• 沒有找到結果。

Development of electrocatalysts with different compositions for other catalytic

Chapter 6 Conclusion and Future Work

6.2 Future work

6.2.2 Development of electrocatalysts with different compositions for other catalytic

methanol oxidation reaction (MOR). However, many core-shell structured electrocatalysts composed of other metals have also been shown to exhibit improved catalytic activities for many other reactions. For example, Pt monolayer electrocatalysts supported on Pd nanoparticles displayed good catalytic activities for the oxygen reduction reaction (ORR).

For our future work, the pulse electroplating technique is suitable to develop electrocatalysts with various bimetallic or multi-metallic compositions for other electrocatalytic reactions, such as the oxygen reduction reaction (ORR), hydrogen oxidation reaction (HOR), hydrogen evolution reaction (HER), and so on.

In summary, we will further develop the advanced electroplating technique to synthesize various electrocatalysts with the expanded options of nanostructures, compositions and catalytic reactions.

120

Reference

[1] Steele BCH, Heinzel A. Materials for fuel-cell technologies. Nature. 2001;414(6861):345-52.

[2] Acres GJK. Recent advances in fuel cell technology and its applications. Journal of Power Sources. 2001;100(1-2):60-6.

[3] Alayoglu S, Nilekar AU, Mavrikakis M, Eichhorn B. Ru-Pt core-shell nanoparticles for preferential oxidation of carbon monoxide in hydrogen. Nat Mater. 2008;7(4):333-8.

[4] Sasaki K, Wang JX, Balasubramanian M, McBreen J, Uribe F, Adzic RR. Ultra-low platinum content fuel cell anode electrocatalyst with a long-term performance stability. Electrochimica Acta.

2004;49(22-23):3873-7.

[5] Ando Y, Sasaki K, Adzic R. Electrocatalysts for methanol oxidation with ultra low content of Pt and Ru. Electrochemistry Communications. 2009;11(6):1135-8.

[6] Zhang G, Sun S, Yang D, Dodelet J-P, Sacher E. The surface analytical characterization of carbon fibers functionalized by H2SO4/HNO3 treatment. Carbon. 2008;46(2):196-205.

[7] Kim JH, Fang B, Yoon SB, Yu J-S. Hollow core/mesoporous shell carbon capsule as an unique cathode catalyst support in direct methanol fuel cell. Appl Catal B-Environ.

2009;88(3-4):368-75.

[8] Oh SH, Sinkevitch RM. Carbon-Monoxide Removal from Hydrogen-Rich Fuel-Cell Feedstreams by Selective Catalytic-Oxidation. Journal of Catalysis. 1993;142(1):254-62.

[9] Nitani H, Nakagawa T, Daimon H, Kurobe Y, Ono T, Honda Y, et al. Methanol oxidation catalysis and substructure of PtRu bimetallic nanoparticles. Applied Catalysis A: General.

2007;326(2):194-201.

[10] Huang S-y, Chang S-m, Lin C-l, Chen C-h, Yeh C-t. Promotion of the electrochemical activity of a bimetallic platinum-ruthenium catalyst by oxidation-induced segregation. Journal of Physical Chemistry B. 2006;110(46):23300-5.

[11] Tsai M-C, Yeh T-K, Juang Z-Y, Tsai C-H. Physical and electrochemical characterization of platinum and platinum–ruthenium treated carbon nanotubes directly grown on carbon cloth. Carbon.

2007;45(2):383-9.

[12] Adzic RR, Zhang J, Sasaki K, Vukmirovic MB, Shao M, Wang JX, et al. Platinum monolayer fuel cell electrocatalysts. Topics in Catalysis. 2007;46(3-4):249-62.

[13] Hwang B-J, Sarma LS, Chen C-H, Bock C, Lai F-J, Chang S-H, et al. Controlled Synthesis and Characterization of Rucore−Ptshell Bimetallic Nanoparticles. The Journal of Physical Chemistry C. 2008;112(50):19922-9.

[14] Li M, Kowal A, Sasaki K, Marinkovic N, Su D, Korach E, et al. Ethanol oxidation on the ternary Pt–Rh–SnO2/C electrocatalysts with varied Pt:Rh:Sn ratios. Electrochimica Acta.

2010;55(14):4331-8.

[15] Zhou W-P, Sasaki K, Su D, Zhu Y, Wang JX, Adzic RR. Gram-Scale-Synthesized Pd2Co-Supported Pt Monolayer Electrocatalysts for Oxygen Reduction Reaction. Journal of Physical Chemistry C. 2010;114(19):8950-7.

[16] Che G, Lakshmi BB, Fisher ER, Martin CR. Carbon nanotubule membranes for electrochemical energy storage and production. Nature. 1998;393(6683):346-9.

[17] Guha A, Lu W, Zawodzinski Jr TA, Schiraldi DA. Surface-modified carbons as platinum catalyst support for PEM fuel cells. Carbon. 2007;45(7):1506-17.

[18] Chen C, Fuller TF. XPS Analysis of Polymer Membrane Degradation in PEMFCs. Journal of The Electrochemical Society. 2009;156(10):B1218-B24.

[19] Chen C, Levitin G, Hess DW, Fuller TF. XPS investigation of Nafion® membrane degradation.

Journal of Power Sources. 2007;169(2):288-95.

121

[20] de Bruijn FA, Dam VAT, Janssen GJM. Durability and degradation issues of PEM fuel cell components. Fuel Cells. 2008;8(1):3-22.

[21] Hubner G, Roduner E. EPR investigation of HO. radical initiated degradation reactions of sulfonated aromatics as model compounds for fuel cell proton conducting membranes. Journal of Materials Chemistry. 1999;9(2):409-18.

[22] Boehm HP. Some Aspects of the Surface-Chemistry of Carbon-Blacks and Other Carbons.

Carbon. 1994;32(5):759-69.

[23] Magagnin L, Maboudian R, Carraro C. Gold deposition by galvanic displacement on semiconductor surfaces: Effect of substrate on adhesion. Journal of Physical Chemistry B.

2002;106(2):401-7.

[24] Manandhar S, Kelber JA. Spontaneous deposition of Pt and Ir on Ru: Reduction to intermediate oxidation states. Electrochimica Acta. 2007;52(15):5010-7.

[25] Hwang B-J, Sarma LS, Chen C-H, Bock C, Lai F-J, Chang S-H, et al. Controlled Synthesis and Characterization of Ru-core-Pt-shell Bimetallic Nanoparticles. Journal of Physical Chemistry C.

2008;112(50):19922-9.

[26] Ren X, Zelenay P, Thomas S, Davey J, Gottesfeld S. Recent advances in direct methanol fuel cells at Los Alamos National Laboratory. Journal of Power Sources. 2000;86(1–2):111-6.

[27] Liu HS, Song CJ, Zhang L, Zhang JJ, Wang HJ, Wilkinson DP. A review of anode catalysis in the direct methanol fuel cell. Journal of Power Sources. 2006;155(2):95-110.

[28] Lamy C, Léger J-M, Srinivasan S. Direct Methanol Fuel Cells: From a Twentieth Century Electrochemist’s Dream to a Twenty-first Century Emerging Technology

Modern Aspects of Electrochemistry. In: Bockris JOM, Conway BE, White RE, eds.: Springer US 2002, p. 53-118.

[29] Jusys Z, Massong H, Baltruschat H. A New Approach for Simultaneous DEMS and EQCM:

Electro-oxidation of Adsorbed CO on Pt and Pt-Ru. Journal of The Electrochemical Society.

1999;146(3):1093-8.

[30] Zhu Y, Uchida H, Yajima T, Watanabe M. Attenuated Total Reflection−Fourier Transform Infrared Study of Methanol Oxidation on Sputtered Pt Film Electrode. Langmuir.

2000;17(1):146-54.

[31] Frelink T, Visscher W, Vanveen JAR. On the Role of Ru and Sn as Promoters of Methanol Electrooxidation over Pt. Surface Science. 1995;335(1-3):353-60.

[32] Richarz F, Wohlmann B, Vogel U, Hoffschulz H, Wandelt K. Surface and Electrochemical Characterization of Electrodeposited Ptru Alloys. Surface Science. 1995;335(1-3):361-71.

[33] Nashner MS, Frenkel AI, Somerville D, Hills CW, Shapley JR, Nuzzo RG. Core shell inversion during nucleation and growth of bimetallic Pt/Ru nanoparticles. Journal of the American Chemical Society. 1998;120(32):8093-101.

[34] Brankovic SR, Wang JX, Adzic RR. Pt submonolayers on Ru nanoparticles - A novel low Pt loading, high CO tolerance fuel cell electrocatalyst. Electrochemical and Solid State Letters.

2001;4(12):A217-A20.

[35] Green CL, Kucernak A. Determination of the platinum and ruthenium surface areas in platinum-ruthenium electrocatalysts by underpotential deposition of copper. 2. Effect of surface composition on activity. Journal of Physical Chemistry B. 2002;106(44):11446-56.

[36] Maillard F, Gloaguen F, Leger JM. Preparation of methanol oxidation electrocatalysts:

ruthenium deposition on carbon-supported platinum nanoparticles. Journal of Applied Electrochemistry. 2003;33(1):1-8.

[37] Sasaki K, Mo Y, Wang JX, Balasubramanian M, Uribe F, McBreen J, et al. Pt submonolayers on metal nanoparticles—novel electrocatalysts for H2 oxidation and O2 reduction. Electrochimica Acta. 2003;48(25–26):3841-9.

[38] Coutanceau C, Rakotondrainibe AF, Lima A, Garnier E, Pronier S, Leger JM, et al.

122

Preparation of Pt-Ru bimetallic anodes by galvanostatic pulse electrodeposition: characterization and application to the direct methanol fuel cell. Journal of Applied Electrochemistry.

2004;34(1):61-6.

[39] Spinace E, Neto AO, Linardi M. Electro-oxidation of methanol and ethanol using PtRu/C electrocatalysts prepared by spontaneous deposition of platinum on carbon-supported ruthenium nanoparticles. Journal of Power Sources. 2004;129(2):121-6.

[40] Wei ZD, Chan SH. Electrochemical deposition of PtRu on an uncatalyzed carbon electrode for methanol electrooxidation. Journal of Electroanalytical Chemistry. 2004;569(1):23-33.

[41] Deivaraj TC, Lee JY. Preparation of carbon-supported PtRu nanoparticles for direct methanol fuel cell applications - a comparative study. Journal of Power Sources. 2005;142(1-2):43-9.

[42] Huang SY, Chang SM, Yeh CT. Characterization of surface composition of platinum and ruthenium nanoalloys dispersed on active carbon. Journal of Physical Chemistry B.

2006;110(1):234-9.

[43] Nitani H, Nakagawa T, Daimon H, Kurobe Y, Ono T, Honda Y, et al. Methanol oxidation catalysis and substructure of PtRu bimetallic nanoparticles. Applied Catalysis a-General.

2007;326(2):194-201. Catalytic Properties of PtRu Electrocatalysts Prepared via the Reduced RuO2 Nanorods Array.

Langmuir. 2008;24(6):2785-91.

[47] Chen CH, Sarma LS, Wang DY, Lai FJ, Al Andra CC, Chang SH, et al. Platinum-Decorated Ruthenium Nanoparticles for Enhanced Methanol Electrooxidation. Chemcatchem.

2010;2(2):159-66.

[48] Zhang J, Mo Y, Vukmirovic MB, Klie R, Sasaki K, Adzic RR. Platinum monolayer electrocatalysts for O-2 reduction: Pt monolayer on Pd(111) and on carbon-supported Pd nanoparticles. J Phys Chem B. 2004;108(30):10955-64.

[49] Herrero E, Buller LJ, Abruña HD. Underpotential Deposition at Single Crystal Surfaces of Au, Pt, Ag and Other Materials. Chemical Reviews. 2001;101(7):1897-930.

[50] Lee JRI, O’Malley RL, O’Connell TJ, Vollmer A, Rayment T. X-ray Absorption Spectroscopy Characterization of Cu Underpotential Deposition on Au(111) and Organothiol-Self-Assembled-Monolayer-Modified Au(111) Electrodes from Sulfate Supporting Electrolyte. The Journal of Physical Chemistry C. 2009;113(28):12260-71.

[51] Sasaki K, Wang JX, Naohara H, Marinkovic N, More K, Inada H, et al. Recent advances in platinum monolayer electrocatalysts for oxygen reduction reaction: Scale-up synthesis, structure and activity of Pt shells on Pd cores. Electrochim Acta. 2010;55(8):2645-52.

[52] Sasaki K, Naohara H, Cai Y, Choi YM, Liu P, Vukmirovic MB, et al. Core-Protected Platinum Monolayer Shell High-Stability Electrocatalysts for Fuel-Cell Cathodes. Angew Chem Int Ed.

2010;49(46):8602-7.

[53] Zhang JL, Vukmirovic MB, Xu Y, Mavrikakis M, Adzic RR. Controlling the catalytic activity of platinum-monolayer electrocatalysts for oxygen reduction with different substrates. Angew Chem Int Edit. 2005;44(14):2132-5.

[54] Nilekar AU, Xu Y, Zhang JL, Vukmirovic MB, Sasaki K, Adzic RR, et al. Bimetallic and ternary alloys for improved oxygen reduction catalysis. Top Catal. 2007;46(3-4):276-84.

[55] Sasaki K, Mo Y, Wang JX, Balasubramanian M, Uribe F, McBreen J, et al. Pt submonolayers on metal nanoparticles - novel electrocatalysts for H-2 oxidation and O-2 reduction. Electrochim

123

Acta. 2003;48(25-26):3841-9.

[56] Tsai M-C, Yeh T-K, Tsai C-H. An improved electrodeposition technique for preparing platinum and platinum–ruthenium nanoparticles on carbon nanotubes directly grown on carbon cloth for methanol oxidation. Electrochemistry Communications. 2006;8(9):1445-52.

[57] Yu R, Chen L, Liu Q, Lin J, Tan K-L, Ng SC, et al. Platinum Deposition on Carbon Nanotubes via Chemical Modification. Chemistry of Materials. 1998;10(3):718-22.

[58] Chen J, Wang M, Liu B, Fan Z, Cui K, Kuang Y. Platinum Catalysts Prepared with Functional Carbon Nanotube Defects and Its Improved Catalytic Performance for Methanol Oxidation. The Journal of Physical Chemistry B. 2006;110(24):11775-9.

[59] Choi HC, Shim M, Bangsaruntip S, Dai H. Spontaneous Reduction of Metal Ions on the Sidewalls of Carbon Nanotubes. Journal of the American Chemical Society. 2002;124(31):9058-9.

[60] Chen C, Fuller TF. Modeling of H2O2 formation in PEMFCs. Electrochimica Acta.

2009;54(16):3984-95.

[61] Chen C, Fuller TF. The effect of humidity on the degradation of Nafion (R) membrane.

Polymer Degradation and Stability. 2009;94(9):1436-47.

[62] Igarashi H, Fujino T, Zhu YM, Uchida H, Watanabe M. CO Tolerance of Pt alloy electrocatalysts for polymer electrolyte fuel cells and the detoxification mechanism. Physical Chemistry Chemical Physics. 2001;3(3):306-14.

[63] Strasser P, Fan Q, Devenney M, Weinberg WH, Liu P, Norskov JK. High throughput experimental and theoretical predictive screening of materials - A comparative study of search strategies for new fuel cell anode catalysts. Journal of Physical Chemistry B.

2003;107(40):11013-21.

[64] Whitacre JF, Valdez T, Narayanan SR. Investigation of Direct Methanol Fuel Cell Electrocatalysts Using a Robust Combinatorial Technique. Journal of The Electrochemical Society.

2005;152(9):A1780-A9.

[65] Petrii OA. Pt-Ru electrocatalysts for fuel cells: a representative review. Journal of Solid State Electrochemistry. 2008;12(5):609-42.

[66] Waszczuk P, Lu GQ, Wieckowski A, Lu C, Rice C, Masel RI. UHV and electrochemical studies of CO and methanol adsorbed at platinum/ruthenium surfaces, and reference to fuel cell catalysis. Electrochimica Acta. 2002;47(22-23):3637-52.

[67] Yajima T, Uchida H, Watanabe M. In-situ ATR-FTIR spectroscopic study of electro-oxidation of methanol and adsorbed CO at Pt-Ru alloy. Journal of Physical Chemistry B. 2004;108(8):2654-9.

[68] Choi JH, Park KW, Kwon BK, Sung YE. Methanol oxidation on Pt/Ru, Pt/Ni, and Pt/Ru/Ni anode electrocatalysts at different temperatures for DMFCs. Journal of The Electrochemical Society.

2003;150(7):A973-A8.

[69] Sieben JM, Duarte MME, Mayer CE. Supported Pt and Pt-Ru catalysts prepared by potentiostatic electrodeposition for methanol electrooxidation. Journal of Applied Electrochemistry.

2008;38(4):483-90.

[70] Alcaide F, Miguel Ó , Grande H-J. New approach to prepare Pt-based hydrogen diffusion anodes tolerant to CO for polymer electrolyte membrane fuel cells. Catalysis Today.

2006;116(3):408-14.

[71] Bauer A, Gyenge EL, Oloman CW. Direct methanol fuel cell with extended reaction zone anode: PtRu and PtRuMo supported on graphite felt. Journal of Power Sources. 2007;167(2):281-7.

[72] Kim SS, Nah YC, Noh YY, Jo J, Kim DY. Electrodeposited Pt for cost-efficient and flexible dye-sensitized solar cells. Electrochimica Acta. 2006;51(18):3814-9.

[73] Choi KH, Kim HS, Lee TH. Electrode fabrication for proton exchange membrane fuel cells by pulse electrodeposition. Journal of Power Sources. 1998;75(2):230-5.

[74] Lee J, Seo J, Han K, Kim H. Preparation of low Pt loading electrodes on Nafion (Na+)-bonded carbon layer with galvanostatic pulses for PEMFC application. Journal of Power Sources.

124

2006;163(1):349-56.

[75] Wei ZD, Chen SG, Liu Y, Sun CX, Shao ZG, Shen PK. Electrodepositing Pt by modulated pulse current on a nafion-bonded carbon substrate as an electrode for PEMFC. Journal of Physical Chemistry C. 2007;111(42):15456-63.

[76] Roy S, Matlosz M, Landolt D. Effect of Corrosion on the Composition of Pulse-Plated Cu-Ni Alloys. Journal of The Electrochemical Society. 1994;141(6):1509-17.

[77] Roy S, Landolt D. Effect of Off-Time on the Composition of Pulse-Plated Cu-Ni Alloys.

Journal of The Electrochemical Society. 1995;142(9):3021-7.

[78] Zhu Q, Hussey CL. Galvanostatic pulse plating of Cu-Al alloy in a room-temperature chloroaluminate molten salt - Rotating ring-disk electrode studies. Journal of The Electrochemical Society. 2001;148(5):C395-C402.

[79] Porter LA, Choi HC, Ribbe AE, Buriak JM. Controlled electroless deposition of noble metal nanoparticle films on germanium surfaces. Nano Letters. 2002;2(10):1067-71.

[80] Zhang J, Lima FHB, Shao MH, Sasaki K, Wang JX, Hanson J, et al. Platinum monolayer on nonnoble metal-noble metal core-shell nanoparticle electrocatalysts for O-2 reduction. Journal of Physical Chemistry B. 2005;109(48):22701-4.

[81] Vukmirovic MB, Zhang J, Sasaki K, Nilekar AU, Uribe F, Mavrikakis M, et al. Platinum monolayer electrocatalysts for oxygen reduction. Electrochimica Acta. 2007;52(6):2257-63.

[82] Thambidurai C, Kim Y-G, Stickney JL. Electrodeposition of Ru by atomic layer deposition (ALD). Electrochimica Acta. 2008;53(21):6157-64.

[83] Brankovic SR, McBreen J, Adzic RR. Spontaneous deposition of Pt on the Ru(0001) surface.

Journal of Electroanalytical Chemistry. 2001;503(1-2):99-104.

[84] Brankovic SR, Wang JX, Zhu Y, Sabatini R, McBreen J, Adzic RR. Electrosorption and catalytic properties of bare and Pt modified single crystal and nanostructured Ru surfaces. Journal of Electroanalytical Chemistry. 2002;524:231-41.

[85] Woods R. Hydrogen adsorption on platinum, iridium and rhodium electrodes at reduced temperatures and the determination of real surface area. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry. 1974;49(2):217-26.

[86] Liu Z, Ling XY, Guo B, Hong L, Lee JY. Pt and PtRu nanoparticles deposited on single-wall carbon nanotubes for methanol electro-oxidation. Journal of Power Sources. 2007;167(2):272-80.

[87] Vigier F, Gloaguen F, Leger JM, Lamy C. Electrochemical and spontaneous deposition of ruthenium at platinum electrodes for methanol oxidation: an electrochemical quartz crystal microbalance study. Electrochimica Acta. 2001;46(28):4331-7.

[88] Gavrilov AN, Petrii OA, Mukovnin AA, Smirnova NV, Levchenko TV, Tsirlina GA. Pt-Ru electrodeposited on gold from chloride electrolytes. Electrochimica Acta. 2007;52(8):2775-84.

[89] Avtokratova TD. Analytical chemistry of ruthenium. Ann Arbor, MI Ann Arbor-Humphrey Science Publishers; 1963.

[90] Blake AJ, Gould RO, Johnson BFG, Parisini E. Na2[Ru(No2)4(No)(Oh)].2h2o - a Redetermination. Acta Crystallographica Section C-Crystal Structure Communications.

1992;48:982-4.

[91] Bennett JA, Show Y, Wang SH, Swain GM. Pulsed galvanostatic deposition of Pt particles on microcrystalline and nanocrystalline diamond thin-film electrodes I. Characterization of As-deposited metal/diamond surfaces. Journal of The Electrochemical Society.

2005;152(5):E184-E92.

[92] Antolini E, Cardellini F. Formation of carbon supported PtRu alloys: an XRD analysis. Journal of Alloys and Compounds. 2001;315(1-2):118-22.

[93] Spendelow JS, Wieckowski A. Noble metal decoration of single crystal platinum surfaces to create well-defined bimetallic electrocatalysts. Physical Chemistry Chemical Physics.

2004;6(22):5094-118.

125

[94] NIST X-ray Photoelectron Spectroscopy Database. Gaithersburg, MD: U.S. National Institute of Standards and Technology 2008.

[95] Lewera A, Zhou WP, Hunger R, Jaegermann W, Wieckowski A, Yockel S, et al. Core-level binding energy shifts in Pt-Ru nanoparticles: A puzzle resolved. Chemical Physics Letters.

2007;447(1-3):39-43.

[96] Chang KH, Hu CC. Oxidative synthesis of RuOx center dot nH(2)O with ideal capacitive characteristics for supercapacitors. Journal of The Electrochemical Society.

2004;151(7):A958-A64.

[97] Chen C-H, Sarma LS, Wang D-Y, Lai F-J, Al Andra C-C, Chang S-H, et al.

Platinum-Decorated Ruthenium Nanoparticles for Enhanced Methanol Electrooxidation.

Chemcatchem. 2010;2(2):159-66.

[98] Alayoglu S, Zavalij P, Eichhorn B, Wang Q, Frenkel AI, Chupas P. Structural and Architectural Evaluation of Bimetallic Nanoparticles: A Case Study of Pt−Ru Core−Shell and Alloy Nanoparticles. ACS Nano. 2009;3(10):3127-37.

[99] Hwang B-J, Sarma LS, Chen J-M, Chen C-H, Shih S-C, Wang G-R, et al. Structural Models and Atomic Distribution of Bimetallic Nanoparticles as Investigated by X-ray Absorption Spectroscopy. Journal of the American Chemical Society. 2005;127(31):11140-5.

[100] Lima FHB, Gonzalez ER. Electrocatalysis of ethanol oxidation on Pt monolayers deposited on carbon-supported Ru and Rh nanoparticles. Appl Catal B-Environ. 2008;79(4):341-6.

[101] Lee KR, Jeon MK, Woo SI. Composition optimization of PtRuM/C (M = Fe and Mo) catalysts for methanol electro-oxidation via combinatorial method. Appl Catal B-Environ.

2009;91(1-2):428-33.

[102] Manasilp A, Gulari E. Selective CO oxidation over Pt/alumina catalysts for fuel cell applications. Appl Catal B-Environ. 2002;37(1):17-25.

[103] Garcia-Rodriguez S, Somodi F, Borbath I, Margitfalvi JL, Antonio Pena M, Fierro JLG, et al.

Controlled synthesis of Pt-Sn/C fuel cell catalysts with exclusive Sn-Pt interaction Application in CO and ethanol electrooxidation reactions. Appl Catal B-Environ. 2009;91(1-2):83-91.

[104] Lim D-H, Choi D-H, Lee W-D, Lee H-I. A new synthesis of a highly dispersed and CO tolerant PtSn/C electrocatalyst for low-temperature fuel cell; its electrocatalytic activity and long-term durability. Appl Catal B-Environ. 2009;89(3-4):484-93.

[105] Justin P, Charan PHK, Rao GR. High performance Pt-Nb2O5C electrocatalysts for methanol electrooxidation in acidic media. Appl Catal B-Environ. 2010;100(3-4):510-5.

[106] Kim HJ, Choi SM, Green S, Tompsett GA, Lee SH, Huber GW, et al. Highly active and stable PtRuSn/C catalyst for electrooxidations of ethylene glycol and glycerol. Appl Catal B-Environ. 2011;101(3-4):366-75.

[107] Desai S, Neurock M. A first principles analysis of CO oxidation over Pt and Pt66.7%Ru33.3% (111) surfaces. Electrochimica Acta. 2003;48(25-26):3759-73.

[108] Alayoglu S, Nilekar AU, Mavrikakis M, Eichhorn B. Ru-Pt core-shell nanoparticles for preferential oxidation of carbon monoxide in hydrogen. Nature Materials. 2008;7(4):333-8.

[109] McNicol BD, Short RT. The influence of activation conditions on the performance of platinum/ruthenium methanol electro-oxidation catalysts surface enrichment phenomena. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry. 1977;81(2):249-60.

[110] Wang R, Li H, Feng H, Wang H, Lei Z. Preparation of carbon-supported core@shell PdCu@PtRu nanoparticles for methanol oxidation. Journal of Power Sources.

2010;195(4):1099-102.

[111] Zhao H, Li L, Yang J, Zhang Y. Co@Pt-Ru core-shell nanoparticles supported on multiwalled carbon nanotube for methanol oxidation. Electrochemistry Communications.

2008;10(10):1527-9.

[112] Kuk ST, Wieckowski A. Methanol electrooxidation on platinum spontaneously deposited on

126

unsupported and carbon-supported ruthenium nanoparticles. Journal of Power Sources.

2005;141(1):1-7.

[113] Hsieh Y-C, Wu P-W, Lu Y-J, Chang Y-M. Displacement Reaction in Pulse Current Deposition of PtRu for Methanol Electro-Oxidation. Journal of The Electrochemical Society.

2009;156(6):B735-B42.

[114] Spieker WA, Liu J, Miller JT, Kropf AJ, Regalbuto JR. An EXAFS study of the co-ordination chemistry of hydrogen hexachloroplatinate(IV) 1. Speciation in aqueous solution. Applied Catalysis a-General. 2002;232(1-2):219-35.

[115] Newville M. IFEFFIT: interactive XAFS analysis and FEFF fitting. Journal of Synchrotron Radiation. 2001;8:322-4.

[116] Ravel B, Newville M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. Journal of Synchrotron Radiation. 2005;12:537-41.

[117] Lee HY, Wu TB, Lee JF. X-ray absorption spectroscopic studies of sputter-deposited LaNiO3 thin films on Si substrate. Journal of Applied Physics. 1996;80(4):2175-80.

[118] Rehr JJ, Albers RC. Theoretical approaches to x-ray absorption fine structure. Reviews of Modern Physics. 2000;72(3):621-54.

[119] Park KW, Sung YE, Han S, Yun Y, Hyeon T. Origin of the enhanced catalytic activity of carbon nanocoil-supported PtRu alloy electrocatalysts. Journal of Physical Chemistry B.

2004;108(3):939-44.

[120] Yuan D, Tan S, Liu Y, Zeng J, Hu F, Wang X, et al. Pt supported on highly graphitized lace-like carbon for methanol electrooxidation. Carbon. 2008;46(3):531-6.

[121] Antolini E. Carbon supports for low-temperature fuel cell catalysts. Appl Catal B-Environ.

2009;88(1-2):1-24.

[122] Song S, Liang Y, Li Z, Wang Y, Fu R, Wu D, et al. Effect of pore morphology of mesoporous carbons on the electrocatalytic activity of Pt nanoparticles for fuel cell reactions. Appl Catal B-Environ. 2010;98(3-4):132-7.

[123] Michell D, Rand DAJ, Woods R. Study of Ruthenium Electrodes by Cyclic Voltammetry and X-Ray-Emission Spectroscopy. Journal of Electroanalytical Chemistry. 1978;89(1):11-27.

[124] Sugawara Y, Yadav AP, Nishikata A, Tsuru T. EQCM study on dissolution of ruthenium in sulfuric acid. Journal of The Electrochemical Society. 2008;155(9):B897-B902.

[125] Hu CC, Chiang HR, Wang CC. Electrochemical and structural investigations of oxide films anodically formed on ruthenium-plated titanium electrodes in sulfuric acid. Journal of Solid State Electrochemistry. 2003;7(8):477-84.

[126] Citrin PH, Wertheim GK. Photoemission from Surface-Atom Core Levels, Surface Densities of States, and Metal-Atom Clusters - a Unified Picture. Physical Review B. 1983;27(6):3176-200.

[127] Meitzner G, Via GH, Lytle FW, Sinfelt JH. Analysis of X-Ray Absorption-Edge Data on Metal-Catalysts. Journal of Physical Chemistry. 1992;96(12):4960-4.

[128] Dicks AL. The role of carbon in fuel cells. Journal of Power Sources. 2006;156(2):128-41.

[129] Baglio V, Di Blasi A, D'Urso C, Antonucci V, Arico AS, Ornelas R, et al. Development of Pt and Pt-Fe catalysts supported on multiwalled carbon nanotubes for oxygen reduction in direct methanol fuel cells. Journal of The Electrochemical Society. 2008;155(8):B829-B33.

[130]Hsu N-Y, Chien C-C, Jeng K-T. Characterization and enhancement of carbon nanotube-supported PtRu electrocatalyst for direct methanol fuel cell applications. Appl Catal B-Environ. 2008;84(1-2):196-203.

[131] Maass S, Finsterwalder F, Frank G, Hartmann R, Merten C. Carbon support oxidation in PEM fuel cell cathodes. Journal of Power Sources. 2008;176(2):444-51.

[132] Spataru N, Zhang X, Spataru T, Tryk DA, Fujishima A. Platinum electrodeposition on conductive diamond powder and its application to methanol oxidation in acidic media. Journal of The Electrochemical Society. 2008;155(3):B264-B9.

127

[133] Drillet J-F, Bueb H, Dittmeyer R, Dettlaff-Weglikowska U, Roth S. Efficient SWCNT-Based Anode for DMFC Applications. Journal of The Electrochemical Society. 2009;156(10):F137-F44.

[134] Guha A, Zawodzinski TA, Jr., Schiraldi DA. Influence of carbon support microstructure on the polarization behavior of a polymer electrolyte membrane fuel cell membrane electrode assemblies. Journal of Power Sources. 2010;195(16):5167-75.

[135] Lin JF, Kamavaram V, Kannan AM. Synthesis and characterization of carbon nanotubes supported platinum nanocatalyst for proton exchange membrane fuel cells. Journal of Power Sources. 2010;195(2):466-70.

[136] Saha MS, Kundu A. Functionalizing carbon nanotubes for proton exchange membrane fuel cells electrode. Journal of Power Sources. 2010;195(19):6255-61.

[137] Chang YM, Hsieh YC, Wu RW. Improved electrochemical performances by carbon nanocapsules as an electrocatalyst support for direct methanol fuel cells. Diamond and Related

[137] Chang YM, Hsieh YC, Wu RW. Improved electrochemical performances by carbon nanocapsules as an electrocatalyst support for direct methanol fuel cells. Diamond and Related