• 沒有找到結果。

As mentioned in this review, one of the biggest challenges for our society is providing powerful electrochemical energy devices. DMFCs are amongst the most promising candidates in terms of energy density and power density. Nanostruc-tured materials are currently of interest for such DMFCs because of their high surface areas, novel size effects, significantly enhanced kinetics, and so on. The present review describes some recent progress in the developments of nanostructured electrocatalysts for DMFCs. Approaches to reducing the cost of catalysts include the use of single , double , and multiple component catalysts and new cat-alyst supports.

The observed DMFC performance associated with the use of single , double , and multiple component catalysts and new catalyst supports has been summarized. In addi-tion, much effort has been devoted to exploring the fundamental MOR and ORR mechanism of DMFCs. It has become evident that the unusual properties of single , double , and multiple component catalysts and new sup-port materials make them compelling for DMFC applica-tions. The large number of research publications in the past ten years signifies the importance of fuel cells that might

surpass anode and cathode catalysts in the development of DMFCs. Challenges remain for the use of such catalysts to achieve highly efficient DMFCs. In particular, the synthetic methods, shapes, and selective catalysts of single , double , and multiple component catalysts must be opti-mized to overcome the physical and chemical factors that limit DMFC performance. The rapid progress in thefield of fuel cell catalysis will eventually allow us to use commercial DMFCs, which can supply more efficient energy to the world.

Acknowledgments

The authors gratefully acknowledge the corresponding pub-lishers for kind permission to reproduce their materials, especiallyfigures, for use in this review article. This work was supported by the NRF (National Honor Scientist Pro-gram: 2010 0020414, WCU: R32 2008 000 10180 0.

References

[1] C.C. Yang, C.T. Lin, S.J. Chiu, Desalination 233 (2008) 137.

[2] E.A. Carbonio, F. Colmati, E.G. Ciapina, M.E. Pereira, E.

R. Gonzalez, Journal of the Brazilian Chemical Society. 21 (2010) 590.

[3] C.J. Zhong, J. Luo, B. Fang, B.N. Wanjala, P.N. Njoki, R. Loukrakpam, J. Yin, Nanotechnology 21 (2010) 062001.

[4] V. Mazumder, Y. Lee, S. Sun, Advanced Functional Materials 20 (2010) 1224.

[5] D.S. Su, R. Schlçgl, ChemSusChem 3 (2010) 136.

[6] Y.G. Guo, J.S. Hu, L.J. Wan, Advanced Materials 20 (2008) 2878.

[7] A. Manthiram, A.V. Murugan, A. Sarkar, T. Muraliganth, Energy and Environmental Science 1 (2008) 621.

[8] E.H. Yu, U. Krewer, K. Scott, Energies 3 (2010) 1499.

[9] F. Vigier, S. Rousseau, C. Coutanceau, J.M. Leger, C. Lamy, Topics in Catalysis. 40 (2006) 111.

[10] K. Kordesch, G. Simader, Fuel Cells and Their Applications, VCH Publishing, Weinheim, 1996.

[11] G.B. Jung, et al., Journal of Solid State Electrochemistry 13 (2009) 1455.

[12] O. Zerbinati, A. Mardan, M.M. Richter, Journal of Chemical Education 79 (2002) 829.

[13] A. Manthiram, The WSTIAC Quarterly 9 (2009) 69.

[14] A.S. Aricò, V. Baglio, V. Antonucci, Direct Methanol Fuel Cells: History, Status and Perspectives 1 (2009) (Chapter 1).

[15] Y.L. Liu, Y.H. Su, C.M. Chang, Suryani, D.M. Wang, J.Y. Lai, Journal of Materials Chemistry 20 (2010) 4409.

[16] N.A. Hampson, M.J. Willars, B.D. McNicol, Journal of Power Sources 4 (1979) 191.

[17] D.S. Cameron, G.A. Hards and D. Thompsett, in: Proceedings of the Workshop on Direct Methanol–Air Fuel Cell, 1990, p.

10.

[18] A. Hamnett, Catalysis Today 38 (1997) 445.

[19] R. Parsons, T. Vander Noot, Journal of Electroanalytical Chemistry 257 (1988) 9.

[20] C. Lamy, J.M. Leger, S. Srinivasan, in: J.O.’M. Bockris, B.

E. Conway, R.E. White (Eds.), Modern Aspects of Electro-chemistry, 34, 2001, p. 53.

[21] C. Song, J Zhang 2, Electrocatalytic oxygen reduction reac-tion, in: J. Zhang (Ed.), PEM Fuel Cell Electrocatalysts and Catalyst Layers: Fundamentals and ApplicationsSpringer, 2008, pp. 89–134.

[22] Z. Xu, H. Li, G. Cao, Q. Zhang, K. Li, X. Zhao, Journal of Molecular Catalysis A: Chemical 335 (2011) 89.

[23] F. Mirkhalaf, K. Tammeveskic, D.J. Schiffrina, Physical Chem-istry Chemical Physics 11 (2009) 3463.

[24] E. Antolini, Energy and Environmental Science 2 (2009) 915.

[25] E. Antolini, J. Perez, Journal of Materials Science 46 (2011) 4435.

[26] Y. Lu, J. Tu, C. Gu, X. Xia, X. Wang, S.X. Mao, Journal of Materials Chemistry 21 (2011) 4843.

[27] V. Mazumder, Y. Lee, S. Sun, Advanced Functional Materials 20 (2010) 1224.

[28] Z. Borkowska, A. Tymosiak-Zielinska, G. Shul, Electrochimica Acta 49 (2004) 1209.

[29] G. Tremiliosi-Filho, E.R. Gonzalez, A.J. Motheo, E.M. Belgsir, J.M. Leger, C. Lamy, Journal of Electroanalytical Chemistry 444 (1998) 31.

[30] J. Zhang, P. Liu, H. Ma, Y. Ding, Journal of Physical Chemistry C 111 (2007) 10382.

[31] W. Li, H. Ma, J. Zhang, X. Liu, X. Feng, Journal of Physical Chemistry C 113 (2009) 1738.

[32] X. Wang, W. Wang, Z. Qi, C. Zhao, H. Ji, Z. Zhang, Journal of Power Sources 195 (2010) 6740.

[33] J.N. Tiwari, F.M. Pan, K.L. Lin, New Journal of Chemistry 33 (2009) 1482.

[34] Y.B. He, G.R. Li, Z.L. Wang, Y.N. Ou, Y.X. Tong, Journal of Physical Chemistry C 114 (2010) 19175.

[35] J. Solla-Gullon, F.J. Vidal-Iglesias, A. Lopez-Cudero, E. Garnier, J.M. Feliu, A. Aldaz, Physical Chemistry Chemical Physics 10 (2008) 3689.

[36] S.B. Han, Y.J. Song, J.M. Lee, J.Y. Kim, K.W. Park, Electro-chemistry Communications 10 (2008) 1044.

[37] Y.W. Lee, S.B. Han, D.Y. Kim, K.W. Park, Chemical Commu-nications 47 (2011) 6296.

[38] J.N. Tiwari, R.N. Tiwari, K.L. Lin, Nano Research 4 (2011) 541.

[39] S.M. Alia, G. Zhang, D. Kisailus, D. Li, S. Gu, K. Jensen, Y. Yan, Advanced Functional Materials 20 (2010) 3742.

[40] J.N. Tiwari, F.M. Pan, R.N. Tiwari, S.K. Nandi, Chemical Communications 48 (2008) 6516.

[41] H.P. Liang, H.M. Zhang, J.S. Hu, Y.G. Guo, L.J. Wan, C.L. Bai, Angewandte Chemie International Edition 43 (2004) 1540.

[42] M. Rauber, I. Alber, S. Muller, R. Neumann, O. Picht, C. Roth, A. Schokel, M.E. Toimil-Molares, W. Ensinger, Nano Letters 11 (2011) 2304.

[43] G. Stalnionis, L. Tamasauskaite-Tamasiunaite, V. Pautieniene, A. Sudavicius, Z. Jusys, Journal of Solid State Electrochemistry 8 (2004) 892.

[44] B. Gurau, R. Viswanathan, R. Liu, T.J. Lafrenz, K.L. Ley, E.

S. Smotkin, E. Reddington, A. Sapienza, B.C. Chan, T.

E. Mallouk, S. Sarangapani, Journal of Physical Chemistry B 102 (1998) 9997.

[45] T. Yajima, H. Uchida, M. Watanabe, Journal of Physical Chemistry B 108 (2004) 2654.

[46] Y.H. Lin, X.L. Cui, Langmuir 21 (2005) 11474.

[47] E.P. Ambrosio, C. Francia, M. Manzoli, P. Nerino, Interna-tional Journal of Hydrogen Energy 33 (2008) 3142.

[48] J. Zeng, J.Y. Lee, Journal of Power Sources 140 (2005) 268.

[49] Y.I. Kim, D. Soundararajan, C.W. Park, S.H. Kim, J.H. Park, J.

M. Ko, International Journal of Hydrogen Energy 4 (2009) 1548.

[50] T. Maiyalagan, International Journal of Hydrogen Energy 34 (2009) 2874.

[51] S.J. Yoo, T.Y. Jeon, K.S. Kim, T.H. Lima, Y.E. Sung, Physical Chemistry Chemical Physics 12 (2010) 15240.

[52] A.O. Neto, R.R. Dias, M.M. Tusi, M. Linardi, E.V. Spinacé, Journal of Power Sources 166 (2007) 87.

[53] H.B. Hassan, Journal of Fuel Chemistry and Technology 37 (2009) 346.

[54] Z. Qi, et al., Journal of Power Sources 196 (2011) 5823.

[55] S.A. Lee, K.W. Park, J.H. Choi, B.K. Kwon, Y.E. Sung, Journal of the Electrochemical Society 149 (2002) A1299.

[56] T.Y. Morante-Catacora, Y. Ishikawa, C.R. Cabrera, Journal of Electroanalytical Chemistry 621 (2008) 103.

[57] C.S. Chen, F.M. Pan, Applied Catalysis B: Environmental 91 (2009) 663.

[58] L. Xing, J. Jia, Y. Wang, B. Zhang, S. Dong, International Journal of Hydrogen Energy 35 (2010) 12169.

[60] J. Huang, H. Yang, Q. Huang, Y. Tang, T. Lu, D.L. Akins, Journal of the Electrochemical Society 151 (2004) A1810.

[61] Y. Kang, C.B. Murray, Journal of the American Chemical Society 132 (2010) 7568.

[62] J. Zhang, H. Ma, D. Zhang, P. Liu, F. Tian, Y. Ding, Physical Chemistry Chemical Physics 10 (2008) 3250.

[63] Y.Q. Wang, Z.D. Wei, L. Li, M.B. Ji, Y. Xu, P.K. Shen, J. Zhang, H. Zhang, Journal of Physical Chemistry C 112 (2008) 18672.

[64] Z. Zhang, Y. Wang, X. Wang, Nanoscale 3 (2011) 1663.

[65] Y.W. Lee, A.R. Ko, S.B. Han, H.S. Kim, K.W. Park, Physical Chemistry Chemical Physics 13 (2011) 5569.

[66] F. Kadirgan, S. Beyban, T. Atilan, International Journal of Hydrogen Energy 34 (2009) 4312.

[67] Q. Jiang, L. Jiang, H. Hou, J. Qi, S. Wang, G. Sun, Journal of Physical Chemistry C 114 (2010) 19714.

[68] S.Y. Shen, T.S. Zhao, J.B. Xu, Y.S. Li, Journal of Power Sources 195 (2010) 1001.

[69] N.V. Long, T.D. Hien, T. Asaka, M. Ohtaki, M. Nogami, International Journal of Hydrogen Energy 36 (2011) 8478.

[70] M. Khalid, N. Wasio, T. Chase, K. Bandyopadhyay, Nanoscale Research Letters 5 (2010) 61.

[71] D.I. Garcia-Gutierrez, C.E. Gutierrez-Wing, L. Giovanetti, J.

M. Ramallo-Lopez, F.G. Requejo, M. Jose-Yacaman, Journal of Physical Chemistry B 109 (2005) 3813.

[73] T. Ghosh, Q. Zhou, J.M. Gregoire, R.B. Dover, F.J. DiSalvo, Journal of Physical Chemistry C 114 (2010) 12545.

[74] X. Shi, X. Jin, W. Xiao, X. Hou, H. Chen, G.Z. Chen, Chemistry

—A European Journal 17 (2011) 8562.

[76] L. Wang, Y. Nemoto, Y. Yamauchi, Journal of the American Chemical Society 133 (2011) 9674.

[77] C.H. Cui, H.H. Li, S.H. Yu, Chemical Science 2 (2011) 1611.

[78] M.K. Min, J. Cho, K. Cho, H. Kim, Electrochimica Acta 45 (2000) 4211.

[80] H. Yang, J. Zhang, K. Sun, S. Zou, J. Fang, Angewandte Chemie International Edition 49 (2010) 6848.

[81] M. Watanabe, S. Motoo, Journal of Electroanalytical Chem-istry 60 (1975) 267.

[82] J.A.R. Van Veen, T. Frelink, W. Visscher, Surface Science. 335 (1995) 353.

[83] X. Peng, K. Koczkur, A. Chen, Nanotechnology 18 (2007) 305605.

[85] S. Şen, F. Şen, G. Gökağaç, Physical Chemistry Chemical Physics 13 (2011) 6784.

[86] C. Ma, Z. Chen, F. Zhao, Chinese Journal of Chemistry. 29 (2011) 611.

[87] M.Y. Wang, J.H. Chen, K.Z. Cui, B. Liu, H.H. Zhou, Y.F. Kuang, Chinese Journal of Chemistry. 24 (2006) 881.

[88] M.V. Martínez-Huerta, S. Rojas, J.L. Gómez de la Fuente, P. Terreros, M.A. Peña, J.L.G. Fierro, Applied Catalysis B:

Environmental. 69 (2006) 75.

[89] S. Pasupathi, V. Tricoli, Journal of Solid State Electrochem-istry. 12 (2007) 1093.

[90] T. Huang, J. Liu, R. Li, W. Cai, A. Yu, Electrochemistry Communications 11 (2009) 643.

[91] A. Oliveira Neto, E.G. Franco, E. Aricó, M. Linardi, Portuga-liae Electrochimica Acta 22 (2004) 93.

[92] Z.B. Wang, P.J. Zuo, G.P. Yin, Fuel Cells 9 (2009) 106.

[93] T. Maiyalagan, B. Viswanathan, U.V. Varadaraju, Journal of Nanoscience and Nanotechnology 6 (2006) 2067.

[94] T. Maiyalagan, B. Viswanathan, Journal of Power Sources 175 (2008) 789.

[95] T. Maiyalagan, F.N. Khan, Catalysis Communications 10 (2009) 433.

[96] C. Zhou, H. Wang, F. Peng, J. Liang, H. Yu, J. Yang, Langmuir 25 (2009) 7711.

[97] G.S. Chai, J.S. Yu, Journal of Materials Chemistry 19 (2009) 6842.

[98] S. Sun, G. Zhang, D. Geng, Y. Chen, M.N. Banis, R. Li, M. Cai, X. Sun, Chemistry—A European Journal 16 (2010) 829. [99] Z. Sun, X. Wang, Z. Liu, H. Zhang, P. Yu, L. Mao, Langmuir 26

(2010) 12383.

[100] S. Yamazaki, M. Yao, Z. Siroma, T. Ioroi, K. Yasuda, Journal of Physical Chemistry C 114 (2010) 21856.

[101] S.S. Kim, C. Kim, H. Lee, Topics in Catalysis. 53 (2010) 686.

[102] S.H. Ahn, O.J. Kwon, S.K. Kim, I. Choi, J.J. Kim, Interna-tional Journal of Hydrogen Energy 35 (2010) 13309.

[103] A. Sarkar, A. Vadivel Murugan, A. Manthiram, Fuel Cells 10 (2010) 375.

[104] T. Saida, N. Ogiwara, Y. Takasu, W. Sugimoto, Journal of Physical Chemistry C 114 (2010) 13390.

[105] M.K. Jeon, K.R. Lee, S.I. Woo, Langmuir 26 (2010) 16529.

[106] K.I.B. Eguiluz, G.R.P. Malpass, M.M.S. Pupo, G.R. Salazar-Banda, L.A. Avaca, Energy Fuels 24 (2010) 4012.

[107] S. Li, X. Yu, G. Zhang, Y. Ma, J. Yao, P. Oliveira, Carbon 49 (2011) 1906.

[108] J. Wu, Y. Hou, S. Gao, Nano Research. 4 (2011) 836.

[109] C. Pan, Y. Li, Y. Ma, X. Zhao, Q. Zhang, Journal of Power Sources 196 (2011) 6228.

[110] L. Liu, Z. Huang, D. Wang, R. Scholz, E. Pippel, Nanotechnol-ogy 22 (2011) 105604.

[111] 〈http://www.kitco.com/charts/liveplatinum.html〉(retrieved 30.07.09).

[112] H. Chang, S.H. Joo, C. Pak, Journal of Materials Chemistry 17 (2007) 3078.

[113] G.S. Chai, S.B. Yoon, J.H. Kim, J.S. Yu, Chemical Commu-nications 2766 (2004).

[114] R. Ganesan, J.S. Lee, Angewandte Chemie International Edition 44 (2005) 6557.

[115] S. Shanmugam, A. Gedanken, Small 3 (2007) 1189.

[116] S.H. Joo, et al., Carbon 46 (2008) 2034.

[119] C.T. Hsieh, J.Y. Lin, Journal of Power Sources 188 (2009) 347.

[120] Y. Ding, B. Jin, G. Gu, X.H. Xia, Journal of Materials Chemistry 19 (2009) 9141.

[121] J.N. Tiwari, R.N. Tiwari, Y.M. Chang, K.L. Lin, ChemSusChem 3 (2010) 460.

[122] J.B. Joo, N.D. Kim, H.J. Yun, P. Kim, J. Yi, Nano Research 4 (2011) 92.

[123] S. Sharma, A. Ganguly, P. Papakonstantinou, X. Miao, M. Li, J.

L. Hutchison, M. Delichatsios, S. Ukleja, Journal of Physical Chemistry C 114 (2010) 19459.

[124] Y. Ou, X. Cui, X. Zhang, Z. Jiang, Journal of Power Sources 195 (2010) 1365.

[125] J.N. Tiwari, F.M. Pan, T.M. Chen, R.N. Tiwari, K.L. Lin, Journal of Power Sources 195 (2010) 729.

[126] J.N. Tiwari, R.N. Tiwari, K.L. Lin, ACS Applied Materials and Interfaces 2 (2010) 2231.

[127] W.C. Fang, Nanoscale Research Letters 5 (2010) 68.

[128] J.S. Bunch, et al., Science 315 (2007) 490.

[129] A.K. Geim, K.S. Novoselov, Nature Materials 6 (2007) 183.

[130] S. Park, R.S. Ruoff, Nature Nanotechnology. 4 (2009) 217.

[131] J.N. Tiwari, R.N. Tiwari, G. Singh, K.L. Lin, Plasmonics 6 (2011) 67.

[132] Y.G. Zhou, J.J. Chen, F. Wang, Z.H. Sheng, X.H. Xia, Chemical Communications 5951 (2010).

[133] S. Guo, S. Dong, E. Wang, ACS Nano 4 (2010) 547.

[135] Y. Zhang, et al., Chemistry—A European Journal 17 (2011) 4921.

[136] S. Shanmugam, A. Gedanken, Journal of Physical Chemistry C 113 (2009) 18707.

[137] J.K. Oh, et al., Catalysis Science and Technology 1 (2011) 394.

[138] L. Kuai, B. Geng, S. Wang, Y. Zhao, Y. Luo, H. Jiang, Chemistry—A European Journal 17 (2011) 3482.

[139] C. Jeyabharathi, S.S. Kumar, G.V.M. Kiruthika, K.L.N. Phani, Angewandte Chemie International Edition 49 (2010) 2925.

[140] L. Johnson, W. Thielemans, D.A. Walsh, Green Chemistry (2011). http://dx.doi.org/10.1039/c0gc00881h.

[141] G.F. A´lvarez, M. Mamlouk, K. Scott, International Journal of Electrochemistry (2011). http://dx.doi.org/10.4061/2011/

684535.

[142] H. Li, Q. Xin, W. Li, Z. Zhou, L. Jiang, S. Yang, G. Sun, Chemical Communications 2776 (2004).

[143] R. Liu, D. Wu, X. Feng, K. Mullen, Angewandte Chemie International Edition 49 (2010) 2565.

[144] S. Yang, X. Feng, X. Wang, K. Mullen, Angewandte Chemie International Edition 50 (2011) 5339.

[145] D. Xia, S. Liu, Z. Wang, G. Chen, L. Zhang, L. Zhang, S. Hui, J. Zhang, Journal of Power Sources 177 (2008) 296.

[146] T.C. Nagaiah, S. Kundu, M. Bron, M. Muhler, W. Schuhmann, Electrochemistry Communications 12 (2010) 338.

[147] W.Z. Li, C.H. Liang, J.S. Qiu, Carbon 40 (2002) 791.

[148] K. Gong, F. Du, Z. Xia, M. Durstock, L. Dai, Science 323 (2009) 760.

[149] S.S. Roy, P. Papakonstantinou, T.I.T. Okpalugo, H. Murphy, Journal of Applied Physics 100 (2006) 053703.

[150] J.I. Ozaki, S.I. Tanifuji, N. Kimura, A. Furuichi, A. Oya, Carbon 44 (2006) 1324.

[151] S. Maldonado, K.J. Stevenson, Journal of Physical Chemistry B 109 (2005) 4707.

[152] F. Wen, U. Simon, Chemistry of Materials 19 (2007) 3370.

[153] C. Wang, H. Daimon, T. Onodera, T. Koda, S. Sun, Angewandte Chemie International Edition 47 (2008) 3588.

[154] T. Yu, D.Y. Kim, H. Zhang, Y. Xia, Angewandte Chemie International Edition 50 (2011) 2773.

[155] S.H. Sun, F. Jaouen, J.P. Dodelet, Advanced Materials 20 (2008) 3900.

[156] E.P. Lee, Z.M. Peng, W. Chen, S.W. Chen, H. Yang, Y.N. Xia, ACS Nano 2 (2008) 2167.

[157] H.J. Zhou, W.P. Zhou, R.R. Adzic, S.S. Wong, Journal of Physical Chemistry C 113 (2009) 5460.

[158] H.W. Liang, X. Cao, F. Zhou, C.H. Cui, W.J. Zhang, S.H. Yu, Advanced Materials 23 (2011) 1467.

[159] H.H. Wang, Z.Y. Zhou, Q. Yuan, N. Tian, S.G. Sun, Chemical Communications 3407 (2011).

[161] Y. Bing, H. Liu, L. Zhang, D. Ghosh, J. Zhang, Chemical Society Reviews 39 (2010) 2184.

[162] C.J. Yang, Energy Policy 37 (2009) 1805.

[163] Y.X. Wang, P.B. Balbuena, Journal of Physical Chemistry B 109 (2005) 18902.

[165] A. Sarkar, A. Vadivel Murugan, A. Manthiram, Journal of Materials Chemistry 19 (2009) 159.

[166] P.H.C. Camargo, Z. Peng, X. Lu, H. Yang, Y. Xia, Journal of Materials Chemistry 19 (2009) 1024.

[167] H. Liu, A. Manthiram, Energy and Environmental Science 2 (2009) 124.

[168] A.M. Remona, K.L.N. Phani, Fuel Cells 11 (2011) 385.

[169] F.J. Lai, W.N. Su, L.S. Sarma, D.G. Liu, C.A. Hsieh, J.F. Lee, B.J. Hwang, Chemistry—A European Journal 16 (2010) 4602. [170] S.H. Chang, W.N. Su, M.H. Yeh, C.J. Pan, K.L. Yu, D.G. Liu, J.

F. Lee, B.J. Hwang, Chemistry—A European Journal 16 (2010) 11064.

[171] W. Li, Q. Xin, Y. Yan, International Journal of Hydrogen Energy 35 (2010) 2530.

[172] P.H. Fernndez, S. Rojas, P. Ocon, J.L.G. Fuente, J.S. Fabian, J. Sanza, et al., Journal of Physical Chemistry C 111 (2007) 2913.

[173] J. Zhang, K. Sasaki, E. Sutter, R.R. Adzic, Science 315 (2007) 220.

[174] J.B. Xu, T.S. Zhao, W.W. Yang, S.Y. Shen, International Journal of Hydrogen Energy 35 (2010) 8699.

[175] Y. Kim, J.W. Hong, Y.W. Lee, M. Kim, D. Kim, W.S. Yun, S.

W. Han, Angewandte Chemie International Edition 49 (2010) 10197.

[176] I. Dutta, M.K. Carpenter, M.P. Balogh, J.M. Ziegelbauer, T.

E. Moylan, M.H. Atwan, N.P. Irish, Journal of Physical Chemistry C 114 (2010) 16309.

[177] K.M. Yeo, S. Choi, R.M. Anisur, J. Kim, I.S. Lee, Angewandte Chemie International Edition 50 (2011) 745.

[178] Z. Chen, M. Waje, W. Li, Y. Yan, Angewandte Chemie International Edition 46 (2007) 4060.

[179] Z. Zhang, M. Li, Z. Wu, W. Li, Nanotechnology 22 (2011) 015602.

[180] T. Fujigaya, T. Uchinoumi, K. Kaneko, N. Nakashima, Chemi-cal Communications 6843 (2011).

[181] T. He, E. Kreidler, Physical Chemistry Chemical Physics 10 (2008) 3731.

[182] R. Srivastava, P. Mani, N. Hahn, P. Strasser, Angewandte Chemie International Edition 46 (2007) 8988.

[183] M.R. Gao, Q. Gao, J. Jiang, C.H. Cui, W.T. Yao, S.H. Yu, Angewandte Chemie International Edition 50 (2011) 4905.

[184] D. Wang, et al., Journal of the American Chemical Society 132 (2010) 17664.

[185] W. Zhang, R. Wang, H. Wang, Z. Lei, Fuel Cells 10 (2010) 734.

[186] R. Loukrakpam, et al., ACS Catalysis 1 (2011) 562.

[187] V. Mazumder, M. Chi, K.L. More, S. Sun, Journal of the American Chemical Society 132 (2010) 7848.

[188] D. Wang, et al., Journal of the American Chemical Society 132 (2010) 10218.

[190] L. Liu, E. Pippel, Angewandte Chemie International Edition 50 (2011) 2729.

[191] J. Yang, C.H. Cheng, W. Zhou, J.Y. Lee, Z. Liu, Fuel Cells 10 (2010) 907.

[192] V.R. Stamenkovic, B.S. Mun, K.J.J. Mayrhofer, P.N. Ross, N.

M. Markovic, Journal of the American Chemical Society 128 (2006) 8813.

[193] E.r.m.e.t.e. Antolini, Applied Catalysis B: Environmental 88 (2009) 1.

[194] J.H. Kim, B. Fang, S.B. Yoon, J.S. Yu, Applied Catalysis B:

Environmental 88 (2009) 368.

[195] Y.J. Feng, T. He, N. Alonso-Vante, Fuel Cells 10 (2010) 77.

[196] S. Wang, S.P. Jiang, T.J. White, J. Guo, X. Wang, Journal of Physical Chemistry C 113 (2009) 18935.

[197] Y.C. Xing, L. Li, C.C. Chusuei, R.V. Hull, Langmuir 21 (2005) 4185.

[198] R. Kou, et al., Electrochemistry Communications 11 (2009) 954.

[200] G. Vijayaraghavan, K. Stevenson, Langmuir 23 (2007) 5279.

[201] Y. Chen, J. Wang, H. Liu, R. Li, X. Sun, S. Ye, S. Knights, Electrochemistry Communications 11 (2009) 2071.

[202] M. Saha, R. Li, X. Sun, S. Ye, Electrochemistry Communica-tions 11 (2009) 438.

[203] D.C. Higgins, D. Meza, Z. Chen, Journal of Physical Chemistry C 114 (2010) 21982.

[204] W. Xiong, et al., Journal of the American Chemical Society 132 (2010) 15839.

[205] C.H. Choi, S.Y. Lee, S.H. Park, S.I. Woo, Applied Catalysis B:

Environmental 103 (2011) 362.

[206] K. Miyazaki, H. Shirakata, T. Abe, N. Yoshizawa, Z. Ogumi, Fuel Cells 10 (2010) 960.

[207] H. Yano, T. Akiyama, P. Bele, H. Uchida, M. Watanabe, Physical Chemistry Chemical Physics 12 (2010) 3806.

[208] Q. Jiang, Z. Peng, X. Xie, K. Du, G. Hu, Y. Liu, Transactions of Nonferrous Metals Society of China 21 (2011) 127.

[209] J. Kim, S.W. Lee, C. Carlton, Y. Shao-Horn, Journal of Physical Chemistry Letters 2 (2011) 1332.

[210] D. He, C. Zeng, C. Xu, N. Cheng, H. Li, S. Mu, M. Pan, Langmuir 27 (2011) 5582.

Jitendra N. Tiwari received his Ph.D. degree in electrochemistry from the Department of Materials Science and Engineering, National Chiao Tung University, Taiwan in 2009 working on synthesis of highly durable catalysts for electrochemical energy devices. He was a postdoctoral research fellow at the Institute of Nanotechnology, National Chiao Tung Uni-versity, Taiwan (August 2009-July 2010). Cur-rently, he is a postdoctoral research scientist at the Department of Chemistry, Pohang University of Science and Technology and focuses on graphene-based materials for fuel cell applications.

Rajanish N. Tiwari was born in India. He received his B.S. and M.S. from H. N. B.

Garhwal University, India, and a Ph.D. degree in Materials Science and Engineering from National Chiao Tung University, Taiwan in 2010. Currently, he is working in Japan as a postdoctoral fellow at Toyota Technological Institute. His postdoctoral fellowship funded by Toyota Motor Corporation. His current interests include study of the synthesis, char-acterization, and application of novel carbon materials. He has published many scientific papers in refereed journals and given presentations.

Gyan Singh was born in 1984 in Bihar, India.

He earned his B.Sc. (Hons.) in Biochemistry from Allahabad Agricultural Institute–Deemed University, India, in 2006. In the same year he was awarded Taiwan Government Fellowship to pursue Master of Science (MS) in Molecular Medicine and Bioengineering from National Chaio Tung University, Taiwan. Currently he is perusing his Doctoral research under super-vision of Prof. Yun-Ming Wang at National Chaio Tung University. His primary research interests include design and development of nanosensors for clinically relevant biomolecules.

Kwang S. Kim received his Ph.D. degree from University of California, Berkeley. He was a postdoctoral fellow at IBM and a visiting professor or scientist at Rutgers University, MIT, and Columbia University. Currently, he is a professor in the Department of Chemistry and the director of the Center for Superfunc-tional Materials at Pohang University of Science and Technology. His research interests include design and development of novel nanomaterials and molecular devices.

相關文件