• 沒有找到結果。

With extensive research and accumulated practical experi-ence that we have outlined in this review, the guidelines to pursuing and developing p-type conjugated polymers be-Scheme 98. Synthesis of n-Type Copolymer P170 by Stille Coupling Reactions

Scheme 99. Synthetic Route toward Monomers 293 and 304

comes evident. The requirements of specific intrinsic proper-ties necessary for an ideal donor material include (1) sufficient solubility to guarantee solution-processability as well as miscibility with n-type materials, (2) a low optical band gap for a strong and broad absorption spectrum to capture more solar energy, and 3) high hole mobility for accelerating charge transport, which in turn allows a thicker active layer required for increased light harvesting as well as reduced charge recombination and series resistance. In combination with a fixed electron acceptor, specific charac-teristics between a D-A pair are required: these include (1) appropriate HOMO and LUMO energies to ensure a large Vocand a downhill energy offset for exciton dissociation and (2) formation of an interpenetrating network with the optimum morphology for creating two distinct bicontinuous highways for transporting free charge carriers. In addition to the choice of viable molecular designs already in the

“toolbox” such as chemical planarization, quinoidiation, and D-A arrangement, a new influx of molecular designs and synthetic endeavors has led to a range of novel p-type conjugated polymers. These advances have ensured an important step toward a better understanding of structure-property relationships. Structural analysis of the current successful low band gap conjugated polymers reveals that an alternating D-A arrangement is essential and must be combined with the necessary newly designed donor segments composed of multicyclic aromatic rings with enforced planarity. In ac-cordance with these guidelines, the further development of promising donors might be fortuitously directed toward hybridizing different electron-rich aromatic units into mutu-ally fused structures in the anticipation of benefiting from the individual intrinsic advantages. This will require more elegant designs and challenging synthesis. With respect to the development of acceptor units, the electron-withdrawing ability of an acceptor in a conjugated polymer needs to be carefully tweaked to ensure both efficient ICT transition and electron transfer. A too strong electron affinity will cause the formation of electron traps with deep-lying LUMO levels, resulting in poor electron transfer to the n-type material and hence low hole mobility. Among the wide range of acceptor units containing heteroaromatic rings with different electron affinities and resonance structures, the benzothiadiazole unit appears to be the most promising acceptor with the potential of achieving superior results. This reflects its more balanced electronic properties and simple planar structure. A general feature of the existing acceptor units is that the additional fused rings are extended in the axis perpendicular to the conjugated main chain. A range of more diversified structures

outside this category is certainly desirable to fulfill the goal of creating the next generation of electron acceptors with prominent electronic and stereochemical properties. Although absorption abilities have been substantially enhanced as a result of the benefits of band gap engineering, a large number of newly produced low band gap polymers with suitable energy levels still exhibited inferior device performance compared to that of P3HT. Bulk morphological factors which are closely related to charge dissociation and transport are mainly responsible for this discrepancy. With more complex D-A conjugated polymer structures, the degree of stereo-regularity is decreased to some extent. Furthermore, branched solubilizing groups introduced into the polymers to ensure solubility sometimes turn out to be able to attenuate intermolecular interactions in the solid state. As a result, the polymers generally have more amorphous character, which usually results in poorer charge-transporting properties.

Without optimal control of the morphology on the nanoscale, it becomes difficult to translate the microscopic intrinsic properties of the conjugated polymer into macroscopic device performance. The development of amorphous-oriented con-jugated polymers exhibiting high hole mobility might be an alternative way to overcome this problem and potentially eliminate the need of post-treatment to induce polymer crystallinity.

Beyond external treatments such as thermal or solvent annealing, bulk morphological engineering involving the tailoring of interactions between D and D, A and A, and D and A at the molecular level may emerge as an attractive solution and initiate a new explorative direction. The utilization of auxiliary supramolecular self-assembly between conjugated polymers and fullerene derivatives provides a broad window of interaction for the control of charge separation and transport within a well-defined morphology.357 The formation of self-organized double-cable conjugated polymers can be realized by careful controlled molecular manipulation. Such a self-assembly-assisted arrangement can be permanently locked by smartly controlled lattice hardening to improve the long-term thermal stability of the morphology.

Reactions triggered by light or heat for cross-linking the molecular system would be an ideal strategy.358

It is well-known that functional block copolymers are capable of forming nanoscale phase separations with cylin-drical, lamellar, spherical, and bicontinuous morphologies.359 It is of great interest that p-type- and n-type-containing block copolymers have the potential to be used to precisely control the nanostructure of the bulk heterojunction for improving the charge-separation at the p-n interface.

Scheme 100. Synthesis of n-Type Copolymer P171 by a Stille Coupling Reaction

Compared with p-type conjugated polymers, current research energy devoted to the development of n-type polymers is relatively weak. This is presumably because of their low electron mobility and poor stability. However, there still holds great promise and opportunity to realize a high-performance all-polymer BHJ solar cell if an n-type conju-gated polymer with electronic properties comparable to and optical properties superior to those of C60 derivatives can be realized. The characteristic criteria of n-type semiconduc-tors, developed for organic thin-film transissemiconduc-tors, are also applicable to BHJ solar cells.360-362Future developments of n-type conjugated polymers should be directed toward achieving the following critical characteristics: (1) solubility for solution-processability and good film-forming properties, (2) miscibility and compatibility with a given p-type material in the bulk to form an optimal morphology, (3) a broad absorption spectrum, complementary to that of a p-type material, to maximizeits light-harvesting ability, (4) a high electron affinity with a low-lying LUMO energy level to facilitate efficient electron transfer and high electron mobility, (5) improved air stability of the transporting radical anion toward oxygen and water because they are notoriously responsible for electron trapping. The general guidelines of molecular design for electron-deficient n-type conjugated polymers is the introduction of electron-withdrawing moieties such as cyano, fluoro, perfluoroalkyl, perfluoroaryl, boron, and diimide into highly conjugated planar systems. Azahet-eroaromatic-containing skeletons are particularly suitable.

It should be emphasized that the power conversion efficiency is more a device parameter than an intrinsic material parameter. This is because too many factors can affect the performance: blending ratios with the acceptor, solvent, annealing time and temperature, thickness of each layer, device layout, and conductivity of PEDOT related to the edge effect.363High efficiency of a device is a combina-tion of material properties with judicious and careful optimization of the various fabrication conditions. One should not judge and determine a particular material’s performance solely by the device value.

To produce BHJ photovoltaic devices with PCEs exceed-ing 10% will certainly require efforts of an interdisciplinary approach. By integrating new advanced device concepts and the nanostructure engineering of the morphology,364 the future development of functional conjugated polymers will ensure their key role in bringing high-efficiency and low-cost plastic solar cells one step closer to successful com-mercialization. This review attempts to review the important and growing research field covering the synthesis and development of custom-tailored polymers for use in the increasingly relevant application of high-performance solar cells. We hope that this overview will stimulate further important research in this exciting field.

9. Acknowledgments

We thank Dr. Martin Dubosc, Dr. Yong-Ming Liao, and Mr. Chao-Hsiang Hsieh for their help in preparing this manuscript. We thank the National Science Council of the Republic of China for financial support.

10. References

(1) Brabec, C. J.; Sariciftci, N. S.; Hummelen, J. C. AdV. Funct. Mater.

2001, 11, 15.

(2) Gu¨nes, S.; Neugebauer, H.; Sariciftci, N. S. Chem. ReV. 2007, 107, 1324.

(3) Wo¨hrle, D.; Meissner, D. AdV. Mater. 1991, 3, 129.

(4) Tang, C. W. Appl. Phys. Lett. 1986, 48, 183.

(5) Halls, J. J. M.; Pichler, K.; Friend, R. H.; Moratti, S. C.; Holmes, A. B. Appl. Phys. Lett. 1996, 68, 3120.

(6) Theander, M.; Yartsev, A.; Zigmantas, D.; Sundstro¨m, V.; Mammo, W.; Andersson, M. R.; Ingana¨s, O. Phys. ReV. B 2000, 61, 12957.

(7) Haugeneder, A.; Neges, M.; Kallinger, C.; Spirkl, W.; Lemmer, U.;

Feldmann, J.; Scherf, U.; Harth, E.; Gu¨gel, A.; Mu¨llen, K. Phys.

ReV. B 1999, 59, 15346.

(8) Stu¨binger, T.; Bru¨tting, W. J. Appl. Phys. 2001, 90, 3632.

(9) Markov, D. E.; Amsterdam, E.; Blom, P. W. M.; Sieval, A. B.;

Hummelen, J. C. J. Phys. Chem. A 2005, 109, 5266.

(10) Yu, G.; Gao, J.; Hummelen, J. C.; Wudl, F.; Heeger, A. J. Science 1995, 270, 1789.

(11) Sariciftci, N. S.; Smilowitz, L.; Heeger, A. J.; Wudl, F. Science 1992, 258, 1474.

(12) Allemond, P. M.; Koch, A.; Wudl, F.; Rubin, Y.; Diederich, F.;

Alvarez, M. M.; Anz, S. J.; Whetten, R. L. J. Am. Chem. Soc. 1991, 113, 1050.

(13) Brabec, C. J.; Zerza, G.; Cerullo, G.; Silvestri, S. D.; Luzatti, S.;

Hummelen, J. C.; Sariciftci, S. Chem. Phys. Lett. 2001, 340, 232.

(14) Neugebauer, H.; Brabec, C. J.; Hummelen, J. C.; Janssen, R. A. J.;

Sariciftci, N. S. Synth. Met. 1999, 102, 1002.

(15) Neugebauer, H.; Brabec, C. J.; Hummelen, J. C.; Sariciftci, N. S.

Sol. Energy Mater. Sol. Cells 2000, 61, 35.

(16) Singh, T. B.; Marjanovic´, N.; Matt, G. J.; Gu¨nes, S.; Sariciftci, N. S.;

Ramil, A. M.; Andreev, A.; Sitter, H.; Schwo¨diauer, R.; Bauer, S.

Org. Electron. 2005, 6, 105.

(17) Becker, S. A.; Sivula, K.; Kavulak, D. F.; Fre´chet, J. M. J. Chem.

Mater. 2007, 19, 2927.

(18) Riedel, I.; von Hauff, E.; Parisi, J.; Martı´n, N.; Giacalone, F.;

Dyakonov, V. AdV. Funct. Mater. 2005, 15, 1979.

(19) Popescu, L. M.; van’t Hof, P.; Sieval, A. B.; Jonkman, H. T.;

Hummelen, J. C. Appl. Phys. Lett. 2006, 89, 213507.

(20) Xu, Z.; Chen, L.-M.; Yang, G.; Huang, C.-H.; Hou, J.; Wu, Y.; Li,

(25) Scharber, M. C.; Mu¨hlbacher, D.; Koppe, M.; Denk, P.; Waldauf, C.; Heeger, A. J.; Brabec, C. J. AdV. Mater. 2006, 18, 789.

(26) Coakley, K. M.; McGehee, M. D. Chem. Mater. 2004, 16, 4533.

(27) Koster, L. J. A.; Mihailetchi, V. D.; Blom, P. W. M. Appl. Phys.

Lett. 2006, 88, 093511.

(28) Winder, C.; Sariciftci, N. S. J. Mater. Chem. 2004, 14, 1077.

(29) Bundgaard, E.; Krebs, F. C. Sol. Energy Mater. Sol. Cells 2007, 91, 954.

(30) Kroon, R.; Lenes, M.; Hummelen, J. C.; Blom, P. W. M.; de Boer, B. Polym. ReV. 2008, 48, 531.

(31) Thompson, B. C.; Fre´chet, J. M. J. Angew. Chem., Int. Ed. 2008, 47, 58.

(32) Mayer, A. C.; Scully, S. R.; Hardin, B. E.; Rowell, M. W.; McGehee, M. D. Mater. Today 2007, 10, 28.

(33) Roncali, J. Chem. ReV. 1997, 97, 173.

(34) Brabec, C. J.; Cravino, A.; Meissner, D.; Sariciftci, N. S.; Fromherz, T.; Rispens, M. T.; Sanchez, L.; Hummelen, J. C. AdV. Funct. Mater.

2001, 11, 374.

(35) Lenes, M.; Wetzelaer, G.-J. A. H.; Kooistra, F. B.; Veenstra, S. C.;

Hummelen, J. C.; Blom, P. W. M. AdV. Mater. 2008, 20, 2116.

(36) Kooistra, F. B.; Knol, J.; Kastenberg, F.; Popescu, L. M.; Verhees, W. J. H.; Kroon, J. M.; Hummelen, J. C. Org. Lett. 2007, 9, 551.

(37) Brabec, C. J.; Winder, C.; Sariciftic, N. S.; Hummelen, J. C.;

Dhanabalan, A.; van Hal, P. A.; Janssen, R. A. J. AdV. Funct. Mater.

2002, 12, 709.

(40) Roncali, J. Macromol. Rapid Commun. 2007, 28, 1761.

(41) Bre´das, J. L. J. Chem. Phys. 1985, 82, 3808.

(42) Wudl, F.; Kobayashi, M.; Heeger, A. J. J. Org. Chem. 1984, 49, 3382.

(43) Bre´das, J. L.; Heeger, A. J.; Wudl, F. J. Phys. Chem. 1986, 85, 4673.

(44) Hoogmartens, I.; Adriaensens, P.; Vanderzande, D.; Gelan, J.;

Quattrocchi, C.; Lazzaroni, R.; Bre´das, J. L. Macromolecules 1992, 25, 7347.

(45) Pomerantz, M.; Chaloner-Gill, B.; Harding, L. O.; Tseng, J. J.;

Pomerantz, W. J. Synth. Mater. 1993, 55, 960.

(46) Pomerantz, M.; Gu, X. Synth. Mater. 1997, 84, 243.

(47) Brisset, H.; Thobie-Gautier, C.; Gorgues, A.; Jubault, M.; Roncali, J. J. Chem. Soc., Chem. Commum. 1994, 1305.

(48) Orti, E.; Sanchis, M. J.; Viruela, P. M.; Vituela, R. Synth. Met. 1999, 101, 602.

(49) Roncali, J.; Thobie-Gautier, C. AdV. Mater. 1994, 6, 846.

(50) Pei, Q.; Zuccarello, G.; Ahlskog, M.; Ingana¨s, O. Polymer 1994, 35, 1347.

(51) Zhang, Q. T.; Tour, J. M. J. Am. Chem. Soc. 1998, 120, 5355.

(52) Kitamura, C.; Tanaka, S.; Yamashita, Y. Chem. Mater. 1996, 8, 570.

(53) Brocks, G.; Tol, A. J. Phys. Chem. 1996, 100, 1838.

(54) Yamamoto, T.; Zhou, Z.-H.; Kanbara, T.; Shimura, M.; Kizu, K.;

Maruyama, T.; Nakamura, Y.; Fukuda, T.; Lee, B.-L.; Ooba, N.;

Tomaru, S.; Kurihara, T.; Kaino, T.; Kubota, K.; Sasaki, S. J. Am.

Chem. Soc. 1996, 118, 10389.

(55) van Mullekom, H. A. M.; Vekemans, J. A. J. M.; Meijer, E. W. Chem.

Commun. 1996, 2163.

(56) Pivrikas, A.; Sariciftci, N. S.; Jusˇka, G.; O¨ sterbacka, R. Prog.

PhotoVoltaics 2007, 15, 677.

(57) Facchetti, A. Mater. Today 2007, 10, 28.

(58) Shirota, Y.; Kageyama, H. Chem. ReV. 2007, 107, 953.

(59) Sadki, S.; Schottland, P.; Brodie, N.; Sabouraud, G. Chem. Soc. ReV.

2000, 29, 283.

(60) Roncali, J. Chem. ReV. 1992, 92, 711.

(61) Waltman, R. J.; Bargon, J. Can. J. Chem. 1986, 64, 76.

(62) Toshima, N.; Hara, S. Prog. Polym. Sci. 1995, 20, 155.

(63) Cheng, Y.-J.; Luh, T.-Y. J. Organomet. Chem. 2004, 689, 4137.

(64) Tamao, K.; Sumitani, K.; Kumda, M. J. Am. Chem. Soc. 1972, 94, 4374.

(65) Stille, J. K. Angew. Chem., Int. Ed. 1986, 25, 508.

(66) Miyaura, N.; Suzuki, A. Chem. ReV. 1995, 95, 2457.

(67) Sonogashira, K. J. Organomet. Chem. 2002, 653, 46.

(68) Bao, Z.; Chan, W. K.; Yu, L. J. Am. Chem. Soc. 1995, 117, 12426.

(69) Yamamoto, T.; Morita, A.; Miyazaki, Y.; Maruyama, T.; Wakayama, H.; Zhou, Z.-H.; Nakamura, Y.; Kanbara, T.; Sasaki, S.; Kubota, K.

Macromolecules 1992, 25, 1214.

(70) Burroughes, J. H.; Bradley, D. D. C.; Brown, A. R.; Marks, R. N.;

Mackay, K.; Friend, R. H.; Burns, P. L.; Holmes, A. B. Nature 1990, 347, 539.

(71) McDonald, R. N.; Campbell, T. W. J. Am. Chem. Soc. 1960, 82, 4669.

(72) Wessling, R. A.; Zimmerman, R. G. U.S. Patent 3401152, 1968.

(73) Wessling, R. A. J. Polym. Sci., Polym. Symp. 1985, 72, 55.

(74) Burn, P. L.; Kraft, A.; Baigent, D. R.; Bradley, D. D. C.; Brown, A. R.; Friend, R. H.; Gymer, R. W.; Holmes, A. B.; Jackson, R. W.

J. Am. Chem. Soc. 1993, 115, 10117.

(75) Padmanaban, G.; Ramakrishnan, S. J. Am. Chem. Soc. 2000, 122, 2244.

(76) Louwet, F.; Vanderzande, D.; Gelan, J.; Mullens, J. Macromolecules 1995, 28, 1330.

(77) Lutsen, L.; Adriaensens, P.; Becker, H.; Van Breemen, A. J.;

Vanderzande, D.; Gelan, J. Macromolecules 1999, 32, 6517.

(78) Son, S.; Dodabalapur, A.; Lovinger, A. J.; Galvin, M. E. Science 1995, 269, 376.

(79) Papadimitrakopoulos, F.; Konstadinidis, K.; Miller, T. M.; Opila, R.;

Chandross, E. A.; Galvin, M. E. Chem. Mater. 1994, 6, 1563.

(80) Braun, D.; Heeger, A. J. Appl. Phys. Lett. 1991, 58, 1982.

(81) Gilch, H. G.; Wheelwright, W. L. J. Polym. Sci., Part A: Polym.

Chem. 1966, 4, 1337.

(82) Wan, W. C.; Antoniadis, H.; Choong, V. E.; Razafitrimo, H.; Gao, Y.; Feld, W. A.; Hsieh, B. R. Macromolecules 1997, 30, 6567.

(83) Neef, C. J.; Ferraris, J. P. Macromolecules 2000, 33, 2311.

(84) Denton, F. R.; Lahti, P. M.; Karasz, F. E. J. Polym. Sci., Part A:

Polym. Chem. 1992, 30, 2223.

(85) Issaris, A.; Vanderzande, D.; Gelan, J. Polymer 1997, 38, 2571.

(86) Cho, B. R.; Han, M. S.; Suh, Y. S.; Oh, K. J.; Jeon, S. J. J. Chem.

Soc., Chem. Commun. 1993, 564.

(87) Hsieh, B. R.; Yu, Y.; forsythe, E. W.; Schaaf, G. M.; Feld, W. A.

J. Am. Chem. Soc. 1998, 120, 231.

(88) Hsieh, B. R.; Yu, Y.; VanLaeken, A. C.; Lee, H. Macromolecules 1997, 30, 8094.

(89) Becker, H.; Spreitzer, H.; Kreuder, W.; Kluge, E.; Schenk, H.; Parker, I.; Cao, Y. AdV. Mater. 2000, 12, 42.

(90) Becker, H.; Spreitzer, H.; Ibrom, K.; Kreuder, W. Macromolecules 1999, 32, 4925.

(91) Chen, Z.-K.; Lee, N. H. S.; Huang, W.; Xu, Y.-S.; Cao, Y.

Macromolecules 2003, 36, 1009.

(92) Liao, L.; Pang, Y.; Ding, L.; Karasz, F. E. Macromolecules 2001, 34, 6756.

(93) Moratti, S. C.; Cervini, R.; Holmes, A. B.; Baigent, D. R.; Friend, R. H.; Greenham, N. C.; Gru¨ner, J.; Hamer, P. J. Synth. Met. 1995, 71, 2117.

(94) Bao, Z.; Chen, Y.; Cai, R.; Yu, L. Macromolecules 1993, 26, 5281.

(95) Alam, M. M.; Jenekhe, S. A. Chem. Mater. 2002, 14, 4775.

(96) Alam, M. M.; Jenekhe, S. A. Chem. Mater. 2004, 16, 4647.

(97) Zhang, F.; Johansson, M.; Andersson, M. R.; Hummelen, J. C.;

Ingana¨s, O. AdV. Mater. 2002, 14, 662.

(98) Shrotriya, V.; Wu, E. H.-E.; Li, G.; Yao, Y.; Yang, Y. Appl. Phys.

Lett. 2006, 88, 064104.

(99) Li, J.; Sun, N.; Guo, Z. X.; Li, C.; Li, Y.; Dai, L.; Zhu, D.; Sun, D.;

Cao, Y.; Fan, L. J. Phys. Chem. B 2002, 106, 11509.

(100) Breeze, A. J.; Schlesinger, Z.; Carter, S. A.; Brock, P. J. Phys. ReV.

B 2001, 64, 125205.

(101) Song, M. Y.; Kim, K. J.; Kim, D. Y. Sol. Energy Mater. Sol. Cells 2005, 85, 31.

(102) Wei, Q.; Hirota, K.; Tajima, K.; Hashimoto, K. Chem. Mater. 2006, 18, 5080.

(103) Neyshtadt, S.; Kalina, M.; Frey, G. L. AdV. Mater. 2008, 20, 2541.

(104) Shim, H. S.; Na, S. I.; Nam, S. H.; Ahn, H.-J.; Kim, H. J.; Kim, D.-Y.; Kim, W. B. Appl. Phys. Lett. 2008, 92, 183107.

(105) Shaheen, S. E.; Brabec, C. J.; Sariciftci, N. S.; Padinger, F.; Fromherz, T.; Hunnelen, J. C. Appl. Phys. Lett. 2001, 78, 841.

(106) Tajima, K.; Suzuki, Y.; Hashimoto, K. J. Phys. Chem. C 2008, 112, 8507.

(107) Pacios, R.; Chatten, A. J.; Kawano, K.; Durrant, J. R.; Bradley, D. D. C.; Nelson, J. AdV. Funct. Mater. 2006, 16, 2117.

(108) Kawano, K.; Ito, N.; Nishimori, T.; Sakai, J. Appl. Phys. Lett. 2006, 88, 073514.

(109) Lenes, M.; Koster, L. J. A.; Mihailetchi, V. D.; Blom, P. W. M.

Appl. Phys. Lett. 2006, 88, 243502.

(110) Mens, R.; Adriaensens, P.; Lutsen, L.; Swinnen, A.; Bertho, S.;

Ruttens, B.; D’Haen, J.; Manca, J.; Cleij, T.; Vanderzande, D.; Gelan, J. J. Polym. Sci., Part A: Polym. Chem. 2008, 46, 138.

(111) Park, J.; Han, S. H.; Senthilarasu, S.; Lee, S.-H. Sol. Energy Mater.

Sol. Cells 2007, 91, 751.

(112) van Hal, P. A.; Wienk, M. M.; Kroon, J. M.; Verhees, W. J. H.;

Slooff, L. H.; van Gennip, W. J. H.; Jonkheijm, P.; Janssen, R. A. J.

AdV. Mater. 2003, 15, 118.

(113) Beek, W. J. E.; Wienk, M. M.; Kemerink, M.; Yang, X.; Janssen, R. A. J. J. Phys. Chem. B 2005, 109, 9505.

(114) Boucle´, J.; Ravirajan, P.; Nelson, J. J. Mater. Chem. 2007, 17, 3141.

(115) Sun, B.; Marx, E.; Greenham, N. C. Nano Lett. 2003, 3, 961.

(116) Tan, Z.; Tang, R.; Zhou, E.; He, Y.; Yang, C.; Xi, F.; Li, Y. J. Appl.

Polym. Sci. 2008, 107, 514.

(117) Wen, S.; Pei, J.; Zhou, Y.; Xue, L.; Xu, B.; Li, Y.; Tian, W. J. Polym.

Sci., Part A: Polym. Chem. 2009, 47, 1003.

(118) Shen, P.; Sang, G.; Lu, J.; Zhao, B.; Wan, M.; Zou, Y.; Li, Y.; Tan, S. Macromolecules 2008, 41, 5716.

(119) Granstro¨m, M.; Petritsch, K.; Arias, A. C.; Lux, A.; Andersson, M. R.;

Friend, R. H. Nature 1998, 395, 257.

(120) Halls, J. J. M.; Walsh, C. A.; Greenham, N. C.; Marseglia, E. A.;

Friend, R. H.; Moratti, S. C.; Homles, A. B. Nature 1995, 376, 498.

(121) Gupta, D.; Kabra, D.; Kolishetti, N.; Ramakrishnan, S.; Narayan, K. S. AdV. Funct. Mater. 2007, 17, 226.

(122) Dam, N.; Scurlock, R. D.; Wang, B.; Ma, L.; Sundahl, M.; Ogilby, P. R. Chem. Mater. 1999, 11, 1302.

(123) Colladet, K.; Fourier, S.; Cleij, T. J.; Lusten, L.; Gelan, J.;

Vanderzande, D.; Nguyen, L. H.; Neugebauer, H.; Sariciftci, S.;

Aguirre, A.; Janssen, G.; Goovaerts, E. Macromolecules 2007, 40, 65.

(124) Thompson, B. C.; Kim, Y. G.; Reynolds, J. R. Macromolecules 2005, 38, 5359.

(125) Thompson, B. C.; Kim, Y. G.; McCarley, T. D.; Reynolds, J. R.

J. Am. Chem. Soc. 2006, 128, 12714.

(126) Hoppe, H.; Egbe, D. A. M.; Mu¨hlbacher, D.; Sariciftci, N. S. J. Mater.

Chem. 2004, 14, 3462.

(127) Egbe, D. A. M.; Nguyen, L. H.; Schmidtke, K.; Wild, A.; Sieber, C.; Guenes, S.; Sariciftci, N. S. J. Polym. Sci., Part A: Polym. Chem.

2007, 45, 1619.

(128) Egbe, D. A. M.; Nguyen, L. H.; Hoppe, H.; Mu¨hlbacher, D.; Sariciftci, N. S. Macromol. Rapid Commun. 2005, 26, 1389.

(129) Scherf, U.; List, E. J. W. AdV. Mater. 2002, 14, 477.

(130) Bernius, M. T.; Inbasekaran, M.; O’Brien, J.; Wu, W. AdV. Mater.

2000, 12, 1737.

(131) Schulz, G. L.; Chen, X.; Holdcroft, S. Appl. Phys. Lett. 2009, 94, 023302.

(132) Tang, W.; Ke, L.; Tan, L.; Lin, T.; Kietzke, T.; Chen, Z. K.

Macromolecules 2007, 40, 6164.

(133) Anthony, J. E. Chem. ReV. 2006, 106, 5028.

(134) Okamoto, T.; Bao, Z. J. Am. Chem. Soc. 2007, 129, 10308.

(135) Lloyd, M. T.; Mayer, A. C.; Subramanian, S.; Mourey, D. A.;

Herman, D. J.; Bapat, A. V.; Anthony, J. E.; Malliaras, G. G. J. Am.

Chem. Soc. 2007, 129, 9144.

(136) Okamoto, T.; Jiang, Y.; Qu, F.; Mayer, A. C.; Parmer, J. E.; McGehee, M. D.; Bao, Z. Macromolecules 2008, 41, 6977.

(137) Payne, M. M.; Odom, S. A.; Parkin, S. R.; Anthony, J. E. Org. Lett.

2004, 6, 3325.

(138) Herguth, P.; Jiang, X.; Liu, M. S.; Jen, A. K.-Y. Macromolecules 2002, 35, 6094.

(139) Campbell, A. J.; Bradley, D. D. C.; Antoniadis, H. Appl. Phys. Lett.

2001, 79, 2133.

(140) Arias, A. C.; MacKenzie, J. D.; Stevenson, R.; Halls, J. J.;

Inbasekaran, M.; Woo, E. P.; Richards, D.; Friend, R. H. Macro-molecules 2001, 34, 6005.

(141) Arias, A. C.; Corcoran, N.; Banach, M.; Friend, R. H.; MacKenzie, J. D. Appl. Phys. Lett. 2002, 80, 1695.

(142) Snaith, H. J.; Greenham, N. C.; Friend, R. H. AdV. Mater. 2004, 16, 1640.

(143) Kim, H.; Shin, M.; Kim, Y. J. Phys. Chem. C 2009, 113, 1620.

(144) McNeill, C. R.; Halls, J. J. M.; Wilson, R.; Whiting, G. L.; Berkebile, S.; Ramsey, M. G.; Friend, R. H.; Greenham, N. C. AdV. Funct.

Mater. 2008, 18, 2309.

(145) Svensson, M.; Zhang, F.; Veenstra, S. C.; Verhees, W. J. H.;

Hummelen, J. C.; Kroon, J. M.; Ingana¨s, O.; Andersson, M. R. AdV.

Mater. 2003, 15, 988.

(146) Zhou, Q.; Hou, Q.; Zheng, L.; Deng, X.; Yu, G.; Cao, Y. Appl. Phys.

Lett. 2004, 84, 1653.

(147) Hou, Q.; Xu, Y.; Yang, W.; Yuan, M.; Peng, J.; Cao, Y. J. Mater.

Chem. 2002, 12, 2887.

(148) Zhang, F.; Jespersen, K. G.; Bjo¨rstro¨m, C.; Svensson, M.; Andersson, M. R.; Sundstro¨m, V.; Magnusson, K.; Moons, E.; Yartsev, A.;

Ingana¨s, O. AdV. Funct. Mater. 2006, 16, 667.

(149) Wang, P.; Abrusci, A.; Wong, H. M. P.; Svensson, M.; Andersson, M. R.; Greenham, N. C. Nano Lett. 2006, 6, 1789.

(150) Slooff, L. H.; Veenstra, S. C.; Kroon, J. M.; Moet, D. J. D.;

Sweelssen, J.; Koetse, M. M. Appl. Phys. Lett. 2007, 90, 143506.

(151) Shi, C.; Yao, Y.; Yang, Y.; Pei, Q. J. Am. Chem. Soc. 2006, 114, 8980.

(152) Hou, Q.; Zhou, Q.; Zhang, Y.; Yang, W.; Yang, R.; Cao, Y.

Macromolecules 2004, 37, 6299.

(153) Yang, R.; Tian, R.; Hou, Q.; Yang, W.; Cao, Y. Macromolecules 2003, 36, 7453.

(154) Yang, R.; Tian, R.; Yan, J.; Zhang, Y.; Yang, J.; Hou, Q.; Yang, W.; Zhang, C.; Cao, Y. Macromolecules 2005, 38, 244.

(155) Zhang, F.; Perzon, E.; Wang, X.; Mammo, W.; Andersson, M. R.;

Ingana¨s, O. AdV. Funct. Mater. 2005, 15, 745.

(156) Perzon, E.; Wang, X.; Zhang, F.; Mammo, W.; Delgado, J. L.; de la Cruz, P.; Ingana¨s, O.; Langa, F.; Andersson, M. R. Synth. Met. 2005, 154, 53.

(157) Zhang, F.; Mammo, W.; Andersson, L. M.; Admassie, S.; Andersson, M. R.; Ingana¨s, O. AdV. Mater. 2006, 18, 2169.

(158) Delgado, J. L.; de la Cruz, P.; Lo´pez-Arza, V.; Langa, F. Tetrahedron Lett. 2004, 45, 1651.

(159) Wang, X.; Perzon, E.; Delgado, J. L.; de la Cruzm, P.; Zhang, F.;

Langa, F.; Andersson, M.; Ingana¨s, O. Appl. Phys. Lett. 2004, 85, 5081.

(160) Zhang, F.; Bijleveld, J.; Perzon, E.; Tvingstedt, K.; Barrau, S.;

Ingana¨s, O.; Andersson, M. R. J. Mater. Chem. 2008, 18, 5468.

(161) Schulz, G. L.; Holdcroft, S. Chem. Mater. 2008, 20, 5351.

(162) Grazulevicius, J. V.; Strohriegl, P.; Pielichowski, J.; Pielichowsk, K. Prog. Polym. Sci. 2003, 28, 1297.

(163) Solomeshch, O.; Yu, Y.-J.; Medvedev, V.; Razin, A.; Blumer-Ganon, B.; Eichen, Y.; Jin, J.-I.; Tessler, N. Synth. Met. 2007, 157, 841.

(164) Ohmori, Y.; Kajii, H.; Sawatani, T.; Ueta, H.; Yoshino, K. Thin Solid Films 2001, 393, 407.

(165) Drolet, N.; Morin, J.-F.; Leclerc, N.; Wakim, S.; Tao, Y.; Leclerc, M. AdV. Funct. Mater. 2005, 15, 1671.

(166) Wakim, S.; Aich, B.-R.; Tao, Y.; Leclerc, M. Polym. ReV. 2008, 48, 432.

(167) Iraqi, A.; Wataru, I. Chem. Mater. 2004, 16, 442.

(168) Zhang, Z.-B.; Fujiki, M.; Tang, H.-Z.; Motonaga, M.; Torimistu, K.

Macromolecues 2002, 35, 1988.

(169) Morin, J.-F.; Leclerc, M. Macromolecules 2001, 34, 4680.

(170) Dierschke, F.; Grimsdale, A. C.; Mullen, K. Synthesis 2003, 16, 2470.

(171) Cadogan, J. I. G.; Cameron-Wood, M.; Mackie, R. K.; Searle, R. J. G.

J. Chem. Soc. 1965, 4831.

(172) Li, J.; Dierschke, F.; Wu, J.; Grimsdale, A. C.; Mu¨llen, K. J. Mater.

Chem. 2006, 16, 96.

(173) Blouin, N.; Michaud, A.; Leclerc, M. AdV. Mater. 2007, 19, 2295.

(174) Blouin, N.; Michaud, A.; Gendron, D.; Wakim, S.; Blair, E.; Neagu-Plesu, R.; Belleteˆte, M.; Durocher, G.; Tao, Y.; Leclerc, M. J. Am.

Chem. Soc. 2008, 130, 732.

(175) Leclerc, N.; Michaud, A.; Sirois, K.; Morin, J. F.; Leclerc, M. AdV.

Funct. Mater. 2006, 16, 1694.

(176) Barbarella, G.; Favaretto, L.; Sotgiu, G.; Zambianchi, M.; Arbizzani, C.; Bongini, A.; Mastragostino, M. Chem. Mater. 1999, 11, 2533.

(177) Li, Y.; Wu, Y.; Ong, B. S. Macromolecules 2006, 39, 6521.

(178) Boudreault, P.-L. T.; Wakim, S.; Blouin, N.; Simard, M.; Tessier, C.; Tao, Y.; Leclerc, M. J. Am. Chem. Soc. 2007, 129, 9125.

(179) Lu, J.; Liang, F.; Drolet, N.; Ding, J.; Tao, Y.; Movileanu, R. Chem.

Commun. 2008, 5315.

(180) Yudina, L. N.; Bergman, J. Tetrahedron 2003, 59, 1265.

(181) Tsai, J.-H.; Chueh, C.-C.; Lai, M.-H.; Wang, C.-F.; Chen, W.-C.;

Ko, B.-T.; Ting, C. Macromolecules 2009, 42, 1897.

(182) Wei, Y.; Chan, C.-C.; Tian, J.; Jang, G.-W.; Hsueh, K. F. Chem.

Mater. 1991, 3, 888.

(183) Souto Maior, R. M.; Hinkelmann, K.; Eckert, H.; Wudl, F. Macro-molecules 1990, 23, 1268.

(184) Sato, M.-a.; Morii, H. Macromolecules 1991, 24, 1196.

(185) McCullough, R. D.; Lowe, R. D. J. Chem. Soc., Chem. Commun.

1992, 70.

(186) McCullough, R. D.; Lowe, R. D.; Jayaraman, M.; Anderson, D. L.

J. Org. Chem. 1993, 58, 904.

(187) Chen, T.-A.; Rieke, R. D. J. Am. Chem. Soc. 1992, 114, 10087.

(188) Chen, T.-A.; Wu, X.; Rieke, R. D. J. Am. Chem. Soc. 1995, 117, 233.

(189) Loewe, R. S.; Khersonsky, S. M.; McCullough, R. D. AdV. Mater.

1999, 3, 250.

(193) Yokoyama, A.; Miyakoshi, R.; Yokozawa, T. Macromolecules 2004, 37, 1169.

(194) Miyakoshi, R.; Yokoyama, A.; Yokozawa, T. J. Am. Chem. Soc. 2005, 127, 17542.

(195) Kim, Y. K.; Cook, S.; Tuladhar, S. M.; Choulis, S. A.; Nelson, J.;

Durrant, J. R.; Bradley, D. D. C.; Giles, M.; McCulloch, I.; Ha, C.-S.; Ree, M. Nat. Mater. 2006, 5, 197.

(196) Moule´, A. J.; Meerholz, K. AdV. Mater. 2008, 20, 240.

(197) Li, G.; Shrotriya, V.; Huang, J.; Yao, Y.; Moriarty, T.; Emery, K.;

Yang, Y. Nat. Mater. 2005, 4, 864.

(198) Chu, C.-W.; Yang, H.; Hou, W. J.; Huang, J.; Li, G.; Yang, Y. Appl.

Phys. Lett. 2008, 92, 103306.

(199) Miller, S.; Fanchini, G.; Lin, Y.-Y.; Li, C.; Chen, C.-W.; Su, W.-F.;

Chhowalla, M. J. Mater. Chem. 2008, 18, 306.

(200) Ma, W.; Yong, C.; Gong, X.; Lee, K.; Heeger, A. J. AdV. Funct.

Mater. 2005, 15, 1617.

(201) Ayzner, A. L.; Wanger, D. D.; Tassone, C. J.; Tolbert, S. H.;

Schwartz, B. J. J. Phys. Chem. C 2008, 112, 18711.

(202) Erb, T.; Zhokhavets, U.; Gobsch, G.; Raleva, S.; Stu¨hn, B.; Schilinsky, P.; Waldauf, C.; Brabec, C. J. AdV. Funct. Mater. 2005, 15, 1193.

(203) Berson, S.; de Bettignies, R.; Bailly, S.; Guillerez, S. AdV. Funct.

Mater. 2007, 17, 1377.

(204) Ma, W.; Gopinathan, A.; Heeger, A. J. AdV. Mater. 2007, 19, 3656.

(205) Sivula, K.; Luscombe, C. K.; Thompson, B. C.; Fre´chet, J. M. J.

J. Am. Chem. Soc. 2006, 128, 13988.

(206) Woo, C. H.; Thompson, B. C.; Kim, B. J.; Toney, M. F.; Fre´chet, J. M. J. J. Am. Chem. Soc. 2008, 130, 16324.

(207) Thompson, B. C.; Kim, B. J.; Kavulak, D. F.; Sivula, K.; Mauldin, C.; Fre´chet, J. M. J. Macromolecules 2007, 40, 7425.

(208) Ong, B. S.; Wu, Y.; Liu, P.; Gardner, S. J. Am. Chem. Soc. 2004, 126, 3378.

(209) Gurau, M. C.; Delongchamp, D. M.; Vogel, B. M.; Lin, E. K.; Fischer, D. A.; Sambasivan, S.; Richter, L. J. Langmuir 2007, 23, 834.

(210) Nguyen, L. H.; Hoppe, H.; Erb, T.; Gu¨nes, S.; Gobsch, G.; Sariciftci, N. S. AdV. Funct. Mater. 2007, 17, 1071.

(211) Schilinsky, P.; Asawapirom, U.; Scherf, U.; Biele, M.; Brabec, C. J.

Chem. Mater. 2005, 17, 2175.

(212) Ma, Wanli, Kim, J. Y.; Lee, K.; Heeger, A. J. Macromol. Rapid Commun. 2007, 28, 1776.

(213) Zen, A.; Pflaum, J.; Hirschmann, S.; Zhuang, W.; Jaiser, F.;

Asawapirom, U.; Rabe, J. P.; Scherf, U.; Neher, D. AdV. Funct. Mater.

2004, 14, 757.

(214) Hiorns, R. C.; de Bettignies, R.; Leroy, J.; Bailly, S.; Firon, M.;

Sentein, C.; Khoukh, A.; Preud’homme, H.; Dagron-Lartigau, C. AdV.

Funct. Mater. 2006, 16, 2263.

(215) Sheina, E. E.; Khersonsky, S. M.; Jones, E. G.; McCullough, R. D.

Chem. Mater. 2005, 17, 3317.

(216) Heeney, M.; Zhang, W.; Crouch, D. J.; Chabinyc, M. L.; Gordeyev, S.; Hamilton, R.; Higgins, S. J.; McCulloch, I.; Skabara, P. J.;

Sparrowe, D.; Tierney, S. Chem. Commun. 2007, 5061.

(217) Ballantyne, A. M.; Chen, L.; Nelson, J.; Bradley, D. D. C.; Astuti, Y.; Maurano, A.; Shuttle, C. G.; Durrant, J. R.; Heeney, M.; Duffy, W.; McCulloch, I. AdV. Mater. 2007, 19, 4544.

(218) Hou, J.; Tan, Z.; Yan, Y.; He, Y.; Yang, C.; Li, Y. J. Am. Chem.

Soc. 2006, 128, 4911.

(219) Li, Y.; Zou, Y. AdV. Mater. 2008, 20, 2952.

(220) Chang, Y.-T.; Hsu, S.-L.; Chen, G.-Y.; Su, M.-H.; Singh, T. A.; Diau, E. W.-G.; Wei, K.-H. AdV. Funct. Mater. 2008, 18, 2356.

(221) Zhou, E.; Tan, Z.; Yang, Y.; Huo, L.; Zou, Y.; Yang, C.; Li, Y.

Macromolecules 2007, 40, 1831.

(222) Hittinger, E.; Kokil, A.; Weder, C. Angew. Chem., Int. Ed. 2004, 43, 1808.

(223) Weder, C. Chem. Commun. 2005, 5378.

(224) Zhou, E.; Tan, Z.; Yang, C.; Li, Y. Macromol. Rapid Commun. 2006, 27, 793.

(225) Tu, G.; Bilge, A.; Adamczyk, S.; Forster, M.; Heiderhoff, R.; Balk, L. J.; Mu¨hlbacher, D.; Morana, M.; Koppe, M.; Scharber, M. C.;

Choulis, S. A.; Brabec, C. J.; Scherf, U. Macromol. Rapid Commun.

2007, 28, 1781.

(226) Cava, M. P.; Pollack, N. M.; Mamer, O. A.; Mitchell, M. J. J. Org.

Chem. 1971, 36, 3932.

(227) van Asselt, R.; Vanderzande, D.; Gelan, J.; Froehling, P. E.; Aagaard, O. Synth. Met. 2000, 110, 25.

(228) Polec, I.; Henckens, A.; Goris, L.; Nicolas, M.; Loi, M. A.;

Adriaensens, P. J.; Lutsen, L.; Manca, J. V.; Vanderzande, D.;

Sariciftci, N. S. J. Polym. Sci., Part A: Polym. Chem. 2002, 41, 1034.

(229) Goris, L.; Loi, M. A.; Cravino, A.; Neugebauer, H.; Sariciftci, N. S.;

Polec, I.; Lutsen, L.; Andries, E.; Manca, J.; de Schepper, L.;

Vanderzande, D. Synth. Met. 2003, 138, 249.

(230) Shaheen, S. E.; Vangeneugden, D.; Kiebooms, R.; Vanderzande, D.;

Fromherz, T.; Padinger, F.; Brabec, P. C. J.; Sariciftci, N. S. Synth.

Met. 2001, 121, 1583.

(231) Vangeneugden, D. L.; Vanderzande, D. J. M.; Salbeck, J.; van Hal, P. A.; Janssen, R. A. J.; Hummelen, J. C.; Brabec, C. J.; Shaheen, S. E.; Sariciftci, N. S. J. Phys. Chem. B 2001, 105, 11106.

(232) Qin, Y.; Kim, J. Y.; Frisbie, C. D.; Hillmyer, M. A. Macromolecules 2008, 41, 5563.

(233) Mohanakrishnan, A. K.; Lakshmikantham, M. V.; McDougal, C.;

Cava, M. P.; Baldwin, J. W.; Metzger, R. M. J. Org. Chem. 1998, 63, 3105.

(234) Vangeneugden, D. L.; Kiebooms, R. H. L.; Vanderzande, D. J. M.;

Gelan, J. M. J. V. Synth. Met. 1999, 101, 120.

(235) Coppo, P.; Turner, M. L. J. Mater. Chem. 2005, 15, 1123.

(236) Lambert, T. L.; Ferraris, J. P. J. Chem. Soc., Chem. Commun. 1991, 752.

(237) Ferraris, J. P.; Lambert, T. L. J. Chem. Soc., Chem. Commun. 1991, 1268.

(238) Coppo, P.; Cupertino, D. C.; Yeates, S. G.; Turner, M. L. Macro-molecules 2003, 36, 2705.

(239) Zhu, Z.; Waller, D.; Gaudiana, R.; Morana, M.; Mu¨hlbacher, D.;

Scharber, M.; Brabec, C. Macromolecules 2007, 40, 1981.

(240) Mu¨hlbacher, D.; Scharber, M.; Zhengguo, M. M.; Zhu, M. M. Z.;

Waller, D.; Gaudiana, R.; Brabec, C. AdV. Mater. 2006, 18, 2884.

(241) Peet, J.; Kim, J. Y.; Coates, N. E.; Ma, W. L.; Moses, D.; Heeger,

(241) Peet, J.; Kim, J. Y.; Coates, N. E.; Ma, W. L.; Moses, D.; Heeger,