• 沒有找到結果。

Generalization of Integrals Along Vertical Cuts

Case 1. The number of branch points is odd (2N + 1 branch points) Let

f (z) =p

(z − z1)(z − z2) · · · (z − z2N +1) =

2N +1

Y

j=1

pz − zj.

Aussume that Im(zj) > Im(zj+1) for j = 1, 2, · · · , 2N . Let yj to denote the imaginary part of zj for all j. That is, yj = Im(zj).

Figure 68 Figure 69 Figure 70

(1) To evaluateR

Then,

(2) To evaluateR

bkf (z)dz (Figure 70)

To use the similar method of deriving Equation (49) in case 1 of (2) in section 3.4, we obtain

Thus,

Case 2. The number of branch points is even (2N + 2 branch points) Let

Figure 71 Figure 72 Figure 73 (1) To evaluateR

akf (z)dz (Figure 72) Theoretical Evaluation

Along z2k+1−→ z+ 2k+2,

z = ri, r : y2k+1−→ y2k+2=⇒ dz = idr For j = 1, 2, · · · , 2k + 1,

arg(z − zj) = −1

2π =⇒pz − zj = q

|ri − zj| ei(−π4) For j = 2k + 2, 2k + 3, · · · , 2N + 2,

arg(z − zj) = −3

2π =⇒pz − zj = q

|ri − zj| ei(−4)

Then,

Note that this value is a pure imaginary number.

Using Mathematica

(2) To evaluateR

bkf (z)dz (Figure 73)

Z

For j = 1, 2, · · · , 2m,

arg(z − zj) = −1

2π =⇒pz − zj = math

pri − zj For j = 2m + 1, 2m + 2, · · · , 2N + 2,

arg(z − zj) = −3

2π =⇒pz − zj = (−1) · math

pri − zj Then,

Z

bk

f (z) dz = 2 Z

z2m−→z2m+1

f (z) dz

= 2 · (−1)(2N +2)−2m· math

Z y2m+1

y2m

2N +2

Y

j=1

pri − zj

! i dr

!

= 2 · math

Z y2m+1

y2m

2N +2

Y

j=1

pri − zj

! i dr

! .

Next, we investigate the sign-regions for other complicated examples.

Example 16. Suppose that

f (z) =

7

Y

j=1

pz − zj

and the cutted plane (sheet I) is drawn below. To determine the sign-regions of f .

Figure 74

Solution.

First we draw a horizontal line from each end point of every cut to the direction of minus real asix, L1, L2, L3, L4, L5, L6. Then these horizontal lines and all cuts separate the complex plane to several regions, R1, · · · , R18. Let Ic= [−2 , −π].

z ∈ R1

=⇒ arg(z − zk) ∈ Ic for all k

=⇒ f (z) = (−1)7· math (f(z)) = (−1) · math (f(z)) .

z ∈ R8

=⇒

( arg(z − zk) ∈ Ic if k = 2, 3, 5, 6, 7, arg(z − zk) /∈ Ic otherwise.

=⇒ f (z) = (−1)5· math (f(z)) = (−1) · math (f(z)) .

z ∈ R15

=⇒

( arg(z − zk) ∈ Ic if k = 5, 7, arg(z − zk) /∈ Ic otherwise.

=⇒ f (z) = (−1)2· math (f(z)) = math (f(z)) .

To discuss the other regions using the above method, you can find that the sign-regions are the gray regions drawn in Figure 74.

We also give a simple method of finding the sign-regions. For z ∈ Rk, e,g, z ∈ R10, we imgine that there is a coordinate with orgin z. If there are odd branch points in the forth quadrant, then f (z) = (−1) · math (f (z)). If there are even branch points in the forth quadrant, then f (z) = math (f (z)). Finally the sign-regions is shown below.

Example 17. Suppose that f (z) =p

[z − (1 + 2i)][z − (1 − 2i)][z − (2 + i)][z − (2 − i)].

Evaluate the integral R

bf (z)dz.

Figure 76 Solution.

We evaluate this integral along two different, but equivalent paths, respectively.

(1) Along the paths in Figure 77

Figure 77 Since the path b1 lies in a sign-region, we obtain

Z

b1

f (z) dz + Z

b∗∗1

f (z) dz = 2 Z

b1

f (z) dz

= 2 · (−1) · math

Z

1−i−→1−2i+

f (z) dz



Since b3 and b∗∗3 are two paths in sheet II and f (z)|II = (−1) · f (z)|I, Furthermore, b3 lies in a sign-region, so

Z

(2) Along the paths in Figure 78

Figure 78 Z

1+2i−→1+i+

f (z) dz = (−1) · math

Z 1 2

f (1 + ri)i dr



and

Z

1+2iL991+i

f (z) dz = (−1) Z

1+2i←−1+i+

f (z) dz

= (−1) · math

Z 2 1

f (1 + ri)i dr



= (−1) Z

1+2i−→1+i+

f (z) dz Thus,

Z

1+2i−→1+i+

f (z) dz + Z

1+2iL991+i

f (z) dz = 0 . Similarly,

Z

1+i−→1−i+

f (z) dz + Z

1−iL991+i

f (z) dz = 0 Z

1−i−→1−2i+

f (z) dz + Z

1−2iL991−i

f (z) dz = 0

So, we have

Z

1+2i−→1−2i+

f (z) dz + Z

1−2iL991+2i

f (z) dz = 0 and

Z

2+i−→2−i+

f (z) dz + Z

2−iL992+i

f (z) dz = 0

It remains to evaluate the integrals along the slant pathsR

1−2i−→2+if (z) dz+R

2+iL991−2if (z) dz.

Z

1−2i−→2+i

f (z) dz + Z

2+iL991−2i

f (z) dz

= 2 Z

1−2i−→2+i

f (z) dz

= 2 Z

10 3

0

f (1 − 2i + rei tan−13)ei tan−13dr + 2 · (−1) Z

10

10 3

f (1 − 2i + rei tan−13)ei tan−13dr

= −0.13095 − 11.5969i . Thus,

Z

b

f (z) dz = 2 Z

1−2i−→2+i

f (z) dz = −0.13095 − 11.5969i .

Example 18. Suppose that

f (z) =

N +1

Y

j=1

pz − zjpz − zj.

satisfying that Re(zj) < Re(zj+1) and Im(zj) = Im(zj+1) for all j and suppose that N + 1 is odd. The cut plane is drawn in Figure 79. Evaluate R

akf (z)dz and R

bkf (z)dz.

Figure 79 Solution.

1. EvaluateR

akf (z)dz

Figure 80 Let zj = xj + iyj for all j.

Z

zk+1

−→z+ k+1

f (z) dz = math

Z −yk+1 yk+1

f (xk+1+ ri)i dr

!

Z

zk+1←−z k+1

f (z) dz = (−1) · math

Z yk+1

−yk+1

f (xk+1+ ri)i dr

!

= math

Z −yk+1 yk+1

f (xk+1+ ri)i dr

!

= Z

zk+1

−→z+ k+1

f (z) dz Thus,

Z

ak

f (z) dz = 2 Z

zk+1

−→z+ k+1

f (z) dz

= 2 · math

Z −yk+1 yk+1

f (xk+1+ ri)i dr

! .

2. EvaluateR

bkf (z)dz

Figure 81 For j = 1, 2, · · · , k,

Z

zk+1

−→z+ k+1

f (z) dz + Z

zk+1

L99z k+1

f (z) dz = 0

So,

Z

bk

f (z)dz = 2

k

X

j=1

Z

zj−→zj+1

f (z) dz

Let zj = xj + iyj for all j and let

d = |zj+1− zj+1|

|zj+1− zj| = 2yj

xj+1− xj

For z ∈ zj −→ zj+1, let z = zj+ rei tan−1d, r : 0 −→ |zj+1− zj|. Then Z

zj−→zj+1

f (z) dz = (−1)j· math

Z |zj+1−zj| 0

f (zj + rei tan−1d)ei tan−1ddr

!

Therefore, Z

bk

f (z)dz = math 2

k

X

j=1

(−1)j

Z |zj+1−zj| 0

f (zj+ rei tan−1d)ei tan−1ddr

! .

Example 19. Suppose that f (z) =p

[z − (−1 + i)][z − 0][z − 2i][z − (1 + 3i)][z − (1 + 5i)][z − (2 + 2i)][z − (2 − 2i)].

The cut plane is drawn in Figure 82. Evaluate R

bkf (z)dz for k = 1, 2, 3.

Figure 82 Solution.

Figure 83 1. EvaluateR

b1f (z)dz

= 0.0529343 − 18.4855i . 2. EvaluateR

b2f (z)dz

Thus,

Z

b2

f (z)dz = 2 Z

−1+i−→2i

f (z) dz + 2 Z

0−→1+5i

f (z) dz

= (0.0529343 − 18.4855i) + (−67.2252 + 88.1591i)

= −67.1723 + 69.6736i . 3. EvaluateR

b3f (z)dz Z

b3

f (z)dz = 2 Z

−1+i−→2i

f (z) dz + 2 Z

0−→1+5i

f (z) dz + 2 Z

1+3i−→2+2i

f (z) dz

Along 1 + 3i −→ 2 + 2i, let z = (1 + 3i) + rei(−π4), r : 0 −→√ 2.

Z

1+3i−→2+2i

f (z) dz = 2 · math Z

2

0

f ((1 + 3i) + rei(−π4))ei(−π4)dr

!

= 9.0209 + 17.2364i . Thus,

Z

b3

f (z)dz = 2 Z

−1+i−→2i

f (z) dz + 2 Z

0−→1+5i

f (z) dz + 2 Z

1+3i−→2+2i

f (z) dz

= (0.0529343 − 18.4855i) + (−67.2252 + 88.1591i) + (9.0209 + 17.2364i)

= −58.1514 + 86.91i .

5 Integrals for Slant Cuts

5.1 Cut Structures for Slant Cuts

Let f (z) =√

z and let z = re where θ = arg z. Define two single-valued branches of f as

f (z) =√

re12, −7π

4 ≤ θ < π 4, and

f (z) =√

re12, π

4 ≤ θ < 9π 4 . Define sheet I and sheet II as

sheet I = {z ∈ C| −7π

4 ≤ arg z < π 4}, and

sheet II = {z ∈ C|π

4 ≤ arg z < 9π 4 }.

To Label a + and label a − as in Figure 84.

Figure 84

Then we can use the same method used in section 2.1 to build the Riemann surface for f. (see Figure 6)

More generally, suppose that 0 ≤ α ≤ π. we can define two single-valued branches of f as

f (z) =√

re12, α − 2π ≤ θ < α, and

f (z) =√

re12, α ≤ θ < α + 2π.

Define sheet I and sheet II as

sheet I = {z ∈ C|α − 2π ≤ arg z < α},

and

sheet II = {z ∈ C|α ≤ arg z < α + 2π}.

To Label a + and label a − as in Figure 85.

p a q= -2

a q =

a

p a q= +2

a q =

Figure 85

5.2 The Problem in Using Mathematica

Let (I) to denote sheet I and let (II) to denote sheet II. Then z ∈ (I) =⇒ −7π

4 ≤ arg z < π

4 =⇒ −7π

8 ≤ arg z < π 8. f maps the points on sheet I into the region {z ∈ C| −812arg z < π8}.

Figure 86 And,

z ∈ (II) =⇒ π

4 ≤ arg z < 9π

4 =⇒ π 8 ≤ 1

2arg z < 9π 8 . f maps the points on sheet II into the region {z ∈ C|π8 ≤ arg z < 8 }.

Figure 87

Let z ∈ Ic = [−4 , −π] ⊆ (I). For example, suppose that z = 12 +

3

2 i ∈ (I). Then arg z = −5π3 and z = ei(−5π3 ).

arg z = −5π

3 ∈ Ic=⇒ arg √

z = −5π 6

=⇒ f (z) = s

1 2 +

√3

2 i = (ei(−5π3 ))12 = ei(−5π6 ) But in Mathematica,

1 2+

√3

2 i = ei(π3)=⇒

s 1 2+

√3

2 i = ei(π6) Note that ei(π6) = (−1) · ei(−5π6 ).

Figure 88 Thus we have the result

z ∈ sheet I and − 7π

4 ≤ arg z ≤ −π =⇒√

z = (−1) · math √ z Let θ = arg z, and let

A = {z ∈ C| − π

2 < θ < π 4}, BT = {z ∈ C| − 3π

4 ≤ θ ≤ −π 2}, BM = {z ∈ C|π

4 ≤ θ ≤ π 2}.

Figure 89 Theoretically,

f (sheet I) = A ∪ BT. In Mathematica,

f (sheet I) = A ∪ BM.

5.3 Evaluating Integrals Using Mathematica

Example 20. Let f (z) =√

z and let γ be the positively oriented (counterclockwise ori-ented) circular path z = e, −4 ≤ θ < π4. Evaluate the integralR

γf (z) dz.

Figure 90 Solution.

(1) Integral along the circular path

z ∈ γ =⇒ z = e, −7π

4 ≤ θ < π

4 =⇒ dz = iedθ.

Then, (2) Deformation of path

Theoretical Evaluation

To use the similar method of deriving Equation(18), we can know that Z

Example 21. Suppose that

f (z) =p

z − (1 + i)p

z − (2 + 2i).

Let γ be the positively oriented circular path γ : z = 3

2 +3

2i + e, −7π

4 ≤ θ < π 4. Evaluate the integral R

γf (z) dz.

Figure 91 Solution.

Similar to the method of finding sign-regions for vertical cuts, the sign-region is shown in Figure 91.

(1) Integral along the circular path

z ∈ γ =⇒ z = 3 2+ 3

2i + e, −7π

4 ≤ θ < π

4 =⇒ dz = iedθ.

Z

γ

f (z) dz = math

Z 6

4

f (3 2+3

2i + e)ie

!

+ (−1) · math

Z

6

6

f (3 2 +3

2i + e)ie

!

+ math Z π4

6

f (3 2 +3

2i + e)ie

!

= 1.5708 . (2) Deformation of path

Theoretical Evaluation Along 2 + 2i−→ 1 + i (z ∈ γ+ )

z = 1 + i + rei(−4), r :√

2 −→ 0 =⇒ dz = ei(−4 )dr

Then,

z − (1 + i) = |1 + i + rei(−4 )− (1 + i)|ei(−4 )

=⇒p

z − (1 + i) = q

|1 + i + rei(−4)− (1 + i)| ei(−8 )

z − (2 + 2i) = |1 + i + rei(−4 )− (2 + 2i)|ei(−4)

=⇒p

z − (2 + 2i) = q

|1 + i + rei(−4)− (2 + 2i)| ei(−8 )

Z

γ

f (z) dz = 2 Z

γ

f (z) dz

= 2 Z 0

2

q

|1 + i + rei(−4)− (1 + i)|

q

|1 + i + rei(−4)− (2 + 2i)| ei(−8 )ei(−8 )ei(−4 )dr

= 1.5708 . Using Mathematica

Along 2 + 2i−→ 1 + i (z ∈ γ+ )

z = 1 + i + rei(−4), r :√

2 −→ 0 =⇒ dz = ei(−4 )dr

arg (z − (1 + i)) = −7

4π =⇒p

z − (1 + i) = (−1) · mathp

z − (1 + i) arg (z − (2 + 2i)) = −3

4π =⇒ p

z − (2 + 2i) = mathp

z − (2 + 2i)

Z

γ

f (z) dz = 2 Z

γ

f (z) dz

= 2 · (−1) · math

Z 0

2

q

1 + i + rei(−4 )− (1 + i) q

1 + i + rei(−4 )− (2 + 2i) ei(−4)dr



= 1.5708 .

Example 22. Suppose that f (z) =p

z − (1 + i)p

z − (2 + 2i)p

z − (3 + 3i)p

z − (4 + 4i)p

z − (5 + 5i)

=

5

Y

k=1

pz − (k + ki).

Let a1, a2 be two a − cycles and let b1, b2 be two b − cycles drawing in Figure 92. Evaluate the four integrals R

akf (z)dz and R

bkf (z)dz, k = 1, 2 using the method of deformation of path.

Figure 92 Solution.

Figure 93 1. EvaluateR

a1f (z) dz Theoretical Evaluation Along 2 + 2i−→ 1 + i,+

z = 1 + i + rei(−4), r :√

2 −→ 0 =⇒ dz = ei(−4 )dr For k = 1,

arg(z − (1 + i)) = −7

4π =⇒ p

z − (1 + i) = q

|1 + i + rei(−4 )− (1 + i)| ei(−8). For k = 2, 3, 4, 5,

arg(z − (k + ki)) = −3

4π =⇒ p

z − (k + ki) = q

|1 + i + rei(−4)− (k + ki)| ei(−8 )

Then,

2. EvaluateR

a2f (z) dz

Then, Z

a2

f (z) dz = 2 Z

4+4i−→3+3i+

f (z) dz

= 2 Z 0

2

5

Y

k=1

q

|3 + 3i + rei(−4)− (k + ki)|

!



ei(−7π8 )3

ei(−3π8 )2

ei(−4) dr

= 5.69991 − 2.36098i . Using Mathematica

Along 4 + 4i−→ 3 + 3i,+

z = 3 + 3i + rei(−4 ), r : √

2 −→ 0 =⇒ dz = ei(−4)dr For k = 1, 2, 3,

arg(z−(k+ki)) = −7

4π =⇒p

z − (k + ki) = (−1)·math

q

3 + 3i + rei(−4)− (k + ki)



For k = 4, 5,

arg(z − (k + ki)) = −3

4π =⇒p

z − (k + ki) = math

q

3 + 3i + rei(−4 )− (k + ki)



Then, Z

a2

f (z) dz = 2 Z

4+4i−→3+3i+

f (z) dz

= 2 · (−1)2· math Z 0

2 5

Y

k=1

q

|3 + 3i + rei(−4 )− (k + ki)|

!

ei(−4) dr

!

= 5.69991 − 2.36098i .

3. EvaluateR

Thus,

Thus,

Z

b1

f (z) dz = 2 Z

5+5i−→4+4i

f (z) dz + 2 Z

3+3i−→2+2i

f (z) dz

= −4.99015 − 12.0473i . 4. EvaluateR

b2f (z) dz : We have done in 3.

Z

b2

f (z) dz = 2 Z

5+5i−→4+4i

f (z) dz = −3.67557 − 8.8736i . Example 23. Let

f (z) =p

(z − z1)(z − z2) · · · (z − z2N +1) =

2N +1

Y

j=1

pz − zj

and

g(z) =p

(z − z1)(z − z2) · · · (z − z2N +1) =

2N +2

Y

j=1

pz − zj

where zj is of the form zj = rjei(α−2π). That is, these zj are lies on a slant cut of angle α. The cuts of f and g are drwan in Figure 95 and Figure 96, respectively.

Figure 95 Figure 96

Let Ic= [α − 2π, −π]. To Apply the similar method using in example 13 and example 14 for vertical cuts, we are able to easily determine the sign-regions for f and g. The sign-regions for f and for g are all R2, R4, · · · , R2N +2 which are shown in Figure 95 and Figure 96, respectively.

相關文件