• 沒有找到結果。

Conclusion and Future Work

According to all the investigation, we can get some conclusion. In chapter2, lateral double diffused MOSFET (LDMOS) has been characterized including quasi-saturation effect and the current flowlines and the impact ionization location by TCAD 2D simulation. Various test structures of MESDRIFT devices are also discussed with respect to the I-V characteristics influence by different contact implant location and implant area. Here, we propose two ways to find MOS model from KPC and KL devices, respectively. KPC device has the best match I-V characteristics to LDMOS while KL device has the advantage to extract MOS data easily.

In chapter3, LDMOS macro model overall extraction flow is presented in detail.

Such a model is developed by adding a voltage controlled resistance to a standard BSIM3 MOSFET model. In order to reduce mismatch of macro model at high gate bias due to the contact implant, we use reverse calculated RD to modify the error. For more physical RD model, we derive Vk formula to reduce RD model parameter numbers. For time-saving purpose, we use KL device to extract MOS model.

Combining MOS model and RD model, we have a macro model and such a macro model can exactly describe the I-V characteristics of LDMOS with a mean error of less than 2%.

An investigation of Self-heating effect (SHE) in LDMOS based on pulsed measurements is discussed in chapter4. It has been shown that pulse width and power are important parameters to define free-SHE measurements conditions. Two simple models are proposed and validated to describe the behavior of SHE in LDMOS.

For more complete macro mode, different geometry must be used for the extraction of the BSIM3 parameters, e.g. one large size device and two sets of

accuracy of parameter extraction but it will raise the difficulty in the meantime.

Besides, SHE should also be taken into account in macro model.

Reference

[1] B. J. Baliga, “An overview of smart power technology,” IEEE Elect. Dev., Vol.

38, pp. 1568, July 1991.

[2] D. G Lin, S. L. Tu, Y. C. See, P. Tam, “A novel LDMOS structure with a step gate oxide,” IEDM, pp. 963 - 966, Dec. 1995.

[3] A. Moscatelli et. al., “LDMOS implementation in a 0.35 µm BCD technology (BCD6),” ISPSD, pp. 323 - 326, 2000.

[4] Z. Parpai, C. Andre, and T. Salama, “Optimization of RESURF LDMOS transistors_an analytical approach,” IEEE Elect. Dev., Vol. 37, pp. 789 - 796, Mar. 1990.

[5] J. Jaejune, T. Amborg. and Yu Zhiping, “Circuit model for power LDMOS including quasi-saturation,” SISPAD. Int., pp. 15 - 18, 1999.

[6] R. Zhu, T. P. Chow, “A comparative study of the quasi-saturation in the high voltage vertical DMOS for different cell geometries,” ISPSD. Int., pp. 343 - 346, 1998.

[7] B. J. Baliga, “Trends in power semiconductor devices,” IEEE Trans. Elect. Dev., Vol. 43, pp. 1717-1731, Oct. 1996.

[8] S. Merchan, R. Baird, and S. Chang, “High-performance 13-65 V rated LDMOS transistors in an advanced smart power technology,” ISPSD, pp. 225 - 228, 1999.

[9] K. Nakamura, Y. Kawaguchi, and K. Karouji et al., “Complementary 25 V LDMOS for analog applications based on 0.6 µm BiCMOS technology,”

Bipolar/BiCMOS Circuit and Technology Meeting, pp. 94 - 97, 2000.

[10] R. Versari, A. Pieracci, “Experimental study of hot-carrier effects in LDMOS transistors,” IEEE Trans. Elect. Dev., Vol. 46, Issue 6, pp. 1228 - 1233, Jun.

1999.

[11] V. O'Donovan, S. Whiston, A. deignan, “Hot carrier reliability of lateral DMOS transistors,” IEEE IRPS., pp. 174 - 179, 2000.

[12] M.K. Orlowski, C. Werner, J. P. Kinlk, “Model for the electric fields in LDD MOSFETs. I. Field peaks on the source side,” IEEE Trans. Elect. Dev., Vol 36,

[13] M.K. Orlowski, C. Werner, “Model for the electric fields in LDD MOSFETs.

II. Field distribution on the drain side,” IEEE Trans. Elect. Dev., Vol. 36, pp.

382 - 391, Feb. 1989.

[14] R. Versari, A. Pieracci, S. Manzini, “Hot-carrier reliability in submicrometer LDMOS transistors,” IEDM, pp. 371 - 374, Dec. 1997.

[15] S. Manzini, A. Gallerano, C. contiero, “Hot-electron injection and trapping in the gate oxide of submicron DMOS transistors,” ISPSD, pp. 415 - 418, 1998.

[16] D. Brisbin, A. Strachan, P. Chaparala, “Hot carrier reliability of N-LDMOS transistor arrays for power BiCMOS applications,” Reliability Physics Symposium Proceedings, pp. 105 - 110, 2002.

[17] Y. S. Kim, J. G. Fossum, “Physical DMOST modeling for high-voltage IC CAD,” IEEE Trans. Elect. Dev., Vol. 37, pp. 797 - 803, 1990.

[18] D. Moncoqut, D. France, P. Rossel, et. al., “LDMOS transistor for SMART POWER circuits- modeling and design,” Bipolar/BiCMOS Circuit and Technology Meeting, pp. 216 - 219, 1996.

[19] U. Aple, H. G. Graf, C. Haredndt, B. Hofflinger, T. Ifstrom, “A 100-V lateral DMOS transistor with a 0.3-micrometer channel in a 1-micrometer silicon-film-on-insulator-on-silicon,” IEEE Trans. Elect. Dev., Vol. 38, pp.

1655 - 1659, 1991.

[20] E. C. Griffith, J. A. Power, S. C. Kelly, Elebert, et. al., “Characterization and modeling of LDMOS transistors on a 0.6/spl mu/m CMOS technology,”

ICMTS, pp. 175 - 180, 2000.

[21] P. Perugupalli, M. Trivedi, K. Shenai, S. K. Leong, “Modeling and characterization of 80 V LDMOSFET for RF communications,”

Bipolar/BiCMOS Circuit and Technology Meeting, pp. 92 - 95, 1997.

[22] B. Fatemizadeh, D. Silber, M. Fullmann, J. Serafin, “Modeling of LDMOS and LIGBT structures at high temperatures,” ISPSD, pp. 137 - 142, 1994.

[23] N. Hefyene, E. Vestiel, B. Vestiel, C. Anghel, S. Frere, A. M. Ionescu, R.

Gillon, “Bias-dependent drift resistance modeling for accurate DC and AC

simulation of asymmetric HV-MOSFET,” SISPAD. Int., pp. 203 - 206, 2002.

[24] C. Anghel, N. Hefyene, M. Vermandel, B. Bakeroot, J. Doutreloigne, R. Gillon, A. M. Ionescu, “Electrical characterization of high voltage MOSFETs using mesdrift,” CAS. Int., Vol. 2, Sept. 2003.

[25] C. Anghel, N. Hefyene, A. M. Ionescu, M. Vermandel, B. Bakeroot, J.

Doutreloigne, R. Gillon, S. Frere, C. Maier, Y. Mourier, “Physical modelling strategy for (quasi-) saturation effects in lateral DMOS transistor based on the concept of intrinsic drain voltage,” CAS. Int., Vol. 2, pp. 417 - 420, Oct. 2001.

[26] Y. K. Leung, Y. Suzuki, K. E. Goodson, S. S. Wong, “Self-heating effect in lateral DMOS on SOI,” ISPSD. Int., pp. 136 - 140, May. 1995.

[27] K. A. Jenkins, J. Y. Sun, J. Gautier, “Characteristics of SOI FET's under pulsed conditions,” IEEE Trans. Elect. Dev., Vol. 44, Issue 11, pp. 1923 - 1930, Nov.

1997.

[28] Y. K. Leung, S. C. Kuehne, V. S. K. Huang, C. T. Nguyen, A. K. Paul, J. D.

Plummer, S. S. Wong, “Spatial temperature profiles due to nonuniform self-heating in LDMOS's in thin SOI,” IEEE Elect. Dev. Lett., Vol. 18, Issue 1, pp. 13 - 15, Jan. 1997.

[29] C. Anghel, A. M. Ionescu, N. Hefyene, R. Gillon, “Self-heating characterization and extraction method for thermal resistance and capacitance in high voltage MOSFETs,” IEEE Elect. Dev. Let., Vol. 25, Issue 3, pp. 141 - 143, Mar. 2004.

[30] C. Anghel, R. Gillon, A. M. Ionescu, “Self-heating characterization and extraction method for thermal resistance and capacitance in HV MOSFETs,”

ESSDERC., pp. 449 - 452, Sept. 2003.

Appendix A The intrinsic MOS model parameters extracted from

+a1 = 0 a2 = 1 b0 = 0

+stk2 = 0 lodk2 = 1 lodeta0 = 1

+ku0 = 0 lku0 = 0 wku0 = 0

+pku0 = 0 llodku0 = 0 wlodku0 = 0 +kvsat = 0 steta0 = 0 tku0 = 0 )

相關文件