• 沒有找到結果。

Conclusions

在文檔中 Retreating side (頁 113-200)

(2) As for in-situ formed intermetallic compounds reinforced Mg-Al-Zn alloys, friction stir process was used to fabricate bulk multi-element Mg base alloys with different fractions of AZ31 sheets, Al and Zn foils. Multi-passes and high fractions of Al and Zn elements results in apparent grain refinement, proved by the broadening of diffraction peaks and from SEM results. After multi-passes, some intermetallic compound phases were generated. Some intermetallic compounds are quasi-crystals with icosahedral point group symmetry. The average hardness of the multi-element Mg base alloy made by FSP reached nearly 350 in Hv scale, especially in the Mg50Al5Zn45 or Mg37.5Al25Zn37.5 system, due to the generation of intermetallic compounds and grain refinement. With increasing FSP operation to 10 passes, the microstructure and hardness in the stirred zone become much more refined and uniform.

(3) As for Mg based composites reinforced by extrinsic reinforcements, friction stir processing successfully fabricated bulk Mg-AZ31 based composites with 10~20 vol% of nano-ZrO2 particles and 5~10 vol% of nano-SiO2 particles. The distribution of nano-particles after four FSP passes resulted in satisfactorily uniform distribution. The average grain size of the AZ31 matrix of the 4P FSP composites could be effectively refined to 2~4 μm, as compared with the ~6 μm in the FSP AZ31 alloy (without particles) processed under the same FSP condition. The crystalline ZrO2 phase is very stable, no reaction between the ZrO2 and Mg phases occurred during the FSP mixing.

(4) The hardness properties at room temperature of the AZ31 composites with nano-fillers were improved (up to Hv~105), as compared with the AZ31 cast billet (Hv~50). The hardened bulk section or surface layer would greatly improve the wear resistance that is vital for practical applications. The effective hardness of the present particle reinforced composites can be approximately predicted by the iso-stress model when the hardness of

the hard particle is much higher than that of the soft matrix and the volume fraction of the particles is much lower than that of the matrix.

(5) The ultrafine grain size in solid solution hardened AZ31 Mg alloy is successfully achieved by one-pass FSP coupled with rapid heat sink. With proper control of the working temperature history, an ultrafine and uniform grained structure processed by FSP can be achieved. The grain boundaries are well defined and the mean grain size can be refined to 100~300 nm from the initial 75 μm by one single FSP pass. The ultrafine grained structure can drastically increases the microhardness from the initial 50 up to 120 Hv, or an increment factor of 2.4 times. The low working temperature is critical in achieving UFG AZ31 alloy. The estimated high strain rate and low working temperature during FSP with rapid heat sink also agree self-consistently with the achieved ultrafine grains.

(6) The finest grain size ever found in solid solution hardened AZ31 Mg alloy can be achieved by two passes FSP coupled with rapid heat sink. However, the subsequent second pass has lower heat input than first pass. The resulting microstructure exhibits equiaxed grains ranging from 40 nm to 200 nm with an average grain size of less than 100 nm, clearly illustrating that a nanocrystalline structure can be achieved by described two-pass FSP. The nanocrystalline grains can be shown in the TEM observations and the diffraction rings also can be seen in SAD patterns. The highest hardness point can reach

~150 Hv which is equal to triple of the AZ31 matrix, and the mean hardness increase up to around 134 Hv from initial 50 Hv. The process and mechanism of nanocrystallization of AZ31 alloy during the FSP with subsequent second pass is proposed as a two-type recrystallization mechanism.

References

1. C.C Koch, D.G. Morris, K. Lu, A. Inoue, Mater. Res. Soc. Bull., 24 (1999), p. 54.

2. S.X. McFadden, R.S. Mishar, R.Z. Valiev, A.P. Zhilyaev, A.K. Mukherjee, Nature, 398 (1999), p. 684.

3. P.G. Patridge, Met. Rev., 118 (1967), p. 169.

4. W.M. Thomas, E.D. Nicholas, J.C. Needham, M.G. Church, P. Templesmith and C.J.

Dawes: The Welding Institute, TWI, International Patent Application No.

PCT/GB92/02203 and GB Patent Application No. 9125978.8, 1991.

5. R.S. Mishra, M.W. Mahoney, S.X. McFadden, N.A. Mara, A.K. Mukherjee, Scripta Mater., 42 (2000), p. 163.

6. R.S. Mishra, Z.Y. Ma, I. Charit, Mater. Sci. Eng., A341 (2002), p. 307.

7. P.B. Berbon, W.H. Bingel, R.S. Mishra, C.C. Bampton, M.W. Mahoney, Scripta Mater., 44 (2001), p. 61.

8. J.E. Spowart, Z.Y. Ma, R.S. Mishra, in: K.V. Jata, M.W. Mahoney, R.S. Mishra, S.L.

Semiatin, T. Lienert (Eds.), Friction Stir Welding and Processing II, TMS, 2003, pp.

243–252.

9. Z.Y. Ma, S.R. Sharma, R.S. Mishra, M.W. Manohey, Mater. Sci. Forum 426–432 (2003), p. 2891.

10. 葉峻轍,工業材料,186 期 (2002),p. 82.

11. 范元昌、蘇健忠、翁震灼、陳俊沐,工業材料,186 期 (2002),p. 131.

12. G..V. Raynor, in The Physical Metallurgy of Magnesium and Its Alloys (Pergamon Press, London, 1957).

13. T. Lyman, H.E. Boyer, P.M. Unterwesier, J.E. Foster, J.P. Hontans, H. Lawton, in Metals Handbook (ASM International, Metals Park, Ohio, 1975).

14. R.W. Cahn, P. Hassen, E.J. Kramer, in Materials Science and Technology Structure and Properties of Nonferrous Alloys, VCH, New York, 1996.

15. B.L. Mordike, Mater. Sci. Eng., A324 (2002), p. 103.

16. Q.D. Wang, W.D. Chen, X.Q. Zeng, Y.Z. Lu, W.J. Ding, Y.P. Zhu, X.P. Xu, M. Mabuchi, J. Mater. Sci., 36 (2001), p. 3055.

17. P. Li, B. Tang, E.G. Kandalova, Mater. Lett., 59(2005), p. 671.

18. F. Von Buch, J. Lietzau, B.L. Mordike, A. Pisch, R. Schmid-Fetzer, Mater. Sci. Eng., A263 (1999), p. 1.

19. J. Grobner, R. Schmid-Fetzer, J. Alloys and Compounds, 320 (2001), p. 296.

20. K.U. Kainer, von Buch F. In: Kainer KU, editor. Magnesium alloys and technologies.

DGM. (2003) 1.

21. R.E. Reed-Hill, R. Abbaschian, in Physical Metallurgy Principles (PWS Publishing Company, 20 Park Plaza, Boston, 1994).

22. T. Narutani, J. Takamura, Acta Mater., 39 (1991), p. 2037.

23. 吳信輝,“電子束或電弧銲接鎂合金之微織構與機性分析”國立中山大學碩士論 文 (2003).

24. H.K. Lin, J.C. Huang, Mater. Trans. JIM, 43 (2002), p. 2424.

25. G. Nussbaum, P. Sainfort, G. Regazzoni, Scripta Mater., 29 (1989), p. 1079.

26. A. Bussiba, A. Ben Artzy, A Shtechman, S. Ifergan, M. Kupiec, Mater. Sci. Eng., A 302 (2001), p. 56.

27. Y.T. Zhu, T.C. Lowe, T.G. Langdon, Scripta Mater., 51 (2004), p. 825.

28. R.Z. Valiev, N.A. Krasilnikov, N.K. Tsenev, Mater. Sci. Eng., A 137 (1991), p. 35.

29. V.M. Segal, V.I. Reznikov, A.E. Drobyshevskiy, V.I. Kopylov, Russian Metall., 1 (1981), p. 99.

30. V.M. Segal, Mater. Sci. Eng., A197 (1995), p. 157.

31. A.P. Zhilyaev, G.V. Nurislamova, B.K. Kim, M.D. Baro, J.A. Szpunar, T.G. Langdon,

Acta Mater., 51 (2003), p. 753.

32. G.A. Salishchev, O.R. Valiahmetov, R.M. Galeev, J. Mater. Sci., 28 (1993), p. 2898.

33. O. Sitdikov, T. Sakai, A. Goloborodko, H. Miura, R. Kaibyshev, Mater. Trans. 45 (2004), p. 2232.

34. V.N. Varyutkhin, Y.Y. Beygelzimer, S. Synkov, D. Orlov, Mater. Sci. Forum, 503-504 (2006), p. 335.

35. J. Richert, M. Richert, Aluminum 62 (1986), p. 604.

36. M. Richert, Q. Liu, N. Hansen, Mater. Sci. Eng., A 260 (1999), p. 275.

37. H.S. Chu, K.S. Liu, J.W. Yeh, Metall. Mater. Trans., A 31 (2000), p. 2587.

38. H.S. Chu, K.S. Liu, J.W. Yeh, Scripta Mater., 45 (2001), p. 541.

39. D.H. Shin, J.J. Park, Y.S. Kim, K.T. Park, Mater. Sci. Eng., A 328 (2002), p. 98.

40. X. Zhao, T.F. Jing, Y.W. Gao, J.F. Zhou, W. Wang, Mater. Lett., 58 (2004), p. 2335.

41. Y. Saito, N. Tsuji, H. Utsunomiya, T. Sakai, R.G. Hong, Scripta Mater., 39 (1998), p.

1221.

42. Y. Saito, H. Utsunomiya, N. Tsuji, T. Sakai, Acta Mater., 47 (1999), p. 579.

43. G.E. Dieter, in Mechanical Metallurgy (McGraw-Hill Book Company, Singapore, 1988)

44. 林鉉凱,“析出型 AZ91 鎂合金低溫超塑性之研究”,國立中山大學碩士論文

(2001).

45. T.C. Chang, J.Y. Wang, C.M. O, S. Lee, J. Mater. Prod. Technol., 140 (2003), p. 588.

46. W.J. Kim, S.W. Chung, C.S. Chung, D. Kum, Acta Mater., 49 (2001), p. 3337.

47. M.T. Perez-Prado, J. A. del Valle and O. A. Ruano, Scripta Materialia, 51 (2004), p.

1093.

48. Y. Iwahashi, Z. Horita, M. Nemoto, T.G. Langdon, Acta Mater., 45 (1997), p. 4733.

49. 瘐忠義,“超細晶鋁之機械性質”,國立中山大學博士論文 (2003).

50. M. Mabuchi, H. Iwasaki, K. Yanase, K. Higashi, Scripta Mater., 36 (1999), p. 681.

51. K. Matsubara, Y. Miyahara, Z. Horita, T.G. Langdon, Acta Mater., 51 (2003), p. 3073.

52. H.K. Lin, J.C. Huang, T.G. Langdon, Mater. Sci. Eng., A 402 (2005), p. 250.

53. H. Gleiter, Prog. Mater. Sci., 33 (1989), p. 223.

54. U. Erb, A.M. El-Sherik, G. Palumbo, K.T. Aust, Nanostruct. Mater., 2 (1993)

55. S. Spangel, E.M. Schulz, A. Schulz, H. Vetters, P. Mayr, Mater. Sci. Eng., A 326 (2002), p. 26.

56. C.Y. Chen, C.Y.A. Tsao, Mater. Sci. Eng., A 383 (2004), p.21.

57. C.C. Koch, Y.S. Cho, Nanostruct. Mater., 1 (1992), p. 207.

58. D.B. Witkin, E.J. Lavernia, Prog. Mater. Sci., 51 (2006), p. 1.

59. U. Andrade, M.A. Meyers, K.S. Vecchio, A.H. Chokshi, Acta Mater., 42 (1994), p.

3183.

60. G. Garces, P. Perez, P. Adeva, J. Alloys Compounds, 333 (2002), p.219.

61. K.K. Chawla, in Composite Materials (Springer-Verlag, New York, 1987).

62. M. Taya, R.J. Arsenault, in Metal Matrix Composites (Pergamon Press, First edition, 1989).

63. D. Hull, T.W. Clyne, in An Introduction to Composite Materials ( Cambridge University Press, Second edition, 1996).

64. A.J. Ardell, Metall. Mater. Trans., 16 A (1985), p. 2131.

65. T.D. Wang, J.C. Huang, Mater. Trans. JIM, 42 (2001), p. 1781.

66. R.A. Saravanan, M.K. Surappa, Mater. Sci. Eng., A 276 (2000), p. 108.

67. A. Bochenek, K.N. Braszczynska, Mater. Sci. Eng., A 290 (2000), p. 122.

68. M. Manoharan, S.C.V. Lim, M. Gupta, Mater. Sci. Eng., A 333 (2002), p. 243.

69. L. Hu, E. Wang, Mater. Sci. Eng., A 278 (2000), p. 267.

70. M.Y. Zheng, K. Wu, M. Liang, S. Kamado, Y. Kojima, Mater. Sci. Eng., A 372 (2004), p.

66.

71. M. Zheng, K. Wu, C. Yao, Mater. Sci. Eng., A 318 (2001), p. 50.

72. B.Q. Han, D.C. Dunand, Mater. Sci. Eng., A 277 (2000), p. 297.

73. Q.C. Jiang, X L. Li, H.Y. Wang, Scripta Mater., 48 (2003), p. 713.

74. H.K. Kang, Scripta Mater., 51 (2004), p. 1051.

75. J. Lan, Y. Yang, X. Li, Mater. Sci. Eng., A 386 (2004), p. 284.

76. D.M. Lee, B.K. Suh, B.G. Kim, J.S. Lee, C.H. Lee, Mater. Sci. Technol., 13 (1997), p.

590.

77. H.Y. Wang, Q.C. Jiang, Y. Wang, B.X. Ma, F. Zhao, Mater. Lett., 58 (2004), p. 3509.

78. Q.C. Jiang, H.Y. Wang, B.X. Ma, Y. Wang, F. Zhao, J. Alloys and Compounds, 386 (2005), p. 177.

79. S.F. Sassan, M. Gupta, Mater. Sci. Eng., A 392 (2005), p. 163.

80. P.L. Ratnaparkhi, J.M. Howe, Scripta Metall., 27 (1992), p. 133.

81. S.M. Lee editor, in Handbook of Composite Reinforcements (VSH publisher, 1993).

82. P.M. Ajayan, O. Stephan, C. Colliex, D. Tranth, Science, 265 (1994), p. 1212.

83. M. Narkis, A. Ram, F. Flashner, J. Appl. Polymer Sci., 22 (1978), p. 1163.

84. B. Poulaert, J. Jossi, Polymer, 24 (1983), p. 841.

85. S. Balabanov, Krezhov, J. Physics. D: Appl. Physics, 32 (1999), p. 2573.

86. M.T. Connor, S. Roy, T.A. Ezquerra, Phys. Rev. B, 57 (1998), p. 2286.

87. 王振欽,“銲接學”,登文書局,1985。

88. R.S. Mishra, Z.Y. Ma, Mater. Sci. Eng. R, 50 (2005), p. 1.

89. Z.Y. Ma, R.S. Mishra, M.W. Mahoney, Acta Mater., 50 (2002), p. 4419.

90. S.E. Ion, F.J. Humphreys, S.H. White, Acta Metall., 30 (1982), p. 1909.

91. S.H.C. Park, Y.S. Sato, H. Kokawa, Scripta Mater., 49 (2003), p. 161.

92. C.G. Rhodes, M.W. Mahoney, W.H. Bingel, M. Calabrese, Scripta Mater., 48 (2003), p.

1451.

93. Y.S. Sato, M. Urata, H. Kokawa, Metall. Mater. Trans., A 33 (2002), p. 625.

94. J.Q. Su, T.W. Nelson, C.J. Sterling, J. Mater. Res., 18 (2003), p. 1757.

95. K.V. Jata, S.L. Semiatin, Scripta Mater., 43 (2000), p. 743.

96. J.Q. Su, T.W. Nelson, R. Mishra, M. Mahoney, Acta Mater., 51 (2003), p. 713.

97. F.J. Humphreys, M. Hotherly, the Recrystallization and Related Annealing Phenomena, Pergamon Press, New York, 1995

98. R.H. Bricknell, J.W. Edington, Acta Metall., A 22 (1991), p. 2809.

99. S.J. Hales, T.R. McNelley, Acta Metall., 36 (1988), p. 1229.

100. H. Gudmundsson, D. Brooks, J.A. Wert, Acta Metall. Mater., 39 (1991), p. 19.

101. K. Tsuzaki, X. Huang, T. Maki, Acta Mater., 44 (1996), p. 4491.

102. D.P. Field, T.W. Nelson, Y. Hovanski, K.V. Jata, Metall. Mater. Trans., 32 A (2001), p.

2869.

103. H.G. Salem, Scripta Mater., 49 (2003), p. 1103.

104. K. N. Krishnan, Mater. Sci. Eng., A 327 (2002), p. 246.

105. M.W. Mahoney, C.G. Rhodes, J.C. Flintoff, R.A. Spurling, W.H. Bingel, Matall. Mater.

Trans., 29 A (1998), p. 1955.

106. S.H.C. Park, Y.S. Sato, H. Kokawa, Metall. Mater. Trans., 34 A (2003), p. 987.

107. B.C. Yang, J.H. Yan, M.A. Sutton, A.P. Reynolds, Mater. Sci. Eng., A 364 (2004), p. 55.

108. M.A. Sutton, B.C. Yang, A.P. Reynolds, J.H. Yan, Mater. Sci. Eng., A 364 (2004), p. 66.

109. M.A. Sutton, A.P. Reynolds, B.C. Yang, R. Taylor, Mater. Sci. Eng., A 354 (2003), p. 6.

110. M.A. Sutton, A.P. Reynolds, B.C. Yang, R. Taylor, Eng. Fract. Mechanics, 70 (2003), p.

2215.

111. 張志溢,“摩擦旋轉攪拌製程對AZ31 鎂合金晶粒細化之研究”,國立中山大學碩

士論文 (2004)。

112. A.P. Reynolds, Sci. Technol. Weld. Joining, 5 (2000), p. 120.

113. T.U. Seidel, A.P. Reynolds, Metall. Mater. Trans., 32 A (2001), p. 2879.

114. M. Guerra, C. Schmidt, J.C. McClure, L.E. Murr, A.C. Nunes, Mater. Charact., 49 (2003), p. 95.

115. K. Colligan, Weld. J., 78 (1999), p. 229.

116. Y. Li, L.E. Murr, J.C. McClure, Mater. Sci. Eng., A 271 (1999), p. 213.

117. Y. Li, L.E. Murr, J.C. McClure, Scripta Mater., 40 (1999), p. 1041.

118. W.J. Arbegast, in: Z. Jin, A. Beaudoin, T.A. Bieler, B. Radhakrishnan (Eds.), Hot Deformation of Aluminum Alloys III, TMS, Warrendale, PA, USA, 2003, p. 313.

119. H. Liu, H. Fujii, M. Maeda, K. Nogi, J. Mater. Sci. Lett., 22 (2003), p. 1061.

120. G. Liu, L.E. Murr, C.S. Niou, J.C. McClure, F.R. Vega, Scripta Mater., 37 (1997), p.

355.

121. S. Benavides, Y. Li, L.E. Murr, D. Brown, J.C. McClure, Scripta Mater., 41 (1999), p.

809.

122. Y.S. Sato, H. Kokawa, M. Enmoto, S. Jogan, Metall. Mater. Trans., 30 A (1999), p.

2429.

123. Y.S. Sato, H. Kokawa, M. Enmoto, S. Jogan, T. Hashimoto, Metall. Mater. Trans., 30 A (1999), p. 3125.

124. Y.S. Sato, H. Kokawa, M. Enmoto, S. Jogan, T. Hashimoto, Metall. Mater. Trans., 32 A (2001), p. 941.

125. Y. Li, E.A. Trillo, L.E. Murr, J. Mater. Sci. Lett., 19 (2000), p. 1047.

126. Y.S. Sato, S.H.C. Park, H. Kokawa, Metall. Mater. Trans., 32 A (2001), p. 3023.

127. A.A. Hassan, P.B. Prangnell, A.F. Norman, D.A. Price, S.W. Willams, Sci. Technol.

Weld. Joining, 8 (2003), p. 257.

128. W.M. Thomas, E.D. Nicholas, S.D. Smith, in S.K. Das, J.G. Kaufman, T.J. Lienert (Eds.), Aluminum 2001-Proceedings of the TMS 2001 Aluminum Automotive and Joining Sessions, TMS, 2001, p. 213.

129. Y.J. Kwon, I. Shigematsu, N. Saito, Scripta Mater., 49 (2003), p. 785.

130. R.S. Mishra, Adv. Mater. Process, 161 (2003), p. 43.

131. C.G. Rhodes, M.W. Mahoney, W.H. Bingel, R.A. Spurling, C.C. Bampton, Scripta Mater., 36 (1997), p. 69.

132. B. Heinz, B. Skrotzki, Metall. Mater. Trans., 33 B (6) (2002), p. 489.

133. L.E. Murr, G. Liu, J.C. McClure, J. Mater. Mater. Lett., 16 (1997), p. 1081.

134. G.S. Frankel, Z. Xia, Corrosion, 55 (1999), p. 139.

135. S.H. Kazi, L.E. Murr, in: K.V. Jata, M.W. Mahoney, R.S. Mishra, S.L. Semiatin, D.P.

Field (Eds.), Friction Stir Welding and Processing, TMS, Warrendale, PA, USA, 2001, p.

139.

136. H.G. Salem, A.P. Reynolds, J.S. Lyons, Scripta Mater., 46 (2002), p. 337.

137. R. Braun, Litynska-Dobrzynska, Mater. Sci. Forum, 396-402 (2002), p. 1531.

138. A. F. Norman, I. Brough, P.B. Prangnell, Mater. Sci. Forum, 331-337 (2000), p. 1713.

139. K.A.A. Hassan, A.F. Norman, P.B. Prangnell, Mater. Sci. Forum, 396-402 (2002), p.

1549.

140. Z.Y. Ma, R.S. Mishra, M.W. Mahoney, R. Grimes, Mater. Sci. Eng., A351 (2003), p.

148.

141. I. Charit, R.S. Mishra, Mater. Sci. Eng., A 359 (2003), p. 290.

142. I. Charit, R.S. Mishra, M.W. Mahoney, Scripta Mater., 47 (2002), p. 631.

143. I. Charit, Z.Y. Ma, R.S. Mishra, in: Z. Lin, A. Beaudoin, T.A. Bieler, B. Radhakrishnan (Eds.), Hot Deformation of Aluminum Alloys III, TMS, 2003, pp. 331-342.

144. P.S. Pao, E. Lee, C.R. Feng, H.N. Jones, D.W. Moon, in: K.V. Jata, M.W. Mahoney, R.S.

Mishra, S.L. Semiatin, T. Lienert (Eds.), Friction Stir Welding and Processing II, TMS, Warrendale, PA, USA, 2003, p. 113.

145. I. Charit, R.S. Mishra, in: Y.T. Zhu, T.G. Langdon, R.Z. Valiev, S.L. Semiatin, D.H. Shih, T.C. Lowe (Eds.), Ultrafine Grained Materials III, TMS, 2004.

146. Y.S. Sato, Y. Kurihara, S.H.C. Park, H. Kokawa, N. Tsuji, Scripta Mater., 50 (2004), p.

57.

147. D.C. Hofmann, K.S. Vecchio, Mater. Sci. Eng., A 402 (2005), p. 234.

148. J.Q. Su, T.W. Nelson, C.J. Sterling, Scripta Mater., 52 (2005), p. 135.

149. F.Y. Hung, C.C. Shih, L.H. Chen, T.S. Lui, J. Alloys Compd., 428 (2007) 106.

150. N. Afrin, D.L. Chen, X. Cao, M. Jahazi, Mater. Sci. Eng., A (2007), doi:10.1016/j.msea.2007.03.018.

151. J.A. Esparza, W.C. Davis, E.A. Trillo, L.E. Murr, J. Mater. Sci. Lett., 21 (2002), p. 917.

152. D. Z hang, M. Suzuki, K. Maruyama, Scripta Mater., 52 (2005), p. 899.

153. P. Cavaliere, P.P. De Marco, Mater. Sci. Eng., A 462 (2007), p. 393.

154. S.G. Lim, S.S. Kim, C.G. Lee, C.D. Yim, S.J. Kim, Metall. Mater. Trans., 36 A (2005), p.

1609.

155. Y.S. Sato, A. Sasaki, A. Sugimoto, A. Honda, H. Kokawa, Mater. Sci. Forum, 539-543 (2007), p. 3775.

156. Z.Y. Ma, R.S. Mishra, Acta Mater., 51 (2003), p. 3551.

157. J. Xianggang, C. Jiangzhong, M. Longxiang, Acta Matell. Mater., 41 (1993), p. 2721.

158. M. Furukawa, Y. Iwahashi, Z. Horita, M. Nemoto, T.G. Langdon, Mater. Sci. Eng., A 257 (1998), P. 328.

159. P. Heurtier, C. Desrayaud, F. Montheillet, Mater. Sci. Forum 396–402 (2002), P. 1537.

160. C.J. Lee, J.C. Huang, P.J. Hsieh, Scripta Mater., 54 (2006), p. 1415.

161. A. Dutta, I. Charit, L.B. Johannes, R.S. Mishra, Mater. Sci. Eng., A 395 (2005), p. 173.

162. 胡哲明,“摩擦攪拌製程之應變率對奈米氧化鋁粉均勻分佈與機械性質的影 響”,國立中山大學碩士論文 (2004).

163. P. Cavaliere, Composite Part A: applied sci. manufact., 36 (2005), p. 1657.

164. Y. Morisada, H. Fujii, T. Nagaoka, M. Fukusumi, Mater. Sci. Eng., A 419 (2006), p. 334.

165. Y. Morisada, H. Fujii, T. Nagaoka, M. Fukusumi, Mater. Sci. Eng., A 433 (2006), p. 50.

166. Y. Morisada, H. Fujii, T. Nagaoka, M. Fukusumi, Scripta Mater., 55 (2006), p. 1067.

167. C.J. Lee, J.C. Huang, P.J. Hsieh, Scripta Mater., 54 (2006), p. 1415.

168. S.M. Howard, B.K. Jasthi, W.J. Arbegast, G.J. Grant and D.R. Herling, in: K.V. Jata, M.W. Mahoney, R.S. Mishra and T. Lienert (Eds.), Friction Stir Welding and Processing

III, TMS, 2005, pp. 139-146.

169. C.J. Hsu, P.W. Kao, N.J. Ho, Scripta Mater., 53 (2005), p. 341.

170. Y.N. Wang, C.J. Lee, H.K. Lin, C.C. Huang, J.C. Huang, Mater. Sci. Forum, 426-432 (2003), p. 2655.

171. C.C. Huang, J.C. Huang, I.K. Lin, Y.M. Hwang, Key Eng. Mater., 271-274 (2004), p.

289.

172. C.I. Chang, C.J. Lee, C.H. Chuang, H.R. Pei, J.C. Huang, Adv. Mater. Res., 15-17 (2007), p. 387.

173. L. Plazanet, D. Tetard, F. Nardou, Comp. Sci. Techn., 59 (1999), p. 537.

174. C.J. Lee, J.C. Huang, X.H. Du, Scripta Mater., 56 (2007), p. 875.

175. H.J. Forst, M.F. Ashby, in: Deformation-Mechanism Maps. Oxford: Pergamon Press;

1982. p. 21 and p. 44.

176. P. Leble, M. Dong, E. Soppa, S. Schmauder, Scripta Mater., 38 (1998), p. 1327.

177. O.B. Pederson, Acta Metall., 31 (1983), p. 1795.

178. V.C. Nardone, K.M. Prewo, Scripta Metall., 20 (1986), p. 43.

179. M. Dong, S. Schmauder, Acta Mater., 44 (1996), p. 2465.

180. R. Hill, Phys. Soc. Lond., A 65 (1952), p. 349.

181. H.S. Kim, Mater. Sci. Eng., A 289 (2000), p. 30.

182. Z.C. Zhong, X.Y. Jiang, A.L. Greer, Philos. Mag., 76 (1997), p. 505.

183. N. Hansen, D.J. Jensen, in: T. Chandra (Eds.), Recrystallization’90, TMS, Australia, 1990, pp. 79-88.

184. H. Watanabe, H. Tsutsui, T. Mukai, H. Ishikawa, Y. Okanda, M. Kohzu, K. Higashi, Mater. Trans., 42 (2001), p. 1200.

185. T.B. Massalski, H. Okamoto, P.R. Subramanian, L. Kacprzak (Eds.), Binary alloy phase diagrams, ASM International, Materials Park, OH, 1990, p. 2444.

186. A. Takara, Y. Nishikawa, H. Watanabe, H. Somekawa, T. Mukai, K. Higashi, Mater.

Trans., 45 (2004), p. 2377.

187. C.M. Sellars, Phil. Trans. R. Soc. Lond., A 288 (1978), p. 147.

188. H.J. McQueen, J.J. Jonas, Appl. Met., 3 (1984), p. 233.

189. R. Kaibyshev, O. Sitdikov, Z. Metallkd., 85 (1994), p. 738.

190. R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov, Prog. Mater. Sci., 45 (2000), p. 103.

191. M. Furukawa, Z. Horita, M. Nemoto, T.G. Langdon, in: R.S. Mishra, S.L. Semiatin, C.

Suryanarayana, N.N. Thadhani, T.C. Lowe (Eds.), Ultrafine Grained Materials, TMS, Warrendale, PA, 2000, p. 125.

192. S.D. Terhune, Z. Horita, M. Nemoto, Y. Li, T.G. Langdon, T.R. McNelley, in: T. Sakai, H.G. Suzuki (Eds.), Proceeding of the Fourth International Conference on Recrystallization and Related Phenomena, JIM, Sendai, Japan, 1999, p. 515.

193. K. Wang, N.R. Tao, G. Liu, J. Lu, K. Lu, Acta Mater., 54 (2006), p. 5281.

Table 1-1 Comparison among Mg alloy, Al alloy, Ti alloy, steel and plastics.

Material Cast Mg

Wrought

Mg Steel Cast Al

Wrought

Al Ti Plastics (PC/ABS) Alloy/

Grade AZ91 AZ31 -H24

Galva-nized A356-T6 6061-T6 Ti-3Al

Dow Pulse 2000 Process/

Product Die cast Sheet Sheet Die cast Extrusion Injection molding Density

(g/cm3) 1.81 1.77 7.80 2.76 2.70 4.2 1.13

Elastic Modulus

(GPa)

45 45 210 72 70 140 2.3 Yield

Strength (MPa)

160 220 200 186 275 925 53 Ultimate

Tensile Strength

(MPa)

240 290 320 262 310 1000 55

Elongation

(%) 3 15 40 5 12 16

5 at yield and 125 at

break Melting

Temp.

(oC)

598 630 1515 615 652 1600 143 (softening

temp.)

Table 1-2 The standard four-part ASTM designation system of alloy and temper for the magnesium alloy [13].

First part Second part Third part Fourth part

Statement

Indicates the two principal alloying element

Indicates the amount of the two principal elements

Distinguishes between different alloys with the same percentage of the two principal alloying elements

Indicates condition (temper)

Method

Consists of two code letters representing the two main alloying elements arranged in order of decreasing percentage (or alphabetically if percentage are equal)

Consists of two numbers corresponding to rounded-off

percentage of the two main alloying

elements and arranged in same designation in first part

Consists of a letter of the alphabet assigned in order as

compositions become standard

Consists of a letter followed by a number ( separated from the third part of the designation by a hyphen

Example

A- Al E- rare earth H- Th K- Zr M- Mn Q- Ag S- Si T-Sn W- Y Z- Zn

Whole numbers Letters of alphabet except I and O

F- as fabricated O- annealed H10 and H11-strain hardened

H23, H24 and H26- strain hardened and partially annealed T4- solution heat treated

T5- artificially aged only

T6- solution heat treated and artificially aged

Table 1-3 The effect of separate solute addition on the mechanical properties [14].

Alloying element

Melting and casting behavior Mechanical and technological properties

Corrosion behavior I/M produced

Ag Improves elevated temperature tensile

and creep properties in the presence of rare earths

Detrimental influence on corrosion behavior

Al Improves castability, tendency to microporosity

Solid solution hardener, precipitation hardening at low temperature (<

120oC)

Minor influence

Be Significantly reduces oxidation of melt surface at very low concentration (< 30 ppm), leads to coarse grains

Ca Effective grain refining effect, slight suppression of oxidation of the molten metal

Improve creep properties Detrimental influence on corrosion behavior

Cu System with easily forming metallic glasses, improves castability

Detrimental influence on corrosion behavior, limitation necessary

Fe Magnesium hardly reacts with mild steel crucibles

Detrimental influence on corrosion behavior, limitation necessary

Li Increases evaporation and burning behavior, melting only in protected and sealed furnaces

Solid solution and precipitation hardening at ambient temperatures, reduce density, enhances ductility

Decreases corrosion properties strongly, coating to protect from humidity is necessary

Mn Control of Fe content by precipitating Fe-Mn compound, refinement of precipitates

Increases creep resistivity Improves corrosion properties due to iron control effect

Ni System with easily forming metallic glasses

Detrimental influence on corrosion behavior, limitation necessary

Rare earth

Improve castability, reduce microporosity

Solid solution and precipitation hardening at ambient and elevated temperatures; improve elevated temperature tensile and creep properties

Improve corrosion behavior

Si Decreases castability, forms stable silicide compounds with many other alloying elements, compatible with Al, Zn and Ag, weak grain refiner

Improve creep properties Detrimental influence

Th Suppresses microporosity Improves elevated temperature tensile and creep properties, improves ductilities, most efficient alloying element

Y Grain refining effect Improves elevated temperature tensile and creep properties

Improves corrosion behavior

Zn Increases Fluidity of the melt, weak grain refiner, tendency to

microporostiy

Precipitation hardening, improves strength at ambient temperatures, tendency to brittleness and hot shortness unless Zn refined

Minor influence, sufficient Zn content compensates for the detrimental effect of Cu

Zr Most effective grain refiner, incompatible with Si, Al and Mn, removes Fe, Al, and Si from the melt

Improves ambient temperature tensile properties slightly

Table 1-4 Mechanical properties of magnesium matrix composites by various processing means.

Magnesium matrix

composites Processing D

(μm) d (μm)

E (GPa)

σ0.2 (MPa)

UTS (MPa)

Hardness (HV)

Elongation

(%) Reference

Pure Mg; 30 vol% SiC casting + extruded 20 40 59 229 258 57 2 [66]

Pure Mg; 4.3 vol% SiC casting -- 25 45 112 191 -- 0.057 [68]

ZK51A; 15 vol% SiCw (whiskers with diameter of 0.3~1 μm and

lengths of 15~50 μm)

squeeze casting -- -- 58 305 325 -- 1.2 [69]

AZ91; Al18B4O33(whiskers with diameter of 0.5~1 μm and lengths

of 10~30 μm)

squeeze casting + 250oC annealing

100 hours -- -- 71 270 368 -- 0.96 [70]

AZ91; 20 vol% SiC with Al(PO3)3

binder (whiskers with diameter of 0.1~1 μm and lengths of 30~100

μm,)

squeeze casting -- -- 85 220 355 175 1.38 [71]

AZ91; 20 vol% SiC without Al(PO3)3 binder (whiskers with diameter of 0.1~1 μm and lengths

of 30~100 μm,)

squeeze casting -- -- 77 202 314 174 1.29 [71]

Pure Mg; 30 vol% Y2O3 casting -- 0.33 -- 268 363 -- 15 [72]

Pure Mg; 30 vol% Y2O3 casting + extruded 0.88 0.33 65 344 455 -- 0 [72]

AZ91; 10 vol% TiC semi-solid slurry stirring -- 5 -- -- 214 83 4 [72]

AZ91; 5 wt% SiC ultrasonic -- 0.03 -- -- -- 135 -- [75]

**D: grain size, d: particle size

Table 1-4 Mechanical properties of magnesium matrix composites by various processing means.

Magnesium matrix

composites Processing D

(μm) d (μm)

E (GPa)

σ0.2 (MPa)

UTS

(MPa) Hardness Elongation

(%) Reference

AZ91; 10 vol% SiC PM + extrusion 17.2 8 58 271 360 -- 3 [76]

AZ91; 10 vol% SiC PM + extrusion 24 30 58 243 350 -- 3 [76]

AZ91; 10 vol% SiC PM + extrusion 28.2 50 58 236 350 -- 2 [76]

Pure Mg; 10 vol % TiB2 PM -- 10 -- -- -- 45 HB -- [77]

Pure Mg; 20 vol % TiB2 PM -- 10 -- -- -- 66 HB -- [77]

Pure Mg; 30 vol % TiB2 PM -- 10 -- -- -- 90 HB -- [77]

Pure Mg; 10 vol % B4C ball milling + PM -- 6 -- -- -- 44 HB -- [78]

Pure Mg; 20 vol % B4C ball milling + PM 6 -- -- -- 133 HB -- [78]

Pure Mg; 0.5 wtl% Al2O3 PM 61 0.05 42.5 169 232 44 HV 6.5 [79]

Pure Mg; 2.5 wt% Al2O3 PM 31 0.05 44.5 194 250 70 HV 6.9 [79]

**D: grain size, d: particle size

Table 1-5 Microstructure-mechanical property and fracture correlations for metal matrix composites [81].

Microstructure condition Mechanical property response

Addition of reinforcement Increase in strength, modulus, fatigue life, creep properties, abrasion resistance, impact strength, high temperature strength, decrease in ductility (elongation to failure), and fracture toughness

Reinforcement type In general, fibrous reinforcements give higher mechanical properties than particulate at equal volume fraction. Particulate reinforcement, however, gives higher elongation to failure and fracture toughness.

Reinforcement orientation Fibrous reinforcement aligned along test axis gives approximately 25%

higher strength than particulate or transverse fibrous reinforcement.

Fatigue and creep properties are improved in aligned fibrous composites.

Ductility and fracture toughness is generally lower in the aligned material.

Reinforcement distribution Banding and or clustering enhances crack initiation and growth, and hence lowers strength, ductility, and toughness.

Particle size Mp effect on modulus; strength properties decrease with particle size increase

Aspect ratio Influence modulus, strength, fracture toughness, ductility and fracture mechanism

Interface condition Strong bonding increases modulus and strength but decreases ductility.

Can be embrittled as a of excessive result of excessive precipitation and/or diffusion of alloying ingredients or impurities to interface

Matrix phases Normal precipitate phases increase yield and ultimate strength. Impurity particles and preferential precipitation decrease strength, fracture toughness, fatigue, creep, and ductility

Heat treatment Heat treatment increases mechanical properties; however, overaging minimizes the benefits. Precipitation kinetics can be altered by the addition of reinforcement; hence time and temperature for peak aging may differ

Secondary processing Secondary processing affects microstructure and hence mechanical properties. Extrusion aligns fibrous reinforcements but induces banding or reinforcements-free areas. Rolling homogenizes microstructure, giving higher properties, but can damage matrix-reinforcement bonds and lead to overaging. Material must be heat-treated to regain properties.

z These comments assume well-bonded reinforcements.

在文檔中 Retreating side (頁 113-200)