• 沒有找到結果。

High-resolution seismic reflection data is well suited for mapping BSR. With the recon-naissance surveys conducted using a high-resolution MCS system, places where BSRs are densely distributed can be easily identified. However, the short-offset high-resolution MCS system cannot provide constraints on gas hydrate concentration in the sedimentary strata, large-offset seismic reflection data and/or OBS data are needed to estimate the amount of gas hy-drate or free gas in the sedimentary strata. Seismic velocity analyses from a large-offset seis-mic reflection dataset show that there are low velocity zones beneath BSRs under anticlinal ridges, suggesting free gases exist beneath hydrate-bearing sedimentary strata. There are ac-tive fluid activities in the investigation area. 2.5-D seismic data volume can provide details of the structure, stratigraphy and BSR variations, and use for fluid migration model construction.

With detailed mapping of BSRs and their sub-bottom depths, we have estimated the heat flow values in the investigation area. The regional heat flow value estimated from water depth versus BSR sub-bottom depth relationship is about 50 mW m-2, with lower regional values in the China continental margin (near 40 mW m-2) and higher regional values in the accretionary

Fig. 15. Estimated preferential fluid migration paths across the BSR in one of the 2.5-D survey area (see box in the index map for location). The length of each arrow indicates the flow rate at that point. The meaning of different symbols are given in the small box above this figure. YAL (the dark blue dash line) is the Yung-An lineament which is a linear topographic feature and could be the surface expression of a transpressional fault (Liu et al. 2004).

wedge province, reaching 60 mW m-2 near the Manila trench. These values are lower than that derived from seafloor heat flow measurements of Shyu et al. (2006) who used a different stability curve, and made corrections for sedimentation.

Gas hydrate has been found in both the convergent accretionary wedges and the exten-sional passive continental margins around the world. Offshore of SW Taiwan, these two dis-tinctive tectonic provinces connect together, and gas hydrate spreads across both tectonic provinces. Most of the sediment in the accretionary wedge is derived from the Taiwan mountain belt, while most of the sediment in the China continental margin came from China. Both biogenic and thermogenic gases have been detected in the accretionary wedge province (Oung et al. 2006) off SW Taiwan, but up to now only biogenic gases have been found in the passive China continental margin province (T. F. Yang, personal communication). So with different tectonic settings, different sedimentary sources, different structural developments, yet continuous BSR distribution, the gas hydrate field off SW Taiwan will provide us a good opportunity to com-pare the sources, formation, migration paths and accumulation of gas hydrate in an accretion-ary wedge and a passive continental slope environment.

“Petroleum system” approach has been widely accepted as an essential procedure in gas hydrate investigation for energy resources. The gas hydrate field off SW Taiwan could be associated with known gas fields on the continental shelf (the F-field, presently under devel-opment by the Chinese Petroleum Company of Taiwan) and on land of southern Taiwan (the PCC and HSY fields). The F- and PCC-fields are normal fault-block traps that host ther-mogenic gas in Oligocene to Miocene sandstones (Lee et al. 1995), while the HSY field is a shallow, combined structural and stratigraphic trap that contains biogenic gas in Pleistocene sandstones (Fuh et al. 2005). The gas hydrate in the passive China continental slope may have the same petroleum system as the adjacent F-field (Fig. 1), and the shallow HSY field can provide an analog for the establishment of a gas hydrate field in the accretionary wedge.

In summary, MCS surveys reveal that BSRs are widely as well as densely distributed in both the accretionary wedge province and the passive China continental margin province off-shore of SW Taiwan. Active fluid activities and venting systems in the investigation area have been observed using geophysical techniques (Chiu et al. 2006). Further evidence of gas vents came from seafloor photographs taken by a deep-tow camera system that show authigenic carbonates, carbonate mounds, chimney structures, and clam communities associated with bacterial mats on the sea floor where geochemical proxies for methane flux are high (S. Lin, personal communication). With all the geophysical data presented in this study, together with many geological observations (e.g., Jiang et al. 2006; Huang et al. 2006; Horng and Chen 2006) and geochemical analyses results (e.g., Lin et al. 2006; Chuang et al. 2006; Yang et al.

2006), we suggest that enormous amounts of gas hydrate should exist beneath the seafloor off SW Taiwan.

Acknowledgments We would like to thank Director C. C. Lin of the Central Geological Survey for the initiation and strong support of this gas hydrate investigation program. Cap-tains and crew of the R/V Ocean Researcher I and Mr. S. D. Chiou of the Ocean Researcher I Precious Instrument Center are thanked for helping to collect the marine geophysical data. S.

Y. Liu and K. R. Lai of the National Center for Ocean Research, J. K. Chiu, C. S. Chen, H. L.

Chang, H. J. Chuang, W. H. Tseng, and many graduate students in the Exploration

Seismol-ogy Lab of the Institute of Oceanography, National Taiwan University have participated in seismic cruises, and have prepared the bathymetry, sub-bottom profile and seismic reflection data and drafted many figures used in this paper. Discussions among gas hydrate team mem-bers are greatly appreciated, they being J. C. Chen, S. Lin, T. F. Yang, A. T. Lin, C. Y. Huang, C. S. Lee, T. K. Wang, W. B. Cheng, C. T. Shyu, H. S. Yu, S. K. Hsu, C. S. Horng, C. F. You, and W. T. Chiang. Comments and suggestions made by L. S. Teng and A. T. Lin greatly improve this paper. This study is supported by the Central Geological Survey grants 5226902000-06-93-01, 5226902000-05-94-01, and 5226902000-05-95-01.

REFERENCES

Bangs, N. L., D. S. Sawyer, and X. Golovchenko, 1993: Gree gas at the base of the gas hydrate zone in the vicinity of the Chile triple junction. Geology, 21, 905-908.

Best, A. I., M. D. Richardson, B. P. Boudreau, A. G. Judd, I. Leifer, A. P. Lyons, C. S.

Martens, D. L. Orange, and S. J. Wheeler, 2006: Shallow seabed methane gas could pose coastal hazard. EOS Tran. AGU, 87, 213-217.

Bowin, C., R. Lu, C. S. Lee, and H. Shouten, 1978: Plate convergence and accretion in Tai-wan-Luzon region. AAPG Bull., 62, 1645-1672.

Chang, C. H., 1993: Mud diapir investigation offshore southwestern Taiwan. Master Thesis, Natl. Taiwan Univ., Taiwan, 63 pp. (in Chinese)

Chao, H. C., and C. F. You, 2006: Distribution of B, Cl and their isotopes in pore waters separated from gas hydrate potential areas, offshore southwestern Taiwan. Terr. Atmos.

Ocean. Sci., 17, 961-979.

Chen, M. P., and W. S. Juang, 1986: Seafloor physiography off southeastern Taiwan. Acta Oceanogr. Taiwan., 16, 1-17.

Chen, M. P., Y. T. Shieh, and C. S. Shyr, 1988: Seafloor physiography and surface sediments off southeastern Taiwan. Acta Geol. Taiwan., 26, 333-353.

Cheng, W. B., C. S. Lee, C. S. Liu, P. Schnürle, S. S. Lin, and H. R. Tsai, 2006: Velocity structure in marine sediments with gas hydrate reflectors in offshore SW Taiwan, from OBS data tomography. Terr. Atmos. Ocean. Sci., 17, 739-756.

Chi, W. C., D. L. Reed, C. S. Liu, and N. Lundberg, 1998: Distribution of the bottom-simulat-ing reflector in the offshore Taiwan collision zone. Terr. Atmos. Ocean. Sci., 9, 779-794.

Chiang, C. H., H. S. Yu, and Y. W. Chou, 2004: Characteristics of the wedge-top depozone of the southern Taiwan foreland basin system. Basin Res., 16, 65-78.

Chiu, J. K., W. H. Tseng, and C. S. Liu, 2006: Distribution of gassy sediments and mud volcanoes offshore southwestern Taiwan. Terr. Atmos. Ocean. Sci., 17, 703-722.

Chow, J., J. S. Lee, R. Sun, C. S. Liu, and N. Lundberg, 2000: Characteristics of the bottom simulating reflectors near mud diapirs: Offshore southwestern Taiwan. Geo-Mar. Lett., 20, 3-9.

Chuang, H. J., 2006: Distribution and structural relationships of mud diapers offshore south-western Taiwan. Master Thesis, Natl. Taiwan Univ., Taiwan, 113 pp. (in Chinese)

Chuang, P. C., T. F. Yang, S. Lin, H. F. Lee, T. F. Lan, W. L. Hong, C. S. Liu, J. C. Chen, and Y. Wang, 2006: Extremely high methane concentration in bottom water and cored sediments from offshore southwestern Taiwan. Terr. Atmos. Ocean. Sci., 17, 903-920.

Collett, T., 2004: Gas hydrate as a future energy resources. Geotimes, November 2004, http:/

/www.agiweb.org/geotimes/nov04/feature_futurehydrate.html.

Deregowski, 1990: Common offset migration and velocity analysis. Fist Break, 8, 225-234.

Dickens, G. R., 2004: Methane hydrate and abrupt climate change. Geotimes, November 2004, http://www.agiweb.org/geotimes/nov04/feature_climate.html.

Dillion, W. P., J. W. Nealon, M. H. Taylor, M. W. Lee, R. M. Drury, and C. H. Anton, 2001:

Seafloor collapse and methane venting associated with gas hydrate on the Blake Ridge - Causes and implications to seafloor stability and methane release. In: C. K. Paull, and W. P. Dillon (Eds.), Natural Gas Hydrates: Occurrence, Distribution, and Detection.

Geophysical Monograph 124, AGU, Wash., D. C., 211-233.

Fuh, S. C., S. C. Liang, T. Z. Chang, S. H. Wu, and K. S. Chang, 2005: Biogenic gas potential associated with Plio-Pleistocene stratigraphic trap in southwestern Taiwan. J. Petrol., 41, 11-25. (in Chinese)

Fuh, S. C., C. S. Liu, N. Lundberg, and D. L. Reed, 1997: Strike-slip faults offshore southern Taiwan: Implications for the oblique arc-continent collision processes. Tectonophysics, 274, 25-40.

Gayet, P., C. Dicharry, G. Marion, A. Graciaa, J. Lachaise, and A. Nesterov, 2005: Experi-mental determination of methane hydrate dissociation curve up to 55 MPa by using a small amount of surfactant as hydrate promoter. Chem. Eng. Sci., 60, 5751-5758.

Hamilton E. L., 1980: Geoacoustic modeling of the sea-floor. J. Acoust. Soc. Am., 68, 1313-1340.

Ho, C. S., 1986. A synthesis of the geological evolution of Taiwan. Tectonophysics, 125, l-16.

Holbrook, W. S., H. Hoskins, W. T. Wood, R. A. Stephen, and D. Lizaralde, 1996: Methane hydrate and free gas volumes on the Blake Ridge from vertical seismic profiling. Science, 273, 1840-1843.

Horng, C. S., and K. H. Chen, 2006: Complicated magnetic mineral assemblages in marine sediments offshore of southwestern Taiwan: possible influence of methane flux on the early diagenetic process. Terr. Atmos. Ocean. Sci., 17, 1009-1026.

Hu, C. C., 1988: Basement structure and the Oligocene to Miocene stratigraphy of the Tainan Basin. Petrol. Geol. Taiwan, 24, 104-115. (in Chinese)

Huang, I. L., 1993: Structural analyses offshore southwestern Taiwan. Master Thesis, Natl.

Taiwan Univ., Taiwan, 64 pp. (in Chinese)

Huang, W. L., 1995: Distribution of mud dispirs offshore of southwestern Taiwan and their relationships with the onshore structures and deposition environment. Master Thesis, Natl. Taiwan Univ., Taiwan, 68 pp. (in Chinese)

Huang, C. Y., C. W. Chien, M. Zhao, H. C. Li, and Y. Iizuka, 2006: Geological study of active cold seeps in the syn-collision accretionary prism Kaoping slope off SW Taiwan.

Terr. Atmos. Ocean. Sci., 17, 679-702.

Huang, C. Y., C. T. Shyu, S. B. Lin, T. Q. Lee, and D. D. Sheu, 1992: Marine geology in the arc-continent collision zone off southeastern Taiwan: Implications for Late Neogene evolution of the Coastal Range. Mar. Geol., 107, 183-212.

Huang, C. Y., W. Y. Wu, C. P. Chang, S. Tsao, P. B. Yuan, C. W. Lin, and K. Y. Xia, 1997:

Tectonic evolution of accretionary prism in the arc-continent collision terrain of Taiwan.

Tectonophysics, 281, 31-51.

Huang, C. Y., P. B. Yuan, C. W. Lin, T. K. Wang, and C. P. Chang, 2000: Geodynamic processes of Taiwan arc-continent collision and comparison with analogs in Timor, Papua New Guinea, Urals and Corsica. Tectonophysics, 325, 1-21.

Hyndman, R. D., J. P. Foucher, M. Y. Yamano, and A. Fisher, 1992: Deep sea bottom-simu-lating reflectors: calibration of the base of the hydrate stability field as used for heat flow estimates. Earth Planet. Sci. Lett., 109, 289-301.

Jiang, W. T., J. C. Chen, B. J. Huang, C. J. Chen, Y. T. Lee, P. R. Huang, C. C. Lung, and S.

W. Huang, 2006: Mineralogy and physical properties of cored sediments from the gas hydrate potential area of offshore southwestern Taiwan. Terr. Atmos. Ocean. Sci., 17, 981-1007.

Johnson, A., and M. D. Max, 2006: The path to commercial hydrate gas production. The Leading Edge, 25, 648-651.

Kennett, J. P., K. G. Cannariato, I. L. Hendy, and R. J. Behl, 2003: Methane hydrates in Quaternary climate change: The clathrate gun hypothesis. Spec. Publ. Ser. Vol. 54, AGU, Wash., D. C.

Kvenvolden, K. A., 1988: Methane hydrates and global climate. Global Biogeochem. Cycles, 2, 221-229.

Kvenvolden, K. A., and T. D. Lorenson, 2001: The global occurrence of natural gas hydrate.

In: C. K. Paull, and W. P. Dillon (Eds.), Natural gas hydrates- Occurrence, distribution and detection. Geophysical Monograph 124, AGU, Wash. D. C., 3-18.

Lee, C. I., J. N. Oung, A. H. Ke, L. H. Lin, T. Y. Chiou, and T. H. Huang, 1995: Petroleum system of the Tainan basin. Bull. Explor. Prod. Res. Chin. Petrol. Co., 18, 209-227. (in Chinese)

Lin, A. T., A. B. Watts, and S. P. Hesselbo, 2003: Cenozoic stratigraphy and subsidence history of the South China Sea in the Taiwan region. Basin Res., 15, 453-478.

Lin, S., W. C. Hsieh, Y. C. Lim, T. F. Yang, C. S. Liu, and Y. Wang, 2006: Methane migra-tion and its influence on sulfate reducmigra-tion in the Good Weather Ridge region, South China Sea continental margin sediments. Terr. Atmos. Ocean. Sci., 17, 883-902.

Liu, C. S., K. C. Chen, and P. Schnürle, 2003: Distribution and seismic characteristics of gas hydrate offshore southwestern Taiwan. EOS Trans. AGU, Fall Meet. Suppl., Abstract OS51C-0880.

Liu, C. S., B. Deffontaines, C. Y. Lu, and S. Lallemand, 2004: Deformation patterns of an accretionary wedge in the transition zone from subduction to collision offshore south-western Taiwan. Mar. Geophys. Res., 25, 123-137.

Liu, C. S., I. L. Huang, and L. S. Teng, 1997: Structural features off southwestern Taiwan.

Mar. Geol., 137, 305-319.

Liu, C. S., S. Y. Liu, S. E. Lallemand, N. Lundberg, and D. Reed, 1998: Digital elevation model offshore Taiwan and its Tectonic implications. Terr. Atmos. Ocean. Sci., 9, 705-738.

Liu, C. S., D. L. Reed, and N. Lundberg, 2000: Morphological and structural characteristics of a prominent out-of-sequence thrust offshore southwest Taiwan - an embryonic ana-log to the seismogenic structure of the Chi-Chi earthquake? EOS Trans. AGU, 81, F1112.

Liu, C. S., C. T. Shyu, P. Schnürle, S. Fuh, and T. H. Hsiuan, 1999: Exploration and analyses of gas hydrates offshore southwestern Taiwan. Proceedings Symposium on Explora-tion and Development of New Resources Offshore - Methane Hydrates. December 1999, Taipei, Taiwan. (in Chinese)

Lundberg, N., D. Reed, C. S. Liu, and J. Lieske, Jr., 1992: Structural controls on orogenic sedimentation, submarine Taiwan collision. Acta Geol. Taiwan., 30, 131-140.

Lundberg, N., D. L. Reed, C. S. Liu, and J. Lieske, Jr., 1997: Forearc-basin closure and arc accretion in the submarine suture zone south of Taiwan, Tectonophysics, 274, 5-24.

Malavieille, J., S. E. Lallemand, S. Dominguez, A. Deschamps, C. Y. Lu, C. S. Liu, P. Schnürle, and the ACT scientific crew, 2002: Geology of the arc-continent collision in Taiwan:

marine observations and geodynamic model. In: Byrne, T., and C. S. Liu (Eds.), Geol-ogy and Geophysics of an Arc-Continent Collision, Taiwan, Geol. Soc. Am. Sp. Paper, 358, 187-211.

McDonnell, S. L., M. D. Max, N. Z. Cherkis, and M. F. Czarnecki, 2000: Tectono-sedimen-tary controls on the likelihood of gas hydrate occurrence near Taiwan. Mar. Petrol.

Geol., 17, 929-936.

Nimblett, J., and C. Ruppel, 2003: Permeability evolution during the formation of gas hy-drates in marine sediments. J. Geophys. Res., 108, 1-17.

Oung, J. N., C. Y. Lee, C. S. Lee, and C. L. Kuo, 2006: Geochemical study on hydrocarbon gases in seafloor sediments, southwestern offshore Taiwan - implications in the poten-tial occurrence of gas hydrates. Terr. Atmos. Ocean. Sci., 17, 921-931.

Reed, D., N. Lundberg, C. S. Liu, and K. D. McIntosh, 1991: Evidence of frontal thrust propaga-tion and fluid migrapropaga-tion in an offscraped sedimentary basin sequence offshore Taiwan.

TAICRUST Workshop Proceedings, Natl. Taiwan Univ., Taipei, Taiwan, 103-106.

Reed, D., N. Lundberg, C. S. Liu, and B. Y. Kuo, 1992: Structural relations along the margins of the offshore Taiwan accretionary wedge: implications for accretion and crustal kinematics. Acta Geol. Taiwan., 30, 105-122.

Schnürle P., and C. S. Liu, 2006: Structural controls on the formation of BSR offshore south-western Taiwan from a 2.5-D seismic reflection survey. AAPG Memoir special issue on gas hydrates. (submitted)

Schnürle, P., D. H. Hsiuan, and C. S. Liu, 1999: Constrains on free gas and gas hydrate bearing sediments from multi-channel seismic data, offshore southwestern Taiwan.

Petrol. Geol. Taiwan, 33, 21-42.

Schnürle, P., T. H. Hsiuan, T. K. Wang, K. McIntosh, C. S. Liu, D. Reed, and Y. Nakamura, 2002: Characteristics of gas hydrate and free gas offshore southwestern Taiwan: pre-liminary results from a combined seismic reflection/refraction analysis. Petrol. Geol.

Taiwan, 35, 1-33.

Schnürle P., C. S. Liu, T. H. Hsiuan, and T. K. Wang, 2004: Characteristics of gas hydrate and free gas offshore southwestern Taiwan from a combined MCS/OBS data analysis. Mar.

Geophys. Res., 25, 157-180.

Schnürle, P., C. S. Liu, and C. S. Lee, 2006: Acoustic and shear-wave velocities in hydrate-bearing sediments offshore southwestern Taiwan: tomography, converted waves analysis and reverse-time migration of OBS records. Terr. Atmos. Ocean. Sci., 17, 757-779.

Shipley, T. H., M. H. Houston, R. T. Buffler, F. J. Shaub, K. J. McMillen, J. W. Ladd, and J.

L. Worzel, 1979: Seismic reflection evidence for widespread occurrence of possible gas-hydrate horizons on continental slopes and rises. AAPG Bull., 63, 2204-2213.

Shyu, C. T., Y. J. Chen, S. T. Chiang, and C. S. Liu, 2006: Heat flow measurements over bottom simulating reflectors, offshore southwestern Taiwan. Terr. Atmos. Ocean. Sci., 17, 845-869.

Shyu, C. T., S. K. Hsu, and C. S. Liu, 1998, Heat flows off southwest Taiwan: Measurements over mud diapirs and estimated from bottom simulating reflectors. Terr. Atmos. Ocean.

Sci., 9, 795-812.

Singh, S. C., and T. Minschull, 1994: Velocity structure of a gas hydrate reflector at Ocean Drilling program site 889 from a global seismic waveform inversion. J. Geophys. Res., 99, 24221-24233.

Sloan, E. D., 1998: Clatherates hydrates of natural gases. Marcel Decker, New York, 641 pp.

Stoll, R. D., J. Ewing, and G. M. Bryan, 1971: Anomalous velocities in sediments containing gas hydrate. J. Geophys. Res., 76, 2090-2094.

Sun, S. C., 1982: The Tertiary basins of offshore Taiwan. Proc. 2nd ASCOPE Conf. and Exhibition, 1981, Manila, Philippine, 125-135.

Sun, S. C., and C. S. Liu, 1993: Mud diapirs and submarine channel deposits in offshore Kaohsiung-Hengchun, southwest Taiwan. Petrol. Geol. Taiwan, 28, 1-14.

Teng, L. S., 1990. Late Cenozoic arc-continent collision in Taiwan. Tectonophysics, 183, 57-76.

Tucholke, B. F., G. M. Bryan, and J. I. Ewing, 1977: Gas-hydrate horizons detected in seis-mic-profiler data from the western North Atlantic. AAPG Bull., 61, 698-707.

Vanneste, M., M. de Batist, A. Golmshtok, A. Kremlev, and W. Versteeg, 2000: Multi-fre-quency seismic study of gas hydrate-bearing sediments in Lake Baikal, Siberia. Mar.

Geol., 172, 1-21.

Wood, W. T., and C. Ruppel, 2000: Seismic and thermal investigations of the Blake ridge gas hydrate area: a synthesis. In: Paull, C. K. et al. (Eds.), Proceeding of the Ocean Drilling Program, Scientific Results, 164, 253-264.

Wood, W. T., P. L. Stoffa, and T. H. Shipley, 1994: Quantitative detection of methane trough high resolution seismic velocity analysis. J. Geophys. Res., 99, 9681-9695.

Yan, P., H. Deng, and H. Liu, 2006: The geological structure and prospect of gas hydrate over the Dongsha Slope, South China Sea. Terr. Atmos. Ocean. Sci., 17, 645-658.

Yang, K. M., H. H. Ting, and J. Yuan, 1991: Structural styles and tectonic modes of Neogene extensional tectonics in southwestern Taiwan: Implications for hydrocarbon exploration.

Petrol. Geol. Taiwan, 26, 1-31.

Yang, T. F., P. C. Chuang, S. Lin, J. C. Chen, Y. Wang, and S. H. Chung, 2006: Methane venting in gas hydrate potential area offshore of SW Taiwan: evidence of gas analysis of water column samples. Terr. Atmos. Ocean. Sci., 17, 933-950.

Yang, T. F., G. H. Yeh, C. C. Fu, C. C. Wang, T. F. Lan, H. F. Lee, C. H. Chen, V. Walia, and Q. C. Sung, 2004: Composition and exhalation flux of gases from mud volcanoes in Taiwan. Environ. Geol., 46, 1003-1011.

Yen, J. Y., and N. Lundberg, 2006: Sediment compositions in offshore southern Taiwan and their relations to the source rocks in modern arc-continent collision zone. Mar. Geol., 225, 247-263.

Yu, H. S., and Z. Y. Huang, 2006: Intraslope basin, seismic facies and sedimentary processes in the Kaoping slope, offshore southwestern Taiwan. Terr. Atmos. Ocean. Sci., 17, 659-677.

Yu, H. S., and Y. H. Wen, 1992: Physiographic characteristics of the continental margin off southwestern Taiwan. J. Geol. Soc. China, 35, 337-351.

Liu, C. S., P. Schnürle, Y. Wang, S. H. Chung, S. C. Chen, and T. H. Hsiuan, 2006: Distribu-tion and characters of gas hydrate offshore of southwestern Taiwan. Terr. Atmos. Ocean.

Sci., 17, 615-644.

相關文件