• 沒有找到結果。

5.3 Vortices under extreme elongation in a harmonic plus quartic trap

5.3.4 Effect of interaction

In this section, the effect of the interaction (g) is studied by the perturbation approach.

Similar to previous section, we consider also the three cases: λ = 0.03, 0.01, and 0.005. For the interaction, ng = 0.5 and 1.0 are considered respectively. In Fig. 5.4, the number of Nc[terms involved in the summation (5.18)] is determined and plotted as the function of ω0/Ω for six cases, namely (ng, λ) = (1, 0.03), (1, 0.01), (1, 0.005), (0.5, 0.03), (0.5, 0.01), and (0.5, 0.005). It turns out that the results of Nc are quite fascinating in terms of the change of Ω and the strength of the interaction. One common feature of all frames in Fig. 5.4 is that Nc shifts from 1 (at lower Ω) to 2 eventually (at higher Ω). In between of the 1 to 2 period, transition states occur for

a large Ω span. For example, Nc≥ 3 transition states can occur in all frames except in frame (d). Besides, Ncincreases in a trend as Ω increases for the transition states.

The reason why Nc all shift from 1 (at lower Ω) to 2 eventually (at higher Ω) can be understood as follows. One recalls the Nc results for g = 0 in Fig. 5.2(d), where all three cases are observed to exhibit the Nc = 1 → 2 transition (at different critical Ω though). When the interaction g is turned on and still valid in the perturbative regime, g will only play little role in the large Ω limit. It means that when Ω is large enough, transition states, which arise due to the effect of g, will disappear. As an extreme example shown in Fig. 5.4(d), because g is relatively small (ng = 0.5) and the quartic coupling is relatively large (λ = 0.03), consequently no transition state occur.

When λ is reduced [see Fig. 5.4(e) and (f)], or when g is increased [see Fig. 5.4(a)], transition states will occur.

Moreover, it is found that the critical value of Ω to which Nc changes from 1 to 2 at the lower Ω side is smaller when λ is smaller (if ng is fixed) or when ng is larger (if λ is fixed). It implies that the system will enter the vortex state earlier if g is relatively larger or λ is relatively smaller. Furthermore, with the same λ, transition states will sustain for a larger span of Ω if g is larger and can go up to a higher value of Nc. The latter means that vortex lattice can have a higher row number. One sees in Fig. 5.4(c) that Nc can go up to 5, although for a small period of Ω.

The normalized density profile in the xy plane, |Ψ|2/n, is shown in Fig. 5.5 for (ng, λ) = (1, 0.005) [corresponding to the case in Fig. 5.4(c)]. As seen in Fig. 5.4(c), the change of Ncin the transition states is quite rich for this case. Six angular veloci-ties are studied, namely ω0/Ω = 1.02, 1.0, 0.984, 0.9815, 0.98 and 0.9785 respectively for Fig. 5.5(a)–(f). With these values of Ω, Nc corresponds to 2, 3, 4, 5, 4, and 2 respectively. One sees in Fig. 5.5(a)–(d) that when Ω is increased from ω0/Ω = 1.02 to 0.9815, atoms are pushed to the two sides and the number of vortices becomes

more and more. The row number of vortex line also increases from 1 to 4. While in Fig. 5.5(e), the vortex row number is reduced to 3 (Nc = 4) again. In the case of Fig. 5.5(f), although Nc is reduced to 2, but vortex lattice vanishes (melts) due to the large centrifugal force. Similar vortex lattice melting transition (atoms are completely pushed to the two sides) at large Ω has already been seen in the previous section of no interaction.

5.4 Summary

In this chapter, we discuss the basic physics for a fast rotating BEC in Secs. 5.1 and 5.2. In Sec. 5.3, we investigates the effect of a quartic potential on a fast rotating BEC system under the extreme elongation. In contrast to the harmonic trap alone case where system is unstable when the angular velocity Ω is larger than the radial trap oscillator frequency ω0, it is shown that the quartic trap can lead the system to remain stable at higher rotation velocity (Ω > ω0). The interplay between the weak s-wave interaction and the quartic trap potential can result rich vortex lattice transition states as a function of Ω. At large Ω, atoms are eventually push to the two sides along the elongated potential well.

x

Figure 5.5 Normalized atom number density distribution, |Ψ|2/n, is plotted in the xy plane for (a) ω0/Ω = 1.02, (b) 1.0, (c) 0.984, (d) 0.9815, (e) 0.98, and (f) 0.9785. Here ng = 1 and λ = 0.005 for all frames [corresponding to the case in Fig. 5.4(c)]. Vortex lattices with the transitions of row number and lattice constant are observed as the change of Ω.

Conditions of energetic stability

In this Appendix, for a two-component BEC system, I show the details of expanding the thermodynamic energy G = E − µ1N1 − µ2N2 in terms of the fluctuations of the ground-state wavefunctions Ψ1 and Ψ2. As the GP energy function E is given in (2.7), G is then given by

G =

Z

dr

X

i=1,2

Ψi

"

−¯h22

2m + Vi(r) + gi

2 i|2− µi

#

Ψi+ g121|22|2

, (A.1) where µi is the chemical potential for species i. To minimize G, one can write Ψi Ψi,0+ δΨi with Ψi,0 the equilibrium condensate wavefunction and δΨi the fluctuation around Ψi,0. One then expands G to the second order in δΨi. Involving in this expansion, there are two key terms. One involves the kinetic energy:

ΨihiΨi → (Ψi,0+ δΨi)hii,0+ δΨi)

= Ψi,0hiΨi,0+ Ψi,0hiδΨi+ δΨihiΨi,0+ δΨihiδΨi, (A.2) where hi ≡ −¯h2m22

i + Vi(r) − µi. Another involves the interaction energy:

giji|2j|2 → gijni,0|2j,0|2+ |Ψi,0|2j,0δΨj+ δΨjΨj,0) + |Ψj,0|2i,0δΨi+ δΨiΨi,0) + (Ψj,0δΨj+ δΨjΨj,0)(Ψi,0δΨi+ δΨiΨi,0) + |Ψi|2δΨjδΨj+ |Ψj|2δΨiδΨi

+ higher order terms } . (A.3)

77

It is instructive to show that when i = j the above long expansion leads to

i,0|4+ 2|Ψi,0|2i,0δΨi+ δΨiΨi,0) (A.4) + (Ψi,0)2(δΨi)2+ (Ψi,0)2(δΨi)2+ 4|Ψi,0|2δΨiδΨi + higher order term . Collecting the same order terms in (A.2)– (A.4), one can write G = G0i,0] + δG1 + δG2, where δG1 is linear in δΨi while δG2 is quadratic in δΨi. Consequently, the zeroth-order term G0 is

G0 =

The first-order term δG1 is given by δG1 = X

while the second order δG2 is given by δG2 = δG2 can be rewritten in a more concise way in terms of a matrix equation

δG2 = 1

If G0corresponds to stationary values, δG1must vanish while δG2must be positive for any fluctuations of δΨi and δΨi. Therefore, if the system is in the minimum-energy ground state, the necessary conditions of energetic stability are δG1 = 0 and all eigenvalues of matrix M are positive. The δG1 = 0 condition actually leads to

"

−¯h22

2m1 + V1(r) + g111,0|2+ g122,0|2

#

Ψ1,0 = µ1Ψ1,0

"

−¯h22

2m2 + V2(r) + g222,0|2+ g121,0|2

#

Ψ2,0 = µ2Ψ2,0, (A.10)

which are just the time-independent coupled GP equations.

Variational method

In this appendix, we show how to apply the variational method to study the dynamics of an ultracold atom system and how to obtain the minimum-energy state for it. As an example, we consider a one-component BEC system in a magnetic trap. The corresponding energy functional is given by [see also Eq. (2.5)]

E =

Z

drΨ(r)

"

−¯h22

2m + Vext(r) + g

2|Ψ(r)|2

¸

Ψ(r), (B.1)

where Vext(r) = 12m(wx2x2+ wy2y2+ w2zz2) is the anisotropic trapping potential and g is the interaction between atoms. If the interaction vanishes (g = 0), the minimum-energy (ground) state wave function Ψ(r) of (B.1) is exactly the simple Gaussian function. Thus it is convenient to use the simple Gaussian

Ψ(r) = N1/2

π3/4(RxRyRz)1/2e12(x2/R2x+y2/R2y+z2/R2z) (B.2) as a trial wave function for (B.1).

Using Eq. (B.2), the energy functional (B.1) is then solved to be E(Rx, Ry, Rz) = X

i=x,y,z

( N 4m

1 R2i +N

4i2R2i

)

+ N2

2(2π)3/2RxRyRz. (B.3) Firstly, one is seeking global minimum of the energy functional (B.3) upon the changes of Rx, Ry, Rz. For this purpose, one can use the Newton’s Method to determine the

81

values of Rx, Ry, Rz which lead to extrema and then use the Hessian matrix to deter-mine whether they give a maximum or minimum. The corresponding mathematical theorem is the following. Given a real-valued function F (x1, x2, ..., xn) of n energy state, J(x) = 0 and the eigenvalues of the matrix H(x) need to be all positive.

To discuss the dynamics of the system, one can incorporate appropriate dynamical variables into the wavefunction [Ψ(r) → Ψ(r, t)], which are sensible to the dynamics under studies. For example, if one wants to consider the breathing modes, the time-dependent trial wave function Ψ(r, t) can be used as

Ψ(r, t) = N1/2((1 + ²x(t))(1 + ²y(t))(1 + ²z(t)))1/4

π3/4(RxRyRz)1/2 (B.6)

× e12(x2(1+²x(t)+iζx(t))/R2x+y2(1+²y(t)+iζy(t))/R2y+z2(1+²y(t)+iζy(t))/R2z),

where parameter ²i(t) and ζi(t) correspond to the fluctuations of local amplitude and local phase of the atom cloud associated with the i-direction. The next step is to derive the corresponding Lagrangian: L =R drT − E, where

T = i¯h

and E is the energy functional (B.1) with time-dependent wave functional Ψ(r, t).

Finally a set of coupled dynamical equations of motion can be derived through the Euler-Lagrange equations:

∂L

∂β = d dt

∂L

∂ ˙β, (B.8)

where β is any one of the dynamical variables chosen. The corresponding dynamics, in particular the collective mode dispersion relation, can be obtained by solving the roots of the dynamical matrix (diagonalization).

[1] M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A.

Cornell, Science 269, 198 (1995).

[2] K. B. Davis, M.-O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D.

M. Kurn, and W. Ketterle, Phys. Rev. Lett 75, 3969 (1995).

[3] C. C. Bradley, C. A. Sackett, J. J. Tollett, and R. G. Hulet, Phys. Rev. Lett.

75, 1687 (1995).

[4] D. G. Fried, T. C. Killian, L. Willmann, D. Landhuis, S. C. Moss, D. Kleppner, and T. J. Greytak, Phys. Rev. Lett. 81, 3811 (1998).

[5] S. L. Cornish, N. R. Claussen, J. L. Roberts, E. A. Cornell, and C. E. Wieman, Phys. Rev. Lett. 85, 1795 (2000).

[6] G. Modugno, G. Ferrari, G. Roati, R. J. Brecha, A. Simoni, and M. Inguscio, Science 294, 1320 (2001).

[7] A. Robert, O. Sirjean, A. Browaeys, J. Poupard, S. Nowak, D. Boiron, C. I.

Westbrook, and A. Aspect, Science 292, 461 (2001).

[8] F. Pereira Dos Santos, J. Leonard, J. Wang, C. J. Barrelet, F. Perales, E. Rasel, C. S. Unnikrishnan, M. Leduc, and C. Cohen-Tannoudji, Phys. Rev. Lett. 86, 3459 (2001).

85

[9] T. Wever, J. Herbig, M. Mark, H.-C. Nagerl, and R. Grimm, Science 299, 232 (2003).

[10] Y. Takasu, K. Maki, K. Komori, T. Takano, K. Honda, M. Kumakura, T.

Yabuzaki, and Y. Takahashi, Phys. Rev. Lett. 91, 040404 (2003).

[11] A. Griesmaier, J. Werner, S. Hensler, J. Stuhler and T. Pfau, Phys. Rev. Lett.

94, 160401 (2005).

[12] G. Roati, M. Zaccanti, C. DErrico, J. Catani, M. Modugno, A. Simoni, M.

Inguscio, and G. Modugno, Phys. Rev. Lett. 99, 010403 (2007).

[13] T. Fukuhara, S. Sugawa, and Y. Takahashi, Phys. Rev. A 76, 051604 (2007).

[14] Sebastian Kraft,* Felix Vogt, Oliver Appel, Fritz Riehle, and Uwe Sterr, Phys.

Rev. Lett. 103, 130401 (2009).

[15] S. Stellmer, M. K. Tey, B. Huang, R. Grimm, and F. Schreck, Phys. Rev. Lett.

103, 200401 (2009).

[16] Y. N. Martinez de Escobar, P.G. Mickelson, M. Yan, B. J. DeSalvo, S. B. Nagel, and T. C. Killian, Phys. Rev. Lett. 103, 200402 (2009).

[17] B. De Marco and D. S. Jin, Science 285, 1703 (1999).

[18] G. Roati, F. Riboli, G. Modugno, and M. Inguscio, Phys. Rev. Lett. 89, 150403 (2002).

[19] A.G. Truscott, K.E. Strecker, W.I. McAlexander, G.B. Partridge, and R.G.

Hulet, Science 291, 2570 (2001).

[20] F. Schreck, L. Khaykovich, K.L. Corwin, G. Ferrari, T. Bourdel,J. Cubizolles, and C. Salomon, Phys. Rev. Lett. 87, 080403 (2001).

[21] Z. Hadzibabic, C. A. Stan, K. Dieckmann, S. Gupta, M. W. Zwierlein, A.

G¨orlitz, and W. Ketterle, Phys. Rev. Lett. 88, 160401 (2002).

[22] J. Goldwin, S.B. Papp, B. DeMarco, and D.S. Jin, Phys. Rev. A 65, 021402 (2002).

[23] C. A. Regal, C. Ticknor, J. L. Bohn, D. S. Jin, Nature 424, 47 (2003).

[24] S. Jochim et al., Science 302, 2101 (2003).

[25] K. E. Strecker, G. B. Partridge, and R.G. Hulet, Phys. Rev. Lett. 91, 080406 (2003).

[26] C. Chin et al., Science 305, 1128 (2004).

[27] G. B. Partridge, K. E. Strecker, R. I. Kamar, M. W. Jack,R. G. Hulet, Phys.

Rev. Lett. 95, 020404 (2005).

[28] M. W. Zwierlein, J. R. Abo-Shaeer, A. Schirotzek,C. H. Schunck, W. Ketterle, Nature 435, 1047 (2005).

[29] M. W. Zwierlein, A. Schirotzek, C. H. Schunck, and W. Ketterle, Science 311, 492 (2006).

[30] G. B. Partridge, W. Li, R. I. Kamar, Y. Liao, R. G. Hulet, Science 311, 503 (2006).

[31] F. Dalfovo, S. Giorgini, L.P. Pitaevskii, and S. Stringari, Rev. Mod. Phys. 71, 463 (1999).

[32] A. J. Leggett, Phys. Mod. Phys. 73, 333 (2001).

[33] C. J. Pethick and H. Smith, Bose-Einstein condensation in dilute gases (Cam-bridge University Press, Cam(Cam-bridge, 2002).

[34] L. P. Pitaevskii and S. Stringari, Bose-Einstein condensation (Clarendon Press, Oxford, 2003).

[35] O. Morsch and M. Oberthaler, Rev. Mod. Phys. 78, 179 (2006).

[36] I. Bloch, J. Dalibard and W. Zwerger, Rev. Mod. Phys. 80, 885 (2008).

[37] S. Giorgini, L. P. Pitaevskii and S. Stringari, Phys. Mod. Phys. 80, 1215 (2008).

[38] C. J. Myatt, E. A. Burt, R. W. Ghrist, E. A. Cornell, and C. E. Wieman, Phys.

Rev. Lett. 78, 586 (1997).

[39] D. S. Hall, M. R. Matthews, J. R. Ensher, C. E. Wieman, and E. A. Cornell, Phys. Rev. Lett. 81, 1539 (1998).

[40] M. Anderlini, E. Courtade, M. Cristiani, D. Cossart, D. Ciampini, C. Sias, O.

Morsch, and E. Arimondo, Phys. Rev. A 71, 061401 (2005).

[41] O. E. Alon, A. I. Streltsov, and L. S. Cederbaum, Phys. Rev. Lett. 97, 230403 (2006).

[42] I. Titvinidze, M. Snoek, and W. Hofstetter, Phys. Rev. Lett. 100, 10040 (2008).

[43] K. Kasamatsu, M. Tsubota, and M. Ueda, Phys. Rev. Lett. 93, 250406 (2004).

[44] S. J. Woo, S. Choi, L. O. Baksmaty, and N. P. Bigelow, Phys. Rev. A 75, 031604 (2007).

[45] T.-L. Ho and V.B. Shenoy, Phys. Rev. Lett. 77, 3276 (1996).

[46] H. Pu and N.P. Bigelow, Phys. Rev. Lett. 80, 1130 (1998).

[47] K. Mølmer, Phys. Rev.Lett. 80, 1804 (1998).

[48] R. Roth and H. Feldmeier, Phys. Rev. A. 65, 21603 (2002).

[49] C. K. Law, H. Pu, N. P. Bigelow, and J. H. Eberly, Phys. Rev. Lett. 79, 17 (1997).

[50] C.C. Huang and W.C. Wu, Phys. Rev. A 75, 023609 (2007).

[51] J.-P. Martikainen and H. T. C. Stoof, Phys. Rev. A 69, 23608 (2004).

[52] C.C. Huang and W. C. Wu, Phys. Rev. A 72, 065601 (2005).

[53] D. Jaksch, C. Bruder, J. Cirac, C.W. Gardiner, and P. Zoller, Phys. Rev. Lett.

81, 3108 (1998).

[54] M. Greiner, O .Mandel, T. Esslinger, T.W. H¨ansch, and I. Bloch, Nature 415, 39 (2002).

[55] T. St¨oferle, H. Moritz, C. Schori, M. Kohl, and T. Esslinger, Phys. Rev. Lett.

92, 130403 (2004).

[56] I. B. Spielman, W. D. Phillips, and J. V. Porto, Phys. Rev. Lett. 98, 080404 (2007).

[57] I. B. Spielman, W. D. Phillips, and J. V. Porto, Phys. Rev. Lett. 100, 120402 (2008).

[58] M. Machholm, C.J. Pethick, and H. Smith, Phys. Rev. A 67, 053613 (2003).

[59] B. Wu and Q. Niu, Phys. Rev. A 61, 023402 (2000).

[60] B. Paredes, A. Widera, V. Murg, O. Mandel, S. Folling, I. Cirac, G. V. Shlyap-nikov, T. W. Hansch, and I. Bloch, Nature (London) 429, 277 (2004).

[61] T. Kinoshita, T. Wenger, and D. S. Weiss, Nature (London) 305, 1125 (2004).

[62] H. Moritz, T. Stoferle, M. Kohl, and T. Esslinger, Phys. Rev.Lett. 91, 250402 (2003).

[63] T. Laburthe, B., K. M. OHara, J. H. Huckans, W. D. Phillips, S. L. Rolston, and J. V. Porto, Phys. Rev. Lett. 92, 190401 (2004).

[64] G. Modugno,F. Ferlaino, R. Heidemann, G. Roati, and M. Inguscio, Phys. Rev.

A 68, 011601 (2003).

[65] G. Roati, E. de Mirandes, F. Ferlaino, H. Ott, G. Modugno, and M. Inguscio, Phys. Rev. Lett. 92, 230402 (2004).

[66] M. K¨ohl,H. Moritz, T. Stoferle, K. Gunter, and T. Esslinger, Phys. Rev. Lett.

94, 080403 (2005).

[67] M. K¨ohl, Phys. Rev. A 73, 031601 (2006).

[68] T. St¨oferle, H. Moritz, K. Gunter, M. Kohl, and T. Esslinger, Phys. Rev. Lett.

96, 030401 (2006).

[69] T. Rom, T. Best, D. van Oosten, U. Schneider, S. Folling, B. Paredes, and I.

Bloch, Nature 444, 733 (2006).

[70] J.I. Cirac and P. Zoller, Science 301, 176 (2003).

[71] O. Mandel, M. Greiner, A. Widera, T. Rom, T. W. Hansch, and I. Bloch, Nature (London) 425, 937 (2003).

[72] O. Mandel, M. Greiner, A. Widera, T. Rom, T. W. Hansch, and I. Bloch, Phys.

Rev. Lett. 91, 010407 (2003).

[73] K.G.H. Vollbrecht, E. Solano, and J. I. Cirac, Phys. Rev. Lett. 93, 220502 (2004).

[74] M. Kr¨amer, L. Pitavskii, and S. Stringari, Phys. Rev. Lett. 88, 180404 (2002).

[75] K. Berg-Sørensen and K. Mølmer, Phys. Rev. A 58, 1480 (1998).

[76] J. Javanainen, Phys. Rev. A 60, 4902 (1999).

[77] E. Taylor and E. Zaremba, Phys. Rev. A 68, 053611 (2003).

[78] C. Schori, T. St¨oferle, H. Moritz, M. K¨ohl, and T. Esslinger, Phys. Rev. Lett.

93, 240402 (2004).

[79] H. H. Roomany, and H. W. Wyld, Phys. Rev. d 21, 3341 (1980).

[80] J. Stuhler, A. Griesmaier, T. Koch, M. Fattori, T. Pfau and S. Giovanazzi, P.

Pedri, L. Santos, Phys. Rev. Lett. 95, 150406 (2005).

[81] M. Fattori, T. Koch, S. Giotz. A. Griesmaier, S Hensler, J. Stuhler, and T.

Pfau, Nature Phys. 2, 765 (2006).

[82] A. Griesmaier, J. Stuhler, T. Koch, M. Fattori, T. Pfau and S. Giovanazzi, Phys. Rev. Lett. 97, 250402 (2006).

[83] T. Lahaye, T. Koch, B. Fr¨ohlich, M. Fattori, J. Metz, A. Griesmaier, S. Gio-vanazzi, and T. Pfau, Nature 448, 672 (2007).

[84] T. Koch, T. Lahaye, J. Metz, B. Fr¨ohlich, A. Griesmaier, and T. Pfau, Nature Physics 4, 218 (2008).

[85] M. Vengalattore, S. R. Leslie, J. Guzman, and D. M. Stamper-Kurn, Phys. Rev.

Lett. 100, 170403 (2008).

[86] M. Fattori, C. DErrico, G. Roati, M. Zaccanti, M. Jona-Lasinio, M. Mod-ugno,M. Inguscio, and G. Modugno, Phys. Rev. Lett. 100, 080405 (2008).

[87] J.M. Doyle, B. Friedrich, Nature 401, 749 (1999).

[88] H.L. Bethlem, G. Berden, F.M.H. Crompvoets, R.T. Jongma, A.J.A. van Roij, G. Meijer, Nature 406, 491 (2000).

[89] J.M. Sage, S. Sainis, T. Bergeman, D. DeMille, Phys. Rev. Lett. 94, 203001 (2005).

[90] J. Deiglmayr et al., Phys. Rev. Lett. 101, 133004 (2008).

[91] J. M. Doyle, B. Friedrich, R.V. Krems, F. Masnou-Seeuws, Eur. Phys. J. D 31, 149 (2004).

[92] D. Egorov, W.C. Campbell, B. Friedrich, S.E. Maxwell, E. Tsikata, L.D. van Buuren, J.M. Doyle, Eur. Phys. J. D 31, 307 (2004).

[93] K.-K. Ni, et al., Science 322, 231 (2008).

[94] S. Yi and L. You, Phys. Rev. A 61, 041604 (2000).

[95] A. Derevianko, Phys. Rev. A 72, 039901 (2005).

[96] A. Derevianko, Phys. Rev. A 67, 033607 (2003).

[97] D. C. E. Bortolotti, S. Ronen, J. L. Bohn, and D. Blume, Phys. Rev. Lett. 97, 160402 (2006).

[98] D.W. Wang, N. J. Phys. 10, 053005 (2008).

[99] C.C. Huang, D.W. Wang, and W.C. Wu, submitted to N. J. Phys.

[100] B. Deb and L. You, Phys. Rev. A 64, 022717 (2001).

[101] D.C.E. Bortolotti et al., Phys. Rev. Lett. 97 160402 (2007); S. Ronen, et al., Phys. Rev. A 74 033611 (2006);K. Kanjilal, J.L. Bohn, and D. Blume, Phys.

Rev. A 75, 052703 (2007).

[102] K. Kanjilal and D. Blume, Phys. Rev. A 78, 040703 (2008).

[103] K. G´oral and L. Santos, Phys. Rev. A 66, 023613 (2002).

[104] M.A. Baranov, Phys. Rep. 464, 71 (2008).

[105] S. Ronen, D.C.E. Bortolotti and J.L. Bohn, Phys. Rev. A 74, 013623 (2006).

[106] M.R.Matthews, B.P.Anderson, P.C.Haljan, D.S.Hall, C.E.Wieman, and E.A.

Cornell, Phys. Rev. Lett. 83, 2498 (1999).

[107] K. W. Madison, F. Chevy, W. Wohlleben, and J. Dalibard, Phys. Rev. Lett.

84, 806 (2000).

[108] J. R. Abo-Shaeer, C. Raman, J. M. Vogels, and W. Ketterle, Science 292, 476 (2001).

[109] C. Raman, J. R. Abo-Shaeer, J. M. Vogels, K. Xu, and W. Ketterle, Phys. Rev.

Lett. 87, 210402 (2001).

[110] P. C. Haljan, I. Coddington, P. Engels, and E. A. Cornell, Phys. Rev. Lett. 87, 210403 (2001).

[111] P. Engels, I. Coddington, P. C. Haljan, and E. A. Cornell, Phys. Rev. Lett. 89, 100403 (2002).

[112] V. Schweikhard, I. Coddington, P. Engels, V.P. Mogendorff, and E.A. Cornell, Phys. Rev. Lett. 92, 040404 (2004).

[113] Tin-Lun Ho, Phys. Rev. Lett. 87, 060403 (2001).

[114] Gordon Baym and C. J. Pethick, Phys. Rev. A 69, 043619 (2004).

[115] N. R. Cooper and S. Komineas, Phys. Rev. A 70, 033604 (2004).

[116] Gentaro Watanabe, Gordon Baym, and C. J. Pethick, Phys. Rev. Lett. 93, 190401 (2004).

[117] Amandine Aftalion and Xavier Blanc, Phys. Rev. A 71, 023611 (2005).

[118] Gentaro Watanabe, S. Andrew Gifford, Gordon Baym, and C. J. Pethick, Phys.

Rev. A 74, 063621 (2006).

[119] E. Hodby, G. Hechenblaikner, S. A. Hopkins, O. M. Marago, and C. J. Foot, Phys. Rev. Lett. 88, 010405 (2001).

[120] Alexander L. Fetter, Phys. Rev. A 64, 063608 (2001).

[121] K. Kasamatsu, M. Tsubota, and M. Ueda, Phys. Rev. A 66, 053606 (2002).

[122] Lundh, E., Phys. Rev. A 65, 043604 (2002).

[123] V. Bretin, S. Stock, Y. Seurin, and J. Dalibard, Phys. Rev. Lett. 94, 050403 (2004).

[124] N.R. Cooper, E.H. Rezayi, and S.H. Simon, Phys. Rev. Lett. 95, 200402 (2005).

[125] J. Zhang and H. Zhai, Phys. Rev. Lett. 95, 200403 (2005).

[126] S. Komineas and N.R. Cooper, Phys. Rev. A 75, 023623 (2007).

[127] C.C. Huang, C.H. Liu, and W.C. Wu, accepted for publication in PRA.

[128] X. Blanc and N. Rou, Phys. Rev. A. 77, 053615 (2008).

[129] A. D. Jackson and G. M. Kavoulakis, Phys. Rev. A 70, 023601 (2004).

[130] A. D. Jackson, G. M. Kavoulakis, E. Lundh, Phys. Rev. A 69, 053619 (2004).

[131] M. ¨O. Oktel, Phys. Rev. A 69, 023618 (2004).

[132] Alexander L. Fetter, Phys. Rev. A 75, 013620 (2007).

[133] S. Sinha and G. V. Shlyapnikov, Phys. Rev. Lett. 94, 150401 (2005).

[134] P. S´anchez-Lotero and J. J. Palacios, Phys. Rev. Lett. 94, 150401 (2005).

相關文件