Reduction of capsular polysaccharide production in Klebsiella pneumoniae by sodium salicylate. Infect Immun 57:

3778-3782.

19. Domenico P, Tomas JM, Merino S, Rubires X, Cunha BA (1999) Surface antigen exposure by bismuth dimercaprol suppression of Klebsiella pneumoniae capsular polysaccharide. Infect Immun 67: 664-669.

20. Sebghati TA, Korhonen TK, Hornick DB, Clegg S (1998) Characterization of the type 3 fimbrial adhesins of Klebsiella strains. Infect Immun 66: 2887-2894.

21. de Lorenzo V, Martinez JL (1988) Aerobactin production as a virulence factor: a reevaluation. Eur J Clin Microbiol Infect Dis 7: 621-629.

22. Nassif X, Sansonetti PJ (1986) Correlation of the virulence of Klebsiella pneumoniae K1 and K2 with the presence of a plasmid encoding aerobactin.

Infect Immun 54: 603-608.

23. Gerlach RG, Hensel M (2007) Protein secretion systems and adhesins: the molecular armory of Gram-negative pathogens. Int J Med Microbiol 297:

401-415.

24. Saier MH, Jr. (2006) Protein secretion and membrane insertion systems in gram-negative bacteria. J Membr Biol 214: 75-90.

25. Mougous JD, Cuff ME, Raunser S, Shen A, Zhou M, et al. (2006) A virulence locus of Pseudomonas aeruginosa encodes a protein secretion apparatus.

Science 312: 1526-1530.

26. Pukatzki S, Ma AT, Sturtevant D, Krastins B, Sarracino D, et al. (2006) Identification of a conserved bacterial protein secretion system in Vibrio cholerae using the Dictyostelium host model system. Proc Natl Acad Sci U S A 103: 1528-1533.

30

27. Hood RD, Singh P, Hsu F, Guvener T, Carl MA, et al. (2010) A type VI secretion system of Pseudomonas aeruginosa targets a toxin to bacteria. Cell Host Microbe 7: 25-37.

28. Jani AJ, Cotter PA (2010) Type VI secretion: not just for pathogenesis anymore.

Cell Host Microbe 8: 2-6.

29. MacIntyre DL, Miyata ST, Kitaoka M, Pukatzki S (2010) The Vibrio cholerae type VI secretion system displays antimicrobial properties. Proc Natl Acad Sci U S A 107: 19520-19524.

30. Murdoch SL, Trunk K, English G, Fritsch MJ, Pourkarimi E, et al. (2011) The opportunistic pathogen Serratia marcescens utilizes type VI secretion to target bacterial competitors. J Bacteriol 193: 6057-6069.

31. Russell AB, Hood RD, Bui NK, LeRoux M, Vollmer W, et al. (2011) Type VI secretion delivers bacteriolytic effectors to target cells. Nature 475: 343-347.

32. Schwarz S, Hood RD, Mougous JD (2010) What is type VI secretion doing in all those bugs? Trends Microbiol 18: 531-537.

33. Schwarz S, West TE, Boyer F, Chiang WC, Carl MA, et al. (2010) Burkholderia type VI secretion systems have distinct roles in eukaryotic and bacterial cell interactions. PLoS Pathog 6: e1001068.

34. Pukatzki S, McAuley SB, Miyata ST (2009) The type VI secretion system:

translocation of effectors and effector-domains. Curr Opin Microbiol 12:

11-17.

35. Bingle LE, Bailey CM, Pallen MJ (2008) Type VI secretion: a beginner's guide.

Curr Opin Microbiol 11: 3-8.

36. Das S, Chaudhuri K (2003) Identification of a unique IAHP (IcmF associated homologous proteins) cluster in Vibrio cholerae and other proteobacteria through in silico analysis. In Silico Biol 3: 287-300.

37. Filloux A, Hachani A, Bleves S (2008) The bacterial type VI secretion machine:

yet another player for protein transport across membranes. Microbiology 154:

1570-1583.

38. Aksyuk AA, Leiman PG, Kurochkina LP, Shneider MM, Kostyuchenko VA, et al.

(2009) The tail sheath structure of bacteriophage T4: a molecular machine for infecting bacteria. EMBO J 28: 821-829.

39. Leiman PG, Basler M, Ramagopal UA, Bonanno JB, Sauder JM, et al. (2009) Type VI secretion apparatus and phage tail-associated protein complexes share a common evolutionary origin. Proc Natl Acad Sci U S A 106: 4154-4159.

40. Pell LG, Kanelis V, Donaldson LW, Howell PL, Davidson AR (2009) The phage lambda major tail protein structure reveals a common evolution for long-tailed phages and the type VI bacterial secretion system. Proc Natl Acad Sci U S A

31

106: 4160-4165.

41. Pukatzki S, Ma AT, Revel AT, Sturtevant D, Mekalanos JJ (2007) Type VI secretion system translocates a phage tail spike-like protein into target cells where it cross-links actin. Proc Natl Acad Sci U S A 104: 15508-15513.

42. Ballister ER, Lai AH, Zuckermann RN, Cheng Y, Mougous JD (2008) In vitro self-assembly of tailorable nanotubes from a simple protein building block.

Proc Natl Acad Sci U S A 105: 3733-3738.

43. Kanamaru S, Leiman PG, Kostyuchenko VA, Chipman PR, Mesyanzhinov VV, et al. (2002) Structure of the cell-puncturing device of bacteriophage T4. Nature 415: 553-557.

44. Zheng J, Leung KY (2007) Dissection of a type VI secretion system in Edwardsiella tarda. Mol Microbiol 66: 1192-1206.

45. Ma AT, McAuley S, Pukatzki S, Mekalanos JJ (2009) Translocation of a Vibrio cholerae type VI secretion effector requires bacterial endocytosis by host cells.

Cell Host Microbe 5: 234-243.

46. Ma AT, Mekalanos JJ (2010) In vivo actin cross-linking induced by Vibrio cholerae type VI secretion system is associated with intestinal inflammation.

Proc Natl Acad Sci U S A 107: 4365-4370.

47. Suarez G, Sierra JC, Erova TE, Sha J, Horneman AJ, et al. (2010) A type VI secretion system effector protein, VgrG1, from Aeromonas hydrophila that induces host cell toxicity by ADP ribosylation of actin. J Bacteriol 192:

155-168.

48. Bonemann G, Pietrosiuk A, Diemand A, Zentgraf H, Mogk A (2009) Remodelling of VipA/VipB tubules by ClpV-mediated threading is crucial for type VI protein secretion. EMBO J 28: 315-325.

49. Schlieker C, Zentgraf H, Dersch P, Mogk A (2005) ClpV, a unique Hsp100/Clp member of pathogenic proteobacteria. Biol Chem 386: 1115-1127.

50. Boyer F, Fichant G, Berthod J, Vandenbrouck Y, Attree I (2009) Dissecting the bacterial type VI secretion system by a genome wide in silico analysis: what can be learned from available microbial genomic resources? BMC Genomics 10: 104.

51. Weber B, Hasic M, Chen C, Wai SN, Milton DL (2009) Type VI secretion modulates quorum sensing and stress response in Vibrio anguillarum. Environ Microbiol 11: 3018-3028.

52. Suarez G, Sierra JC, Sha J, Wang S, Erova TE, et al. (2008) Molecular characterization of a functional type VI secretion system from a clinical isolate of Aeromonas hydrophila. Microb Pathog 44: 344-361.

53. Aschtgen MS, Bernard CS, De Bentzmann S, Lloubes R, Cascales E (2008) SciN

32

is an outer membrane lipoprotein required for type VI secretion in enteroaggregative Escherichia coli. J Bacteriol 190: 7523-7531.

54. Schell MA, Ulrich RL, Ribot WJ, Brueggemann EE, Hines HB, et al. (2007) Type VI secretion is a major virulence determinant in Burkholderia mallei. Mol Microbiol 64: 1466-1485.

55. Santic M, Molmeret M, Barker JR, Klose KE, Dekanic A, et al. (2007) A Francisella tularensis pathogenicity island protein essential for bacterial proliferation within the host cell cytosol. Cell Microbiol 9: 2391-2403.

56. Parsons DA, Heffron F (2005) sciS, an icmF homolog in Salmonella enterica serovar Typhimurium, limits intracellular replication and decreases virulence.

Infect Immun 73: 4338-4345.

57. Lauriano CM, Barker JR, Yoon SS, Nano FE, Arulanandam BP, et al. (2004) MglA regulates transcription of virulence factors necessary for Francisella tularensis intraamoebae and intramacrophage survival. Proc Natl Acad Sci U S A 101: 4246-4249.

58. Hunt TA, Kooi C, Sokol PA, Valvano MA (2004) Identification of Burkholderia cenocepacia genes required for bacterial survival in vivo. Infect Immun 72:

4010-4022.

59. Bladergroen MR, Badelt K, Spaink HP (2003) Infection-blocking genes of a symbiotic Rhizobium leguminosarum strain that are involved in temperature-dependent protein secretion. Mol Plant Microbe Interact 16:

53-64.

60. Zhang W, Wang Y, Song Y, Wang T, Xu S, et al. (2013) A type VI secretion system regulated by OmpR in Yersinia pseudotuberculosis functions to maintain intracellular pH homeostasis. Environ Microbiol 15: 557-569.

61. Cascales E (2008) The type VI secretion toolkit. EMBO Rep 9: 735-741.

62. Leung KY, Siame BA, Snowball H, Mok YK (2011) Type VI secretion regulation:

crosstalk and intracellular communication. Curr Opin Microbiol 14: 9-15.

63. Bernard CS, Brunet YR, Gueguen E, Cascales E (2010) Nooks and crannies in type VI secretion regulation. J Bacteriol 192: 3850-3860.

64. Brunet YR, Bernard CS, Gavioli M, Lloubes R, Cascales E (2011) An epigenetic switch involving overlapping fur and DNA methylation optimizes expression of a type VI secretion gene cluster. PLoS Genet 7: e1002205.

65. Sarris PF, Zoumadakis C, Panopoulos NJ, Scoulica EV (2011) Distribution of the putative type VI secretion system core genes in Klebsiella spp. Infect Genet Evol 11: 157-166.

66. Chang HY, Lee JH, Deng WL, Fu TF, Peng HL (1996) Virulence and outer membrane properties of a galU mutant of Klebsiella pneumoniae CG43.

33

Microb Pathog 20: 255-261.

67. Joseph S, Russell DW (2001) Molecular Cloning: a laboratory manual-3rd edition. Cold Spring Harbor Laboratory Press.

68. Skorupski K, Taylor RK (1996) Positive selection vectors for allelic exchange.

Gene 169: 47-52.

69. Keen NT, Tamaki S, Kobayashi D, Trollinger D (1988) Improved broad-host-range plasmids for DNA cloning in gram-negative bacteria. Gene 70: 191-197.

70. Hall HK, Foster JW (1996) The role of fur in the acid tolerance response of Salmonella typhimurium is physiologically and genetically separable from its role in iron acquisition. J Bacteriol 178: 5683-5691.

71. Lin CT, Huang TY, Liang WC, Peng HL (2006) Homologous response regulators KvgA, KvhA and KvhR regulate the synthesis of capsular polysaccharide in Klebsiella pneumoniae CG43 in a coordinated manner. J Biochem 140:

429-438.

72. Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory Press.

73. Li M, Le Trong I, Carl MA, Larson ET, Chou S, et al. (2012) Structural basis for type VI secretion effector recognition by a cognate immunity protein. PLoS Pathog 8: e1002613.

74. Gueriri I, Bay S, Dubrac S, Cyncynatus C, Msadek T (2008) The Pta-AckA pathway controlling acetyl phosphate levels and the phosphorylation state of the DegU orphan response regulator both play a role in regulating Listeria monocytogenes motility and chemotaxis. Mol Microbiol 70: 1342-1357.

75. Fan L-C (2012) YfdX role in acid-resistance response of Klebsiella pneumoniae.

Hsinchu, Taiwan R.O.C.: National Chiao Tung University.

76. Basler M, Pilhofer M, Henderson GP, Jensen GJ, Mekalanos JJ (2012) Type VI secretion requires a dynamic contractile phage tail-like structure. Nature 483:

182-186.

77. de Lorenzo V, Timmis KN (1994) Analysis and construction of stable phenotypes in gram-negative bacteria with Tn5- and Tn10-derived minitransposons.

Methods Enzymol 235: 386-405.

78. Peng HL, Wang PY, Wu JL, Chiu CT, Chang HY (1991) Molecular epidemiology of Klebsiella pneumoniae. Chinese journal of microbiology and immunology 24: 264-271.

34

RecA1 supE44 endA1 hsdR17 gyrA96

rolA1 thi (lac-proAB) Lab stock

S17-1λpir

Tpr Smr recA, thi, pro, hsdRM [PR4-2-Tc::Mu:Kmr Tn7](pir)

[77]

CG43yfdX yfdX deletion mutant in CG43, Smr Lab stock CG43hcp hcp deletion mutant in CG43, Smr This Study CG43clpV clpV deletion mutant in CG43, Smr This Study CG43vgrG vgrG deletion mutant in CG43, Smr This Study CG43vgrG C-ter rcsD Hk domain deletion mutant in

CG43, Smr

This Study CG43rcsB rcsB deletion mutant in CG43, Smr Lab stock CG43mrkA mrkA deletion mutant in CG43, Smr Lab stock

35

CG43ompA ompA deletion mutant in CG43, Smr Lab stock CG43ompC ompC deletion mutant in CG43, Smr Lab stock CG43ompF ompF deletion mutant in CG43, Smr Lab stock CG43ompN ompN deletion mutant in CG43, Smr Lab stock CG43yjcC yjcC deletion mutant in CG43, Smr Lab stock CG43mrkH mrkH deletion mutant in CG43, Smr Lab stock CG43mrkI mrkI deletion mutant in CG43, Smr Lab stock CG43mrkJ mrkJ deletion mutant in CG43, Smr Lab stock CG43fur fur deletion mutant in CG43, Smr Lab stock CG43rpoS rpoS deletion mutant in CG43, Smr Lab stock CG43soxRS soxRS deletion mutant in CG43, Smr Lab stock CG43pecS pecS deletion mutant in CG43, Smr Lab stock

CG43pecSpecM pecS pecM mutant in CG43, Smr Lab stock

CG43lacZhcp lacZ hcp mutant in CG43, Smr This study

CG43lacZclpV lacZ clpV mutant in CG43, Smr This study

CG43lacZvgrG lacZ vgrG mutant in CG43, Smr This study

36

表二:本研究所使用的質體

質體 相關特性

來源或 參考文獻

yT&A PCR cloning vector,Apr

Yeastern Biotech Co.

pET30b

Kmr, His-tagged protein expression vector

Novagen Co.

pBAD202

Kmr, His-tagged protein expression vector

Invitrogen Co.

pKAS46 Apr, Kmr, suicide vector, rpsL Lab stock placZ15 Cmr, promoter selection vector, lacZ+ Lab stock

pET30b-Hcp

Kmr, His-tagged protein expression vector, 492-bp fragment encoding full-length Hcp cloned into pET30b

This study

pBAD202-Hcp

Kmr, His-tagged protein expression vector, 492-bp fragment encoding full-length Hcp cloned into pBAD202

Y. C. Lai, CSMU

37

(A)

(B)

圖一:克雷白氏肺炎桿菌之 T6SS 基因組成示意圖

38

圖二:Hcp、ClpV 與 VgrG 蛋白質功能區域分析

以線上軟體 Pfam(http://pfam.sanger.ac.uk/)分析 Hcp、ClpV 和 VgrG 之胺基酸序列並對其功能域進行預測。

39

(A)

(B)

圖三:建構 hcp基因缺損突變株

(A)hcp 基因示意圖 hcpCF/hcpCR 為設計來確認 hcp 突變株之引 子;虛線部分表示基因缺損位置。(B)利用 PCR 原理確認 hcp 突 變株。M:DNA 分子大小標記物,WT:野生型菌株,P:帶有突變 片段的 pKAS46 載體,Mu:hcp 突變株。基因缺損的詳細流程於實 驗材料與方法中。

P Mu M WT

500 750 1000 1500 2000

1026 564 bp

40

(A)

(B)

圖四:建構clpV 基因缺損突變株

(A)clpV 基因示意圖 clpVAF/clpVBR 為設計來確認 clpV 突變株之 引子;虛線部分表示基因缺損位置。(B)利用 PCR 原理確認 clpV 突變株。M:DNA 分子大小標記物,WT:野生型菌株,P:帶有突 變片段的 pKAS46 載體,Mu:clpV 突變株。基因缺損的詳細流程於 實驗材料與方法中。

41

(A)

(B)

(C)

42

(D)

圖五:建構vgrG 與vgrG - C 端變異區基因缺損突變株

(A)vgrG 基因示意圖 vgrGCF/vgrGCR 為設計來確認 vgrG 突變株 之引子;虛線部分表示基因缺損位置。(B)利用 PCR 原理確認 vgrG

(A)vgrG 基因示意圖 vgrGCF/vgrGCR 為設計來確認 vgrG 突變株 之引子;虛線部分表示基因缺損位置。(B)利用 PCR 原理確認 vgrG

相關文件